Knowledge (XXG)

Insulated-gate bipolar transistor

Source đź“ť

737:. This was followed by demonstration of operation of the device at elevated temperatures by Baliga in 1985. Successful efforts to suppress the latch-up of the parasitic thyristor and the scaling of the voltage rating of the devices at GE allowed the introduction of commercial devices in 1983, which could be used for a wide variety of applications. The electrical characteristics of GE's device, IGT D94FQ/FR4, were reported in detail by Marvin W. Smith in the proceedings of PCI April 1984. Smith showed in Fig. 12 of the proceedings that turn-off above 10 amperes for gate resistance of 5 kΩ and above 5 amperes for gate resistance of 1 kΩ was limited by switching safe operating area although IGT D94FQ/FR4 was able to conduct 40 amperes of collector current. Smith also stated that the switching safe operating area was limited by the latch-up of the parasitic thyristor. 823:"Becke’s device" and is described in US Patent 4364073. The difference between "Plummer’s device" and "Becke’s device" is that "Plummer’s device" has the mode of thyristor action in its operation range, but "Becke’s device" never has the mode of thyristor action in its entire operation range. This is a critical point, because the thyristor action is the same as so-called "latch-up". Latch-up is the main cause of fatal device failure. Thus, theoretically, "Plummer’s device" never realizes a rugged or strong power device which has a large safe operating area. The large safe operating area can be achieved only after latch-up is completely suppressed and eliminated in the entire device operation range. However, the Becke's patent (US Patent 4364073) did not disclose any measures to realize actual devices. 741:
IGBTs were directly connected without any loads across a 600 V constant-voltage source and were switched on for 25 microseconds. The entire 600 V was dropped across the device, and a large short-circuit current flowed. The devices successfully withstood this severe condition. This was the first demonstration of so-called "short-circuit-withstanding-capability" in IGBTs. Non-latch-up IGBT operation was ensured, for the first time, for the entire device operation range. In this sense, the non-latch-up IGBT proposed by Hans W. Becke and Carl F. Wheatley was realized by A. Nakagawa et al. in 1984. Products of non-latch-up IGBTs were first commercialized by
623: 1114: 994:
rating of both MOSFET and IGBT devices increases, the depth of the n- drift region must increase and the doping must decrease, resulting in roughly square relationship decrease in forward conduction versus blocking voltage capability of the device. By injecting minority carriers (holes) from the collector p+ region into the n- drift region during forward conduction, the resistance of the n- drift region is considerably reduced. However, this resultant reduction in on-state forward voltage comes with several penalties:
1196: 1159: 38: 1137: 674:
latch-up caused the fatal device failure. IGBTs had, thus, been established when the complete suppression of the latch-up of the parasitic thyristor was achieved. Later, Hans W. Becke and Carl F. Wheatley developed a similar device claiming non-latch-up. They patented the device in 1980, referring to it as "power MOSFET with an anode region" for which "no thyristor action occurs under any device operating conditions".
330: 1058:, and other programs. To simulate an IGBT circuit, the device (and other devices in the circuit) must have a model which predicts or simulates the device's response to various voltages and currents on their electrical terminals. For more precise simulations the effect of temperature on various parts of the IGBT may be included with the simulation. Two common methods of modeling are available: 1222: 874:(GTOs). This excellent feature of the IGBT had suddenly emerged when the non-latch-up IGBT was established in 1984 by solving the problem of so-called "latch-up", which is the main cause of device destruction or device failure. Before that, the developed devices were very weak and were easy to be destroyed because of "latch-up". Therefore, the inventor of actual devices is Akio Nakagawa. 80: 666: 654:(MOSFET) was also invented at Bell Labs. In 1957 Frosch and Derick published their work on building the first silicon dioxide transistors, including a NPNP transistor, the same structure as the IGBT. The basic IGBT mode of operation, where a pnp transistor is driven by a MOSFET, was first proposed by K. Yamagami and Y. Akagiri of 843:
MOSFET with an anode region". This patent has been called "the seminal patent of the insulated gate bipolar transistor". The patent claimed that "no thyristor action occurs under any device operating conditions". This substantially means that the device exhibits non-latch-up IGBT operation over the entire device operation range.
701:(GTOs). This excellent feature of the IGBT had suddenly emerged when the non-latch-up IGBT was established in 1984 by solving the problem of so-called "latch-up", which is the main cause of device destruction or device failure. Before that, the developed devices were very weak and were easy to be destroyed because of "latch-up". 740:
Complete suppression of the parasitic thyristor action and the resultant non-latch-up IGBT operation for the entire device operation range was achieved by A. Nakagawa et al. in 1984. The non-latch-up design concept was filed for US patents. To test the lack of latch-up, the prototype 1200 V
1101:
The wearout failures mainly include bias temperature instability (BTI), hot carrier injection (HCI), time-dependent dielectric breakdown (TDDB), electromigration (ECM), solder fatigue, material reconstruction, corrosion. The overstress failures mainly include electrostatic discharge (ESD), latch-up,
846:
In actual devices, IGT developed by Baliga is not IGBT, because its operation range is limited by the latch-up of the parasitic thyristor. Marvin W. Smith stated that "IGT is not intended to replace bipolar transistors or power MOSFETs" in the Section of SUMMARY in the proceedings of PCI April 1984.
842:
In 1978 J. D. Plummer and B. Scharf patented an NPNP transistor device combining MOS and bipolar capabilities for power control and switching. Later, Hans W. Becke and Carl F. Wheatley invented a similar device, for which they filed a patent application in 1980, and which they referred to as "power
1024:
The on-state forward voltage drop in IGBTs behaves very differently from power MOSFETS. The MOSFET voltage drop can be modeled as a resistance, with the voltage drop proportional to current. By contrast, the IGBT has a diode-like voltage drop (typically of the order of 2V) increasing only with the
673:
In 1978 J. D. Plummer and B. Scharf patented a NPNP transistor device combining MOS and bipolar capabilities for power control and switching. The development of IGBT was characterized by the efforts to completely suppress the thyristor operation or the latch-up in the four-layer device because the
993:
An IGBT features a significantly lower forward voltage drop compared to a conventional MOSFET in higher blocking voltage rated devices, although MOSFETS exhibit much lower forward voltage at lower current densities due to the absence of a diode Vf in the IGBT's output BJT. As the blocking voltage
854:
In the early development stage of IGBT, all the researchers tried to increase the latch-up current itself in order to suppress the latch-up of the parasitic thyristor. However, all these efforts failed because IGBT could conduct enormously large current. Successful suppression of the latch-up was
681:
In the early development stage of IGBT, all the researchers tried to increase the latch-up current itself in order to suppress the latch-up of the parasitic thyristor. However, all these efforts failed because IGBT could conduct enormously large current. Successful suppression of the latch-up was
830:
commercialized "non-latch-up IGBT" in 1985. Stanford University insisted in 1991 that Toshiba's device infringed US Patent RE33209 of "Plummer’s device". Toshiba answered that "non-latch-up IGBTs" never latched up in the entire device operation range and thus did not infringe Plummer's US Patent
732:
community to be severely restricted by its slow switching speed and latch-up of the parasitic thyristor structure inherent within the device. However, it was demonstrated by Baliga and also by A. M. Goodman et al. in 1983 that the switching speed could be adjusted over a broad range by
850:
A. Nakagawa et al. invented the device design concept of non-latch-up IGBTs in 1984. The invention is characterized by the device design setting the device saturation current below the latch-up current, which triggers the parasitic thyristor. This invention realized complete suppression of the
822:
On the other hand, Hans W. Becke proposed, in 1980, another device in which the thyristor action is eliminated under any device operating conditions although the basic device structure is the same as that proposed by J. D. Plummer. The device developed by Hans W. Becke is referred here as
677:
A. Nakagawa et al. invented the device design concept of non-latch-up IGBTs in 1984. The invention is characterized by the device design setting the device saturation current below the latch-up current, which triggers the parasitic thyristor. This invention realized complete suppression of the
855:
made possible by limiting the maximal collector current, which IGBT could conduct, below the latch-up current by controlling/reducing the saturation current of the inherent MOSFET. This was the concept of non-latch-up IGBT. "Becke’s device" was made possible by the non-latch-up IGBT.
682:
made possible by limiting the maximal collector current, which IGBT could conduct, below the latch-up current by controlling/reducing the saturation current of the inherent MOSFET. This was the concept of non-latch-up IGBT. "Becke’s device" was made possible by the non-latch-up IGBT.
1003:) is placed in anti-parallel with the IGBT to conduct current in the opposite direction. The penalty isn't overly severe because at higher voltages, where IGBT usage dominates, discrete diodes have a significantly higher performance than the body diode of a MOSFET. 1086:. Hefner's model is fairly complex but has shown good results. Hefner's model is described in a 1988 paper and was later extended to a thermo-electrical model which include the IGBT's response to internal heating. This model has been added to a version of the 168:
well into the ultrasonic-range frequencies, which are at least ten times higher than audio frequencies handled by the device when used as an analog audio amplifier. As of 2010, the IGBT was the second most widely used power transistor, after the
1753: 831:
RE33209. Stanford University never responded after Nov. 1992. Toshiba purchased the license of Becke's patent but never paid any license fee for "Plummer’s device". Other IGBT manufacturers also paid the license fee for Becke's patent.
2301: 1195: 998:
The additional PN junction blocks reverse current flow. This means that unlike a MOSFET, IGBTs cannot conduct in the reverse direction. In bridge circuits, where reverse current flow is needed, an additional diode (called a
1029:
of the current. Additionally, MOSFET resistance is typically lower for smaller blocking voltages, so the choice between IGBTs and power MOSFETS will depend on both the blocking voltage and current involved in a particular
646:. The junction version known as the bipolar junction transistor (BJT), invented by Shockley in 1948. Later the similar thyristor was proposed by William Shockley in 1950 and developed in 1956 by power engineers at 818:
In 1978 J. D. Plummer and B. Scharf patented a NPNP transistor device combining MOS and bipolar capabilities for power control and switching. The device proposed by Plummer is referred here as "Plummer’s device".
1113: 1006:
The reverse bias rating of the N-drift region to collector P+ diode is usually only of tens of volts, so if the circuit application applies a reverse voltage to the IGBT, an additional series diode must be
858:
The IGBT is characterized by its ability to simultaneously handle a high voltage and a large current. The product of the voltage and the current density that the IGBT can handle reached more than 5
786:
and excellent ruggedness and tolerance of overloads. Extremely high pulse ratings of second- and third-generation devices also make them useful for generating large power pulses in areas including
685:
The IGBT is characterized by its ability to simultaneously handle a high voltage and a large current. The product of the voltage and the current density that the IGBT can handle reached more than 5
802:. High pulse ratings and low prices on the surplus market also make them attractive to the high-voltage hobbyists for controlling large amounts of power to drive devices such as solid-state 651: 2275: 1177: 1010:
The minority carriers injected into the N-drift region take time to enter and exit or recombine at turn-on and turn-off. This results in longer switching times, and hence higher
102:
primarily forming an electronic switch. It was developed to combine high efficiency with fast switching. It consists of four alternating layers (NPNP) that are controlled by a
1355: 1034:
In general, high voltage, high current and lower frequencies favor the IGBT while low voltage, medium current and high switching frequencies are the domain of the MOSFET.
839:
The first silicon dioxide transistor was built by Frosch and Derick between 1955 and 1957. One of the devices was an NPNP transistor, the same structure as the IGBT.
851:
parasitic thyristor action, for the first time, because the maximal collector current was limited by the saturation current and never exceeded the latch-up current.
678:
parasitic thyristor action, for the first time, because the maximal collector current was limited by the saturation current and never exceeded the latch-up current.
2533: 2414:
Patil, N.; Celaya, J.; Das, D.; Goebel, K.; Pecht, M. (June 2009). "Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics".
1913:
Nakagawa, A.; Yamaguchi, Y.; Watanabe, K.; Ohashi, H.; Kurata, M. (1985). "Experimental and numerical study of non-latch-up bipolar-mode MOSFET characteristics".
1083: 782:
and burns the device out at high currents). Second-generation devices were much improved. The current third-generation IGBTs are even better, with speed rivaling
728:
A similar paper was also submitted by J. P. Russel et al. to IEEE Electron Device Letter in 1982. The applications for the device were initially regarded by the
2167:
Goodman, A.M.; Russell, J. P.; Goodman, L. A.; Nuese, C. J.; Neilson, J. M. (1983). "Improved COMFETs with fast switching speed and high-current capability".
870:
of the IGBT. The IGBT is the most rugged and the strongest power device yet developed, affording ease of use and so displacing bipolar transistors and even
697:
of the IGBT. The IGBT is the most rugged and the strongest power device yet developed, affording ease of use and so displacing bipolar transistors and even
714: 1136: 752:. It was demonstrated that the product of the operating current density and the collector voltage exceeded the theoretical limit of bipolar transistors, 2 3407: 970:. Large IGBT modules typically consist of many devices in parallel and can have very high current-handling capabilities in the order of hundreds of 3048: 847:
Baliga and Smith even recommended to use snubber circuits to prevent destruction of IGT in the article of EDN, published on September 29, 1983.
2470: 1947:
Baliga, B.J.; Adler, M. S.; Gray, P. V.; Love, R. P.; Zommer, N. (1982). "The insulated gate rectifier (IGR): A new power switching device".
1626: 1601: 906:, after the power MOSFET. The IGBT accounts for 27% of the power transistor market, second only to the power MOSFET (53%), and ahead of the 2965: 2279: 2746: 2526: 1805:
Nakagawa, A.; Ohashi, H.; Kurata, M.; Yamaguchi, H.; Watanabe, K. (1984). "Non-latch-up 1200V 75A bipolar-mode MOSFET with large ASO".
1158: 622: 103: 2729: 2036: 1691: 1372: 763:
The insulating material is typically made of solid polymers, which have issues with degradation. There are developments that use an
2345: 2371:
Hefner, A.R.; Diebolt, D.M. (September 1994). "An experimentally verified IGBT model implemented in the Saber circuit simulator".
2869: 2596: 1863:
Nakagawa, A.; Yamaguchi, Y.; Watanabe, K.; Ohashi, H. (1987). "Safe operating area for 1200-V nonlatchup bipolar-mode MOSFET's".
713:
et al. in 1982. The first experimental demonstration of a practical discrete vertical IGBT device was reported by Baliga at the
2917: 2716: 2506: 2057: 722: 2519: 2079:
Russell, J.P.; Goodman, A. M.; Goodman, L.A.; Neilson, J. M. (1983). "The COMFET—A new high conductance MOS-gated device".
3576: 1047: 866:
10 W/cm, of existing power devices such as bipolar transistors and power MOSFETs. This is a consequence of the large
693:
10 W/cm, of existing power devices such as bipolar transistors and power MOSFETs. This is a consequence of the large
345:. This additional p+ region creates a cascade connection of a PNP bipolar junction transistor with the surface n-channel 3601: 3586: 2948: 2700: 2124: 1176: 1059: 959: 138: 2299:, Becke, Hans W. & Jr, Carl F. Wheatley, "Power MOSFET with an anode region", issued 1982-12-14 748:
Once the non-latch-up capability was achieved in IGBTs, it was found that IGBTs exhibited very rugged and a very large
2752: 2689: 1245: 1240: 1235: 1075: 947: 911: 883: 631: 342: 186: 42:
IGBT module (IGBTs and freewheeling diodes) with a rated current of 1200 A and a maximum voltage of 3300 V
3596: 3581: 3412: 2959: 2028: 1474: 1275: 165: 99: 3571: 3166: 2880: 2723: 2608: 3033: 1428:"A High Precision On-Line Detection Method for IGBT Junction Temperature Based on Stepwise Regression Algorithm" 3175: 2885: 2741: 137:, trains, variable-speed refrigerators, and air conditioners, as well as lamp ballasts, arc-welding machines, 130: 118: 1772:, Power MOSFET with an Anode Region, issued December 14, 1982 to Hans W. Becke and Carl F. Wheatley. 2232:
Product of the Year Award: "Insulated Gate Transistor", General Electric Company, Electronics Products, 1983.
1558: 3186: 2906: 2705: 1537: 1533: 1071: 951: 871: 698: 3355: 2922: 2787: 2763: 149: 126: 3424: 3376: 3197: 3013: 2928: 2859: 2695: 2496: 1349: 1079: 919: 2257:
A. Nakagawa, H. Ohashi, Y. Yamaguchi, K. Watanabe and T. Thukakoshi, "Conductivity modulated MOSFET",
770:
The first-generation IGBTs of the 1980s and early 1990s were prone to failure through effects such as
3498: 3242: 3137: 2911: 2804: 2658: 2619: 2550: 2542: 2380: 2207: 2133: 2088: 1872: 1838:
A. Nakagawa, H. Ohashi, Y. Yamaguchi, K. Watanabe and T. Thukakoshi, "Conductivity modulated MOSFET"
1439: 1250: 915: 734: 1011: 3218: 3126: 3018: 2854: 2831: 2457: 867: 799: 775: 749: 694: 655: 157: 3523: 3383: 3091: 3058: 2874: 2758: 2736: 2492: 2431: 2396: 2180: 2149: 2104: 2003: 1960: 1926: 1888: 1818: 1725: 1227: 1063: 148:
Since it is designed to turn on and off rapidly, the IGBT can synthesize complex waveforms with
2198:
Baliga, B. Jayant (1985). "Temperature behavior of insulated gate transistor characteristics".
1751:, Plummer, James D., "Monolithic semiconductor switching device", issued 1990-05-01 3518: 3439: 3330: 3282: 3111: 3038: 3000: 2466: 2032: 1995: 1687: 1622: 1597: 1457: 1337: 1265: 1043: 1026: 967: 729: 142: 71: 37: 709:
Practical devices capable of operating over an extended current range were first reported by
380:
An insulated-gate bipolar transistor combining features from bipolar transistors and MOSFETs
3591: 3234: 3181: 3043: 3008: 2647: 2423: 2388: 2215: 2172: 2141: 2096: 1987: 1952: 1918: 1880: 1810: 1717: 1658: 1589: 1515: 1447: 1399: 1329: 1087: 1082:. An alternative physics-based model is the Hefner model, introduced by Allen Hefner of the 1055: 958:
as a switch in a single device. The IGBT is used in medium- to high-power applications like
903: 787: 718: 710: 647: 643: 498:
Larger die size, can be manufactured as monolithic devices up to 6" (15 cm) in diameter
2333: 3511: 3444: 3297: 3028: 2938: 2782: 2315: 2024:
The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor
1782: 779: 639: 153: 2052: 341:, except the n+ drain is replaced with a p+ collector layer, thus forming a vertical PNP 2384: 2211: 2137: 2092: 1876: 1443: 333:
Cross-section of a typical IGBT showing internal connection of MOSFET and bipolar device
3486: 3267: 3257: 3023: 2826: 1646: 1503: 1280: 963: 931: 791: 161: 2245: 1317: 3565: 3548: 3371: 3287: 3106: 2933: 2901: 2435: 2219: 1301: 1120: 1016: 1000: 923: 56: 2400: 2153: 2108: 2007: 1964: 1930: 1892: 1822: 1729: 1098:
The failure mechanisms of IGBTs includes overstress (O) and wearout(wo) separately.
3429: 3417: 3305: 3272: 3101: 3086: 2669: 2653: 2184: 1714:
1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers
1270: 943: 907: 893: 783: 635: 338: 191: 170: 134: 1201:
Detail of the inside of a Mitsubishi Electric CM600DU-24NFH IGBT module rated for
329: 2022: 1677: 1486: 3471: 3213: 3162: 3068: 3053: 2836: 2798: 1452: 1427: 1070:
simulates IGBTs using a macromodel that combines an ensemble of components like
721:
commercialized Baliga's IGBT device the same year. Baliga was inducted into the
2296: 1748: 1721: 1593: 1333: 1221: 17: 3543: 3533: 3466: 3340: 3310: 3277: 3252: 3247: 3224: 3096: 3076: 2954: 2816: 2793: 2679: 2581: 2576: 2571: 2262: 2258: 1991: 1843: 1839: 1769: 1217: 955: 803: 122: 107: 2176: 1999: 1956: 1922: 1814: 1581: 1461: 1341: 3506: 3350: 3345: 3335: 3262: 3142: 2976: 2971: 2896: 2821: 2501: 2427: 1884: 1683: 982: 927: 795: 337:
An IGBT cell is constructed similarly to an n-channel vertical-construction
114: 2452:
Wintrich, Arendt; Nicolai, Ulrich; Tursky, Werner; Reimann, Tobias (2015).
2145: 2100: 884:
List of MOSFET applications § Insulated-gate bipolar transistor (IGBT)
774:(in which the device will not turn off as long as current is flowing) and 630:
The bipolar point-contact transistor was invented in December 1947 at the
3528: 3476: 3456: 3434: 3320: 3315: 3203: 3192: 3121: 2891: 2453: 1143: 2511: 626:
Diagram of NPNP transistor made by Frosch and Derrick at Bell Labs, 1957
125:
action is permitted in the entire device operation range. It is used in
79: 3388: 3325: 3147: 3132: 2986: 2943: 2591: 897: 827: 807: 771: 764: 742: 2392: 1662: 1647:"Surface Protection and Selective Masking during Diffusion in Silicon" 1621:. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. 1519: 1504:"Surface Protection and Selective Masking during Diffusion in Silicon" 665: 3461: 3152: 3116: 3081: 2641: 2613: 2586: 2561: 1260: 971: 659: 346: 1800: 1798: 1796: 1978:
Shenai, K. (2015). "The Invention and Demonstration of the IGBT ".
826:
Several IGBT manufacturers paid the license fee of Becke's patent.
3538: 3449: 3208: 2981: 2774: 2636: 2631: 2122:
Baliga, B.J. (1983). "Fast-switching insulated gate transistors".
1067: 1051: 977: 889: 664: 328: 1712:
Scharf, B.; Plummer, J. (1978). "A MOS-controlled triac device".
113:
Although the structure of the IGBT is topologically similar to a
3481: 2864: 2810: 2711: 2664: 2602: 1255: 2515: 2320:
Innovation Hall of Fame at A. James Clark School of Engineering
1787:
Innovation Hall of Fame at A. James Clark School of Engineering
1102:
avalanche, secondary breakdown, wire-bond liftoff and burnout.
946:
with the high-current and low-saturation-voltage capability of
121:), the thyristor action is completely suppressed, and only the 2053:"NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology" 1322:
International Journal of Engineering Research & Technology
1765: 1763: 794:, where they are starting to supersede older devices such as 2346:"Power Transistor Market Will Cross $ 13.0 Billion in 2011" 942:
The IGBT combines the simple gate-drive characteristics of
2240: 2238: 1908: 1906: 1904: 1902: 767:
to improve manufacturing and reduce the voltage required.
377:
A four-layer semiconductor device with a P-N-P-N structure
2276:"Ion Gel as a Gate Insulator in Field Effect Transistors" 1942: 1940: 1316:
G.c, Mahato; Niranjan; Abu, Waquar Aarif (2018-04-24).
778:(in which a localized hotspot in the device goes into 745:
in 1985. This was the real birth of the present IGBT.
421:
Reverse blocking, forward blocking, forward conducting
2248:, PCI April 1984 PROCEEDINGS, pp. 121–131, 1984. 1834: 1832: 349:. The whole structure comprises a four layered NPNP. 1497: 1495: 902:
As of 2010, the IGBT is the second most widely used
3497: 3397: 3364: 3296: 3233: 3161: 3067: 2999: 2845: 2773: 2678: 2560: 2549: 164:. In switching applications modern devices feature 70: 62: 47: 1858: 1856: 1854: 1852: 1373:"insulated-gate bipolar transistor (IGBT) | JEDEC" 1302:https://www.onsemi.com/pub/Collateral/HBD871-D.PDF 1534:"1947: Invention of the Point-Contact Transistor" 652:metal–oxide–semiconductor field-effect transistor 501:Smaller die size, often paralleled in a package 490:Suitable for high frequencies, typically higher 2259:US Patent No. 6025622 (Feb. 15, 2000) 1840:US Patent No. 6025622 (Feb. 15, 2000) 1208:, showing the IGBT dies and freewheeling diodes 981:. These IGBTs can control loads of hundreds of 2465:(2nd Revised ed.). Germany: ISLE Verlag. 1354:: CS1 maint: DOI inactive as of August 2024 ( 1084:National Institute of Standards and Technology 2527: 1679:Power Devices for Efficient Energy Conversion 1559:"1948: Conception of the Junction Transistor" 862:10 W/cm, which far exceeded the value, 2 689:10 W/cm, which far exceeded the value, 2 8: 2246:"APPLICATIONS OF INSULATED GATE TRANSISTORS" 1426:Shao, Lingfeng; Hu, Yi; Xu, Guoqing (2020). 1142:Opened IGBT module with four IGBTs (half of 487:Suitable for line frequency, typically lower 30: 2261:, No. 5086323 (Feb. 4, 1992) and 2169:1983 International Electron Devices Meeting 1949:1982 International Electron Devices Meeting 1915:1985 International Electron Devices Meeting 1842:, No. 5086323 (Feb. 4, 1992) and 1807:1984 International Electron Devices Meeting 715:IEEE International Electron Devices Meeting 2557: 2534: 2520: 2512: 1676:Majumdar, Gourab; Takata, Ikunori (2018). 954:for the control input and a bipolar power 36: 1586:Technical Memorandum of Bell Laboratories 1451: 1042:Circuits with IGBTs can be developed and 1582:"Silicon-Silicon Dioxide Surface Device" 1400:"IGBT Structure | About IGBTs | TechWeb" 621: 356: 175: 2459:Application Manual Power Semiconductors 1291: 1109: 512:Suitable for medium-power applications 2373:IEEE Transactions on Power Electronics 1651:Journal of The Electrochemical Society 1508:Journal of the Electrochemical Society 1347: 358:Difference between thyristor and IGBT 29: 2291: 2289: 1865:IEEE Transactions on Electron Devices 1743: 1741: 1739: 1707: 1705: 1703: 1640: 1638: 1487:Difference Between IGBT and Thyristor 1256:Junction-gate field-effect transistor 950:. The IGBT combines an isolated-gate 495:Die size and paralleling requirements 435:Combined bipolar and MOSFET features 353:Difference between thyristor and IGBT 7: 2966:Three-dimensional integrated circuit 2263:No. 4672407 (Jun. 9, 1987) 1844:No. 4672407 (Jun. 9, 1987) 1619:History of Semiconductor Engineering 1421: 1419: 1394: 1392: 1367: 1365: 1311: 1309: 1297: 1295: 509:Suitable for high-power applications 2747:Programmable unijunction transistor 662:S47-21739, which was filed in 1968. 2648:Multi-gate field-effect transistor 25: 2626:Insulated-gate bipolar transistor 1645:Frosch, C. J.; Derick, L (1957). 1502:Frosch, C. J.; Derick, L (1957). 914:(9%). The IGBT is widely used in 611:High-speed switching, efficiency 523:Requires continuous gate voltage 432:Coupled transistors (PNP and NPN) 92:insulated-gate bipolar transistor 31:Insulated-gate bipolar transistor 2870:Heterostructure barrier varactor 2597:Chemical field-effect transistor 2416:IEEE Transactions on Reliability 1220: 1194: 1175: 1157: 1135: 1112: 669:Static characteristic of an IGBT 160:in sound systems and industrial 78: 2918:Mixed-signal integrated circuit 2058:National Inventors Hall of Fame 1980:IEEE Power Electronics Magazine 1318:"Analysis on IGBT Developments" 1182:Small IGBT module, rated up to 1164:Infineon IGBT Module rated for 725:for the invention of the IGBT. 723:National Inventors Hall of Fame 2316:"C. Frank Wheatley, Jr., BSEE" 1783:"C. Frank Wheatley, Jr., BSEE" 1: 989:Comparison with power MOSFETs 2949:Silicon controlled rectifier 2811:Organic light-emitting diode 2701:Diffused junction transistor 2220:10.1016/0038-1101(85)90009-7 2125:IEEE Electron Device Letters 2081:IEEE Electron Device Letters 960:switched-mode power supplies 835:Who is the inventor of IGBT? 561:Current switching capability 139:uninterruptible power supply 133:(VFDs) for motor control in 129:in high-power applications: 2753:Static induction transistor 2690:Bipolar junction transistor 2642:MOS field-effect transistor 2614:Fin field-effect transistor 1475:Basic Electronics Tutorials 1453:10.1109/ACCESS.2020.3028904 1246:Current injection technique 1236:Bipolar junction transistor 1021:compared to a power MOSFET. 912:bipolar junction transistor 898:RF CMOS § Applications 632:Bell Telephone Laboratories 343:bipolar junction transistor 3618: 2960:Static induction thyristor 2493:Device physics information 2021:Baliga, B. Jayant (2015). 1770:U. S. Patent No. 4,364,073 1722:10.1109/ISSCC.1978.1155837 1686:. pp. 144, 284, 318. 1594:10.1142/9789814503464_0076 1334:10.17577/IJERTCONV4IS02018 1276:Power semiconductor device 1123:) with a rated current of 1050:computer programs such as 974:with blocking voltages of 887: 881: 756:10 W/cm and reached 5 457:Low gate voltage required 156:, thus it is also used in 100:power semiconductor device 27:Type of solid state switch 3129:(Hexode, Heptode, Octode) 2881:Hybrid integrated circuit 2724:Light-emitting transistor 2031:. pp. xxviii, 5–12. 1992:10.1109/MPEL.2015.2421751 1561:. Computer History Museum 1127:and a maximum voltage of 890:LDMOS § Applications 484:Operating frequency range 391:Emitter, collector, gate 131:variable-frequency drives 104:metal–oxide–semiconductor 77: 35: 3176:Backward-wave oscillator 2886:Light emitting capacitor 2742:Point-contact transistor 2712:Junction Gate FET (JFET) 2177:10.1109/IEDM.1983.190445 1957:10.1109/IEDM.1982.190269 1923:10.1109/IEDM.1985.190916 1815:10.1109/IEDM.1984.190866 1080:Darlington configuration 930:electronic devices, and 872:gate turn-off thyristors 699:gate turn-off thyristors 608:High voltage, robustness 600:Lower power dissipation 597:Higher power dissipation 210:Very high >1 kV 127:switching power supplies 3187:Crossed-field amplifier 2706:Field-effect transistor 2507:IGBT driver calculation 2428:10.1109/TR.2009.2020134 2332:B J Baliga and M Smith 2200:Solid-State Electronics 1885:10.1109/T-ED.1987.22929 1538:Computer History Museum 1336:(inactive 2024-08-28). 1119:IGBT module (IGBTs and 1094:IGBT failure mechanisms 642:under the direction of 589:Lower voltage handling 534:Relatively higher cost 446:One source of carriers 443:Two sources of carriers 3356:Voltage-regulator tube 2923:MOS integrated circuit 2788:Constant-current diode 2764:Unijunction transistor 2146:10.1109/EDL.1983.25799 2101:10.1109/EDL.1983.25649 670: 627: 334: 182:Device characteristic 177:IGBT comparison table 166:pulse repetition rates 150:pulse-width modulation 98:) is a three-terminal 3425:Electrolytic detector 3198:Inductive output tube 3014:Low-dropout regulator 2929:Organic semiconductor 2860:Printed circuit board 2696:Darlington transistor 2543:Electronic components 2497:University of Glasgow 2335:, EDN SEPTEMBER, 1983 1090:simulation software. 920:industrial technology 668: 625: 586:High voltage handling 545:Gate voltage control 520:Requires gate current 332: 84:IGBT schematic symbol 3577:Solid state switches 3243:Beam deflection tube 2912:Metal oxide varistor 2805:Light-emitting diode 2659:Thin-film transistor 2620:Floating-gate MOSFET 2502:Spice model for IGBT 1951:. pp. 264–267. 1917:. pp. 150–153. 1809:. pp. 860–861. 1716:. pp. 222–223. 1251:Floating-gate MOSFET 916:consumer electronics 800:triggered spark gaps 735:electron irradiation 517:Control requirements 424:On-state, off-state 388:Anode, cathode, gate 224:High >500 A 218:High <500 A 158:switching amplifiers 3602:Japanese inventions 3587:Bipolar transistors 3219:Traveling-wave tube 3019:Switching regulator 2855:Printed electronics 2832:Step recovery diode 2609:Depletion-load NMOS 2385:1994ITPE....9..532H 2212:1985SSEle..28..289B 2138:1983IEDL....4..452B 2093:1983IEDL....4...63R 1877:1987ITED...34..351N 1444:2020IEEEA...8r6172S 1121:freewheeling diodes 1064:equivalent circuits 948:bipolar transistors 868:safe operating area 776:secondary breakdown 750:safe operating area 695:safe operating area 656:Mitsubishi Electric 359: 221:Low <200 A 207:High <1 kV 204:High <1 kV 178: 141:systems (UPS), and 117:with a "MOS" gate ( 32: 3524:Crystal oscillator 3384:Variable capacitor 3059:Switched capacitor 3001:Voltage regulators 2875:Integrated circuit 2759:Tetrode transistor 2737:Pentode transistor 2730:Organic LET (OLET) 2717:Organic FET (OFET) 2171:. pp. 79–82. 1617:Lojek, Bo (2007). 1580:KAHNG, D. (1961). 1228:Electronics portal 1048:circuit simulating 1001:freewheeling diode 717:(IEDM) that year. 671: 628: 583:Voltage capability 578:Low current drive 575:High current drive 418:Modes of operation 357: 335: 176: 119:MOS-gate thyristor 3597:Indian inventions 3582:Power electronics 3559: 3558: 3519:Ceramic resonator 3331:Mercury-arc valve 3283:Video camera tube 3235:Cathode-ray tubes 2995: 2994: 2603:Complementary MOS 2472:978-3-938843-83-3 2393:10.1109/63.321038 2244:Marvin W. Smith, 1663:10.1149/1.2428650 1628:978-3-540-34258-8 1603:978-981-02-0209-5 1520:10.1149/1.2428650 1438:: 186172–186180. 1266:Power electronics 968:induction heating 730:power electronics 705:Practical devices 615: 614: 413:NPN(P) structure 322: 321: 281:Output impedance 88: 87: 72:Electronic symbol 49:Working principle 16:(Redirected from 3609: 3572:Transistor types 3413:electrical power 3298:Gas-filled tubes 3182:Cavity magnetron 3009:Linear regulator 2558: 2536: 2529: 2522: 2513: 2482: 2480: 2479: 2464: 2440: 2439: 2411: 2405: 2404: 2368: 2362: 2361: 2359: 2357: 2342: 2336: 2330: 2324: 2323: 2312: 2306: 2305: 2304: 2300: 2293: 2284: 2283: 2278:. Archived from 2272: 2266: 2255: 2249: 2242: 2233: 2230: 2224: 2223: 2195: 2189: 2188: 2164: 2158: 2157: 2119: 2113: 2112: 2076: 2070: 2069: 2067: 2065: 2049: 2043: 2042: 2018: 2012: 2011: 1975: 1969: 1968: 1944: 1935: 1934: 1910: 1897: 1896: 1860: 1847: 1836: 1827: 1826: 1802: 1791: 1790: 1779: 1773: 1767: 1758: 1757: 1756: 1752: 1745: 1734: 1733: 1709: 1698: 1697: 1673: 1667: 1666: 1642: 1633: 1632: 1614: 1608: 1607: 1577: 1571: 1570: 1568: 1566: 1555: 1549: 1548: 1546: 1544: 1530: 1524: 1523: 1499: 1490: 1484: 1478: 1472: 1466: 1465: 1455: 1423: 1414: 1413: 1411: 1410: 1404:techweb.rohm.com 1396: 1387: 1386: 1384: 1383: 1369: 1360: 1359: 1353: 1345: 1313: 1304: 1299: 1230: 1225: 1224: 1207: 1204: 1198: 1189: 1185: 1179: 1170: 1167: 1161: 1152: 1149: 1139: 1130: 1126: 1116: 1066:or macromodels. 1020: 980: 904:power transistor 865: 861: 759: 755: 719:General Electric 711:B. Jayant Baliga 692: 688: 658:in the Japanese 648:General Electric 644:William Shockley 542:Pulse triggering 429:Design structure 360: 325:Device structure 295:Switching speed 267:Input impedance 179: 154:low-pass filters 143:induction stoves 82: 53: 52: 40: 33: 21: 3617: 3616: 3612: 3611: 3610: 3608: 3607: 3606: 3562: 3561: 3560: 3555: 3493: 3408:audio and video 3393: 3360: 3292: 3229: 3157: 3138:Photomultiplier 3063: 2991: 2939:Quantum circuit 2847: 2841: 2783:Avalanche diode 2769: 2681: 2674: 2563: 2552: 2545: 2540: 2489: 2477: 2475: 2473: 2462: 2451: 2448: 2446:Further reading 2443: 2413: 2412: 2408: 2370: 2369: 2365: 2355: 2353: 2352:. June 21, 2011 2344: 2343: 2339: 2331: 2327: 2314: 2313: 2309: 2302: 2295: 2294: 2287: 2274: 2273: 2269: 2256: 2252: 2243: 2236: 2231: 2227: 2197: 2196: 2192: 2166: 2165: 2161: 2132:(12): 452–454. 2121: 2120: 2116: 2078: 2077: 2073: 2063: 2061: 2051: 2050: 2046: 2039: 2020: 2019: 2015: 1977: 1976: 1972: 1946: 1945: 1938: 1912: 1911: 1900: 1862: 1861: 1850: 1837: 1830: 1804: 1803: 1794: 1781: 1780: 1776: 1768: 1761: 1754: 1747: 1746: 1737: 1711: 1710: 1701: 1694: 1675: 1674: 1670: 1644: 1643: 1636: 1629: 1616: 1615: 1611: 1604: 1579: 1578: 1574: 1564: 1562: 1557: 1556: 1552: 1542: 1540: 1532: 1531: 1527: 1501: 1500: 1493: 1485: 1481: 1473: 1469: 1425: 1424: 1417: 1408: 1406: 1398: 1397: 1390: 1381: 1379: 1371: 1370: 1363: 1346: 1315: 1314: 1307: 1300: 1293: 1289: 1226: 1219: 1216: 1209: 1205: 1202: 1199: 1190: 1187: 1183: 1180: 1171: 1168: 1165: 1162: 1153: 1150: 1147: 1140: 1131: 1128: 1124: 1117: 1108: 1096: 1040: 1014: 991: 975: 940: 900: 886: 880: 863: 859: 837: 816: 780:thermal runaway 757: 753: 707: 690: 686: 640:Walter Brattain 620: 572:Control current 550:Switching speed 528:Value for money 451:Turn-on voltage 355: 327: 261: 255: 250: 244: 239: 233: 215:Current rating 201:Voltage rating 162:control systems 83: 50: 48: 43: 28: 23: 22: 18:IGBT transistor 15: 12: 11: 5: 3615: 3613: 3605: 3604: 3599: 3594: 3589: 3584: 3579: 3574: 3564: 3563: 3557: 3556: 3554: 3553: 3552: 3551: 3546: 3536: 3531: 3526: 3521: 3516: 3515: 3514: 3503: 3501: 3495: 3494: 3492: 3491: 3490: 3489: 3487:Wollaston wire 3479: 3474: 3469: 3464: 3459: 3454: 3453: 3452: 3447: 3437: 3432: 3427: 3422: 3421: 3420: 3415: 3410: 3401: 3399: 3395: 3394: 3392: 3391: 3386: 3381: 3380: 3379: 3368: 3366: 3362: 3361: 3359: 3358: 3353: 3348: 3343: 3338: 3333: 3328: 3323: 3318: 3313: 3308: 3302: 3300: 3294: 3293: 3291: 3290: 3285: 3280: 3275: 3270: 3268:Selectron tube 3265: 3260: 3258:Magic eye tube 3255: 3250: 3245: 3239: 3237: 3231: 3230: 3228: 3227: 3222: 3216: 3211: 3206: 3201: 3195: 3190: 3184: 3179: 3172: 3170: 3159: 3158: 3156: 3155: 3150: 3145: 3140: 3135: 3130: 3124: 3119: 3114: 3109: 3104: 3099: 3094: 3089: 3084: 3079: 3073: 3071: 3065: 3064: 3062: 3061: 3056: 3051: 3046: 3041: 3036: 3031: 3026: 3021: 3016: 3011: 3005: 3003: 2997: 2996: 2993: 2992: 2990: 2989: 2984: 2979: 2974: 2969: 2963: 2957: 2952: 2946: 2941: 2936: 2931: 2926: 2920: 2915: 2909: 2904: 2899: 2894: 2889: 2883: 2878: 2872: 2867: 2862: 2857: 2851: 2849: 2843: 2842: 2840: 2839: 2834: 2829: 2827:Schottky diode 2824: 2819: 2814: 2808: 2802: 2796: 2791: 2785: 2779: 2777: 2771: 2770: 2768: 2767: 2761: 2756: 2750: 2744: 2739: 2734: 2733: 2732: 2721: 2720: 2719: 2714: 2703: 2698: 2693: 2686: 2684: 2676: 2675: 2673: 2672: 2667: 2662: 2656: 2651: 2645: 2639: 2634: 2629: 2623: 2617: 2611: 2606: 2600: 2594: 2589: 2584: 2579: 2574: 2568: 2566: 2555: 2547: 2546: 2541: 2539: 2538: 2531: 2524: 2516: 2510: 2509: 2504: 2499: 2488: 2487:External links 2485: 2484: 2483: 2471: 2447: 2444: 2442: 2441: 2422:(2): 271–276. 2406: 2379:(5): 532–542. 2363: 2337: 2325: 2307: 2285: 2282:on 2011-11-14. 2267: 2250: 2234: 2225: 2206:(3): 289–297. 2190: 2159: 2114: 2071: 2044: 2037: 2029:William Andrew 2013: 1970: 1936: 1898: 1871:(2): 351–355. 1848: 1828: 1792: 1774: 1759: 1735: 1699: 1692: 1668: 1634: 1627: 1609: 1602: 1572: 1550: 1525: 1491: 1479: 1467: 1415: 1388: 1361: 1305: 1290: 1288: 1285: 1284: 1283: 1281:Solar inverter 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1238: 1232: 1231: 1215: 1212: 1211: 1210: 1200: 1193: 1191: 1181: 1174: 1172: 1163: 1156: 1154: 1141: 1134: 1132: 1118: 1111: 1107: 1104: 1095: 1092: 1062:-based model, 1060:device physics 1039: 1036: 1032: 1031: 1022: 1012:switching loss 1008: 1004: 990: 987: 964:traction motor 939: 936: 932:transportation 882:Main article: 879: 876: 836: 833: 815: 812: 792:plasma physics 760:10 W/cm. 706: 703: 619: 616: 613: 612: 609: 606: 602: 601: 598: 595: 591: 590: 587: 584: 580: 579: 576: 573: 569: 568: 565: 562: 558: 557: 554: 551: 547: 546: 543: 540: 539:Control method 536: 535: 532: 531:Cost-effective 529: 525: 524: 521: 518: 514: 513: 510: 507: 503: 502: 499: 496: 492: 491: 488: 485: 481: 480: 477: 474: 473:Plasma density 470: 469: 466: 463: 459: 458: 455: 452: 448: 447: 444: 441: 440:Carrier source 437: 436: 433: 430: 426: 425: 422: 419: 415: 414: 411: 410:PNPN structure 408: 404: 403: 400: 397: 393: 392: 389: 386: 382: 381: 378: 375: 371: 370: 367: 364: 354: 351: 326: 323: 320: 319: 316: 313: 310: 306: 305: 302: 299: 296: 292: 291: 288: 285: 282: 278: 277: 274: 271: 268: 264: 263: 259: 252: 248: 241: 237: 230: 226: 225: 222: 219: 216: 212: 211: 208: 205: 202: 198: 197: 194: 189: 183: 86: 85: 75: 74: 68: 67: 64: 60: 59: 54: 45: 44: 41: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3614: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3580: 3578: 3575: 3573: 3570: 3569: 3567: 3550: 3549:mercury relay 3547: 3545: 3542: 3541: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3513: 3510: 3509: 3508: 3505: 3504: 3502: 3500: 3496: 3488: 3485: 3484: 3483: 3480: 3478: 3475: 3473: 3470: 3468: 3465: 3463: 3460: 3458: 3455: 3451: 3448: 3446: 3443: 3442: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3419: 3416: 3414: 3411: 3409: 3406: 3405: 3403: 3402: 3400: 3396: 3390: 3387: 3385: 3382: 3378: 3375: 3374: 3373: 3372:Potentiometer 3370: 3369: 3367: 3363: 3357: 3354: 3352: 3349: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3314: 3312: 3309: 3307: 3304: 3303: 3301: 3299: 3295: 3289: 3288:Williams tube 3286: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3240: 3238: 3236: 3232: 3226: 3223: 3220: 3217: 3215: 3212: 3210: 3207: 3205: 3202: 3199: 3196: 3194: 3191: 3188: 3185: 3183: 3180: 3177: 3174: 3173: 3171: 3168: 3164: 3160: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3107:Fleming valve 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3075: 3074: 3072: 3070: 3066: 3060: 3057: 3055: 3052: 3050: 3047: 3045: 3042: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3006: 3004: 3002: 2998: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2967: 2964: 2961: 2958: 2956: 2953: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2934:Photodetector 2932: 2930: 2927: 2924: 2921: 2919: 2916: 2913: 2910: 2908: 2905: 2903: 2902:Memtransistor 2900: 2898: 2895: 2893: 2890: 2887: 2884: 2882: 2879: 2876: 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2852: 2850: 2844: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2812: 2809: 2806: 2803: 2800: 2797: 2795: 2792: 2789: 2786: 2784: 2781: 2780: 2778: 2776: 2772: 2765: 2762: 2760: 2757: 2754: 2751: 2748: 2745: 2743: 2740: 2738: 2735: 2731: 2728: 2727: 2725: 2722: 2718: 2715: 2713: 2710: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2691: 2688: 2687: 2685: 2683: 2677: 2671: 2668: 2666: 2663: 2660: 2657: 2655: 2652: 2649: 2646: 2643: 2640: 2638: 2635: 2633: 2630: 2627: 2624: 2621: 2618: 2615: 2612: 2610: 2607: 2604: 2601: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2569: 2567: 2565: 2559: 2556: 2554: 2551:Semiconductor 2548: 2544: 2537: 2532: 2530: 2525: 2523: 2518: 2517: 2514: 2508: 2505: 2503: 2500: 2498: 2494: 2491: 2490: 2486: 2474: 2468: 2463:(PDF-Version) 2461: 2460: 2455: 2450: 2449: 2445: 2437: 2433: 2429: 2425: 2421: 2417: 2410: 2407: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2367: 2364: 2351: 2347: 2341: 2338: 2334: 2329: 2326: 2321: 2317: 2311: 2308: 2298: 2292: 2290: 2286: 2281: 2277: 2271: 2268: 2264: 2260: 2254: 2251: 2247: 2241: 2239: 2235: 2229: 2226: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2191: 2186: 2182: 2178: 2174: 2170: 2163: 2160: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2126: 2118: 2115: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2075: 2072: 2060: 2059: 2054: 2048: 2045: 2040: 2038:9781455731534 2034: 2030: 2026: 2025: 2017: 2014: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1974: 1971: 1966: 1962: 1958: 1954: 1950: 1943: 1941: 1937: 1932: 1928: 1924: 1920: 1916: 1909: 1907: 1905: 1903: 1899: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1859: 1857: 1855: 1853: 1849: 1845: 1841: 1835: 1833: 1829: 1824: 1820: 1816: 1812: 1808: 1801: 1799: 1797: 1793: 1788: 1784: 1778: 1775: 1771: 1766: 1764: 1760: 1750: 1744: 1742: 1740: 1736: 1731: 1727: 1723: 1719: 1715: 1708: 1706: 1704: 1700: 1695: 1693:9781351262316 1689: 1685: 1681: 1680: 1672: 1669: 1664: 1660: 1656: 1652: 1648: 1641: 1639: 1635: 1630: 1624: 1620: 1613: 1610: 1605: 1599: 1595: 1591: 1587: 1583: 1576: 1573: 1560: 1554: 1551: 1539: 1535: 1529: 1526: 1521: 1517: 1513: 1509: 1505: 1498: 1496: 1492: 1488: 1483: 1480: 1476: 1471: 1468: 1463: 1459: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1422: 1420: 1416: 1405: 1401: 1395: 1393: 1389: 1378: 1377:www.jedec.org 1374: 1368: 1366: 1362: 1357: 1351: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1312: 1310: 1306: 1303: 1298: 1296: 1292: 1286: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1241:Bootstrapping 1239: 1237: 1234: 1233: 1229: 1223: 1218: 1213: 1197: 1192: 1178: 1173: 1160: 1155: 1145: 1138: 1133: 1122: 1115: 1110: 1105: 1103: 1099: 1093: 1091: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1046:with various 1045: 1037: 1035: 1028: 1023: 1018: 1013: 1009: 1005: 1002: 997: 996: 995: 988: 986: 984: 979: 973: 969: 965: 961: 957: 953: 949: 945: 944:power MOSFETs 937: 935: 933: 929: 925: 924:energy sector 921: 917: 913: 909: 905: 899: 895: 891: 885: 877: 875: 873: 869: 856: 852: 848: 844: 840: 834: 832: 829: 824: 820: 814:Patent issues 813: 811: 809: 805: 801: 797: 793: 789: 785: 784:power MOSFETs 781: 777: 773: 768: 766: 761: 751: 746: 744: 738: 736: 731: 726: 724: 720: 716: 712: 704: 702: 700: 696: 683: 679: 675: 667: 663: 661: 657: 653: 649: 645: 641: 637: 633: 624: 617: 610: 607: 604: 603: 599: 596: 593: 592: 588: 585: 582: 581: 577: 574: 571: 570: 566: 563: 560: 559: 555: 552: 549: 548: 544: 541: 538: 537: 533: 530: 527: 526: 522: 519: 516: 515: 511: 508: 505: 504: 500: 497: 494: 493: 489: 486: 483: 482: 478: 475: 472: 471: 467: 464: 462:Turn off loss 461: 460: 456: 453: 450: 449: 445: 442: 439: 438: 434: 431: 428: 427: 423: 420: 417: 416: 412: 409: 406: 405: 402:Three layers 401: 398: 395: 394: 390: 387: 384: 383: 379: 376: 373: 372: 368: 365: 362: 361: 352: 350: 348: 344: 340: 331: 324: 317: 314: 311: 308: 307: 303: 300: 297: 294: 293: 289: 286: 283: 280: 279: 275: 272: 269: 266: 265: 258: 253: 247: 242: 236: 232:Current ratio 231: 228: 227: 223: 220: 217: 214: 213: 209: 206: 203: 200: 199: 195: 193: 190: 188: 184: 181: 180: 174: 172: 167: 163: 159: 155: 151: 146: 144: 140: 136: 135:electric cars 132: 128: 124: 120: 116: 111: 109: 105: 101: 97: 93: 81: 76: 73: 69: 65: 61: 58: 57:Semiconductor 55: 46: 39: 34: 19: 3306:Cold cathode 3273:Storage tube 3163:Vacuum tubes 3112:Neutron tube 3087:Beam tetrode 3069:Vacuum tubes 2654:Power MOSFET 2625: 2476:. Retrieved 2458: 2419: 2415: 2409: 2376: 2372: 2366: 2354:. Retrieved 2349: 2340: 2328: 2319: 2310: 2280:the original 2270: 2253: 2228: 2203: 2199: 2193: 2168: 2162: 2129: 2123: 2117: 2087:(3): 63–65. 2084: 2080: 2074: 2062:. Retrieved 2056: 2047: 2023: 2016: 1986:(2): 12–16. 1983: 1979: 1973: 1948: 1914: 1868: 1864: 1806: 1786: 1777: 1713: 1678: 1671: 1654: 1650: 1618: 1612: 1585: 1575: 1563:. Retrieved 1553: 1541:. Retrieved 1528: 1511: 1507: 1482: 1470: 1435: 1431: 1407:. Retrieved 1403: 1380:. Retrieved 1376: 1350:cite journal 1325: 1321: 1271:Power MOSFET 1146:) rated for 1106:IGBT modules 1100: 1097: 1041: 1033: 1030:application. 992: 966:control and 941: 908:RF amplifier 901: 894:Power MOSFET 878:Applications 857: 853: 849: 845: 841: 838: 825: 821: 817: 769: 762: 747: 739: 727: 708: 684: 680: 676: 672: 636:John Bardeen 629: 339:power MOSFET 336: 256: 245: 234: 229:Input drive 192:Power MOSFET 171:power MOSFET 147: 112: 95: 91: 89: 3472:Transformer 3214:Sutton tube 3054:Charge pump 2907:Memory cell 2837:Zener diode 2799:Laser diode 2682:transistors 2564:transistors 2350:IC Insights 1588:: 583–596. 1432:IEEE Access 1015: [ 804:Tesla coils 605:Application 506:Power range 399:Four layers 110:structure. 3566:Categories 3544:reed relay 3534:Parametron 3467:Thermistor 3445:resettable 3404:Connector 3365:Adjustable 3341:Nixie tube 3311:Crossatron 3278:Trochotron 3253:Iconoscope 3248:Charactron 3225:X-ray tube 3097:Compactron 3077:Acorn tube 3034:Buck–boost 2955:Solaristor 2817:Photodiode 2794:Gunn diode 2790:(CLD, CRD) 2572:Transistor 2478:2019-02-17 2356:15 October 2297:US4364073A 1749:USRE33209E 1657:(9): 547. 1565:August 10, 1543:August 10, 1514:(9): 547. 1409:2024-08-20 1382:2024-08-20 1287:References 956:transistor 938:Advantages 910:(11%) and 888:See also: 796:thyratrons 650:(GE). The 594:Power loss 374:Definition 301:Fast (ns) 298:Slow (ÎĽs) 123:transistor 3507:Capacitor 3351:Trigatron 3346:Thyratron 3336:Neon lamp 3263:Monoscope 3143:Phototube 3127:Pentagrid 3092:Barretter 2977:Trancitor 2972:Thyristor 2897:Memristor 2822:PIN diode 2599:(ChemFET) 2495:from the 2436:206772637 2064:17 August 2000:2329-9207 1684:CRC Press 1462:2169-3536 1342:2278-0181 983:kilowatts 928:aerospace 567:Moderate 385:Terminals 366:Thyristor 251:~ 3–10 V 240:~ 20–200 115:thyristor 3529:Inductor 3499:Reactive 3477:Varistor 3457:Resistor 3435:Antifuse 3321:Ignitron 3316:Dekatron 3204:Klystron 3193:Gyrotron 3122:Nuvistor 3039:Split-pi 2925:(MOS IC) 2892:Memistor 2650:(MuGFET) 2644:(MOSFET) 2616:(FinFET) 2454:Semikron 2401:53487037 2154:40454892 2109:37850113 2008:37855728 1965:40672805 1931:24346402 1893:25472355 1823:12136665 1730:11665546 1214:See also 1186:, up to 1144:H-bridge 1038:Modeling 808:coilguns 788:particle 407:Junction 262:~ 4–8 V 63:Invented 3592:MOSFETs 3430:Ferrite 3398:Passive 3389:Varicap 3377:digital 3326:Krytron 3148:Tetrode 3133:Pentode 2987:Varicap 2968:(3D IC) 2944:RF CMOS 2848:devices 2622:(FGMOS) 2553:devices 2456:(ed.). 2381:Bibcode 2208:Bibcode 2185:2210870 2134:Bibcode 2089:Bibcode 1873:Bibcode 1440:Bibcode 1044:modeled 972:amperes 828:Toshiba 772:latchup 765:ion gel 743:Toshiba 618:History 556:Faster 315:Medium 304:Medium 287:Medium 254:Voltage 243:Voltage 51:‍ 3462:Switch 3153:Triode 3117:Nonode 3082:Audion 2962:(SITh) 2846:Other 2813:(OLED) 2775:Diodes 2726:(LET) 2708:(FET) 2680:Other 2628:(IGBT) 2605:(CMOS) 2592:BioFET 2587:BiCMOS 2469:  2434:  2399:  2303:  2183:  2152:  2107:  2035:  2006:  1998:  1963:  1929:  1891:  1821:  1755:  1728:  1690:  1625:  1600:  1460:  1340:  1261:MOSFET 1206:1200 V 1169:1200 V 1129:3300 V 1125:1200 A 922:, the 896:, and 733:using 660:patent 553:Slower 479:Lower 476:Higher 468:Lower 465:Higher 396:Layers 363:Aspect 347:MOSFET 185:Power 106:(MOS) 3539:Relay 3512:types 3450:eFUSE 3221:(TWT) 3209:Maser 3200:(IOT) 3189:(CFA) 3178:(BWO) 3102:Diode 3049:SEPIC 3029:Boost 2982:TRIAC 2951:(SCR) 2914:(MOV) 2888:(LEC) 2807:(LED) 2766:(UJT) 2755:(SIT) 2749:(PUT) 2692:(BJT) 2661:(TFT) 2637:LDMOS 2632:ISFET 2432:S2CID 2397:S2CID 2181:S2CID 2150:S2CID 2105:S2CID 2004:S2CID 1961:S2CID 1927:S2CID 1889:S2CID 1819:S2CID 1726:S2CID 1328:(2). 1203:600 A 1188:900 V 1166:450 A 1151:600 V 1148:400 A 1088:Saber 1078:in a 1068:SPICE 1056:Saber 1052:SPICE 1019:] 1007:used. 976:6500 369:IGBT 318:High 309:Cost 276:High 273:High 196:IGBT 3482:Wire 3440:Fuse 3024:Buck 2877:(IC) 2865:DIAC 2801:(LD) 2670:UMOS 2665:VMOS 2582:PMOS 2577:NMOS 2562:MOS 2467:ISBN 2358:2019 2066:2019 2033:ISBN 1996:ISSN 1688:ISBN 1623:ISBN 1598:ISBN 1567:2016 1545:2016 1458:ISSN 1356:link 1338:ISSN 1184:30 A 1076:BJTs 1074:and 1072:FETs 806:and 798:and 790:and 638:and 564:High 312:Low 290:Low 284:Low 270:Low 152:and 108:gate 96:IGBT 66:1959 3044:Ćuk 2424:doi 2389:doi 2216:doi 2173:doi 2142:doi 2097:doi 1988:doi 1953:doi 1919:doi 1881:doi 1811:doi 1718:doi 1659:doi 1655:104 1590:doi 1516:doi 1512:104 1448:doi 1330:doi 1027:log 952:FET 634:by 454:N/A 187:BJT 90:An 3568:: 3418:RF 3167:RF 2430:. 2420:58 2418:. 2395:. 2387:. 2375:. 2348:. 2318:. 2288:^ 2237:^ 2214:. 2204:28 2202:. 2179:. 2148:. 2140:. 2128:. 2103:. 2095:. 2083:. 2055:. 2027:. 2002:. 1994:. 1982:. 1959:. 1939:^ 1925:. 1901:^ 1887:. 1879:. 1869:34 1867:. 1851:^ 1831:^ 1817:. 1795:^ 1785:. 1762:^ 1738:^ 1724:. 1702:^ 1682:. 1653:. 1649:. 1637:^ 1596:. 1584:. 1536:. 1510:. 1506:. 1494:^ 1456:. 1446:. 1434:. 1430:. 1418:^ 1402:. 1391:^ 1375:. 1364:^ 1352:}} 1348:{{ 1324:. 1320:. 1308:^ 1294:^ 1054:, 1017:de 985:. 962:, 934:. 926:, 918:, 892:, 810:. 260:GE 249:GS 238:FE 173:. 145:. 3169:) 3165:( 2535:e 2528:t 2521:v 2481:. 2438:. 2426:: 2403:. 2391:: 2383:: 2377:9 2360:. 2322:. 2265:. 2222:. 2218:: 2210:: 2187:. 2175:: 2156:. 2144:: 2136:: 2130:4 2111:. 2099:: 2091:: 2085:4 2068:. 2041:. 2010:. 1990:: 1984:2 1967:. 1955:: 1933:. 1921:: 1895:. 1883:: 1875:: 1846:. 1825:. 1813:: 1789:. 1732:. 1720:: 1696:. 1665:. 1661:: 1631:. 1606:. 1592:: 1569:. 1547:. 1522:. 1518:: 1489:. 1477:. 1464:. 1450:: 1442:: 1436:8 1412:. 1385:. 1358:) 1344:. 1332:: 1326:4 978:V 864:Ă— 860:Ă— 758:Ă— 754:Ă— 691:Ă— 687:Ă— 257:V 246:V 235:h 94:( 20:)

Index

IGBT transistor

Semiconductor
Electronic symbol

power semiconductor device
metal–oxide–semiconductor
gate
thyristor
MOS-gate thyristor
transistor
switching power supplies
variable-frequency drives
electric cars
uninterruptible power supply
induction stoves
pulse-width modulation
low-pass filters
switching amplifiers
control systems
pulse repetition rates
power MOSFET
BJT
Power MOSFET

power MOSFET
bipolar junction transistor
MOSFET

Bell Telephone Laboratories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑