Knowledge (XXG)

Infrared fixed point

Source đź“ť

726: 1176:
doublets in nature the predicted value of the quasi-fixed point comes into agreement with experiment. Even if there are two Higgs doublets, the fixed point for the top mass is reduced, 170~200 GeV. Some theorists believed this was supporting evidence for the Supersymmetric Standard Model, however no other signs of supersymmetry have emerged at the
483: 283: 1175:
factor in the equation, and any Higgs mixing angle effects. Since the observed top quark mass of 174 GeV is slightly lower than the standard model prediction by about 20%, this suggests there may be more Higgs doublets beyond the single standard model Higgs boson. If there are many additional Higgs
1047:
This is known as a (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling. No matter what the initial starting value of the coupling is, if it is sufficiently large at high energies to begin with, it will reach this quasi-fixed point value, and the corresponding
38:
is a set of coupling constants, or other parameters, that evolve from arbitrary initial values at very high energies (short distance) to fixed, stable values, usually predictable, at low energies (large distance). This usually involves the use of the
721:{\displaystyle \ \mu \ {\frac {\ \partial }{\partial \mu }}\ y_{\mathrm {t} }\approx {\frac {\ y_{\text{t}}\ }{16\ \pi ^{2}}}\left({\frac {\ 9\ }{2}}y_{\mathrm {t} }^{2}-8g_{3}^{2}-{\frac {\ 9\ }{4}}g_{2}^{2}-{\frac {\ 17\ }{20}}g_{1}^{2}\right)\ ,} 126: 1215:
The name "infrared" is metaphorical, since the effect is seen as energy decreases, by analogy with descent to light with lower energy than visible light. Effects which appear with rising energy are metaphorically called
74:, the physical system approaches an infrared fixed point that is independent of the initial short distance dynamics that defines the material. This determines the properties of the phase transition at the 817: 937: 1157: 1095: 444: 1099:
The renormalization group equation for large values of the top Yukawa coupling was first considered in 1981 by Pendleton & Ross, and the "infrared quasi-fixed point" was proposed by
1009: 974: 855: 1045: 888: 389: 319: 473: 352: 1107:
theories of electroweak symmetry breaking in which the Higgs boson is composite at extremely short distance scales, composed of a pair of top and anti-top quarks.
278:{\displaystyle \ \mu \ {\frac {\partial }{\partial \mu }}\ y_{q}\approx {\frac {y_{q}}{\ 16\pi ^{2}\ }}\left({\frac {\ 9\ }{2}}y_{q}^{2}-8g_{3}^{2}\right)\ ,} 110:'s Yukawa coupling. Yukawa couplings are not constants and their properties change depending on the energy scale at which they are measured, this is known as 1192:
in which the coupling constant of a Yang–Mills theory evolves to a fixed value. The beta-function vanishes, and the theory possesses a symmetry known as
54:. The fixed points are generally independent of the initial values of the parameters over a large range of the initial values. This is known as 1103:. The prevailing view at the time was that the top quark mass would lie in a range of 15 to 26 GeV. The quasi-infrared fixed point emerged in 117: 1641: 1429:
Bardeen, William A.; Hill, Christopher T. & Lindner, Manfred (1990). "Minimal dynamical symmetry breaking of the standard model".
55: 1636: 79: 1631: 1626: 769: 893: 106:
which determine the masses of the particles. Most of the quarks' and leptons' Yukawa couplings are small compared to the
762:
The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of
1113: 1051: 1189: 394: 1585:
Banks, Tom; A., Zaks (1982). "On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions".
1276: 51: 1104: 979: 976:
cause the expression on the right side to quickly approach zero as we descend in energy scale, which stops
944: 86:
usually depend only upon dimension of space, and are independent of the atomic or molecular constituents.
50:
Conversely, if the length-scale decreases and the physical parameters approach fixed values, then we have
1254: 1177: 112: 40: 1594: 1551: 1496: 1438: 1403: 1363: 1326: 1285: 890:
is increased slightly at the low energy scales at which the quark masses are generated by the Higgs,
763: 75: 44: 1530:
Hill, Christopher T.; Machado, Pedro; Thomsen, Anders; Turner, Jessica (2019). "Scalar democracy".
1472: 1389: 1100: 822: 67: 1354:
Pendleton, B.; Ross, G.G. (1981). "Mass and mixing angle predictions from infrared fixed points".
857:
term can be neglected in the above equation for all but the top quark. Solving, we then find that
1567: 1541: 1512: 1486: 1193: 941:
On the other hand, solutions to this equation for large initial values typical for the top quark
355: 99: 83: 1475:; Machado, Pedro; Thomsen, Anders; Turner, Jessica (2019). "Where are the next Higgs bosons?". 1014: 860: 361: 291: 1454: 449: 331: 1602: 1559: 1504: 1446: 1411: 1371: 1334: 1293: 1234: 71: 1532: 1477: 1394: 1268: 1159:
if there is more than one Higgs doublet, the value will be reduced by an increase in the
1598: 1555: 1500: 1442: 1407: 1367: 1330: 1289: 95: 1110:
While the value of the quasi-fixed point is determined in the Standard Model of about
1620: 1606: 1571: 1516: 1375: 477:
A more complete version of the same formula is more appropriate for the top quark:
325: 322: 1563: 1508: 1298: 103: 745:
is the weak hypercharge gauge coupling. For small or near constant values of
17: 1450: 1415: 1339: 1229: 107: 1458: 1392:(1981). "Quark and lepton masses from renormalization group fixed points". 446:
This equation describes how the Yukawa coupling changes with energy scale
116:
of the constants. The dynamics of Yukawa couplings are determined by the
43:, which specifically details the way parameters in a physical system (a 31: 1314: 1546: 1491: 1269:"Reliable perturbative results for strong interactions?" 1116: 1054: 1017: 982: 947: 896: 863: 825: 812:{\displaystyle \ \mu \approx 10^{15}\mathrm {GeV} ~.} 772: 486: 452: 397: 364: 334: 294: 129: 932:{\displaystyle \ \mu \approx 125\ \mathrm {GeV} ~.} 1188:Another example of an infrared fixed point is the 1151: 1089: 1039: 1003: 968: 931: 882: 849: 811: 720: 467: 438: 383: 346: 313: 277: 1152:{\displaystyle \ m\approx 220\ \mathrm {GeV} ~,} 1090:{\displaystyle \ m\approx 220\ \mathrm {GeV} ~.} 1011:from changing and locks it to the QCD coupling 439:{\displaystyle \ q\in \{\mathrm {u,b,t} \}~.} 8: 427: 407: 47:) depend on the energy scale being probed. 1545: 1490: 1338: 1297: 1132: 1115: 1070: 1053: 1025: 1016: 991: 990: 981: 956: 955: 946: 912: 895: 871: 862: 838: 833: 824: 792: 786: 771: 701: 696: 674: 665: 660: 638: 629: 624: 608: 602: 601: 579: 565: 544: 534: 524: 523: 496: 485: 451: 410: 396: 372: 363: 333: 302: 293: 258: 253: 237: 232: 210: 193: 176: 170: 161: 139: 128: 1315:"Asymptotically free gauge theories. 1" 1246: 1208: 738:is the weak isospin gauge coupling and 759:the qualitative behavior is the same. 391:is the Yukawa coupling for the quark 7: 1048:quark mass is predicted to be about 1004:{\displaystyle \ y_{\mathrm {t} }\ } 969:{\displaystyle \ y_{\mathrm {t} }\ } 1139: 1136: 1133: 1077: 1074: 1071: 992: 957: 919: 916: 913: 799: 796: 793: 603: 525: 507: 502: 423: 417: 411: 328:coupling (which is a function of 145: 141: 25: 1313:Gross, D.J.; Wilczek, F. (1973). 118:renormalization group equation 1: 850:{\displaystyle \ y_{q}^{2}\ } 1607:10.1016/0550-3213(82)90035-9 1376:10.1016/0370-2693(81)90017-4 1564:10.1103/PhysRevD.100.015015 1509:10.1103/PhysRevD.100.015051 1299:10.1103/PhysRevLett.30.1346 1267:Politzer, H. David (1973). 98:, quarks and leptons have " 1658: 1642:Fixed points (mathematics) 1040:{\displaystyle \ g_{3}~.} 883:{\displaystyle \ y_{q}\ } 384:{\displaystyle \ y_{q}\ } 314:{\displaystyle \ g_{3}\ } 1451:10.1103/PhysRevD.41.1647 1257:and references therein. 468:{\displaystyle \ \mu ~.} 347:{\displaystyle \ \mu \ } 52:ultraviolet fixed points 1416:10.1103/PhysRevD.24.691 1340:10.1103/PhysRevD.8.3633 1277:Physical Review Letters 82:. Observables, such as 1637:Conformal field theory 1190:Banks–Zaks fixed point 1184:Banks–Zaks fixed point 1153: 1105:top quark condensation 1091: 1041: 1005: 970: 933: 884: 851: 813: 722: 469: 440: 385: 348: 315: 279: 27:Low energy fixed point 1632:Statistical mechanics 1627:Renormalization group 1255:renormalization group 1178:Large Hadron Collider 1154: 1092: 1042: 1006: 971: 934: 885: 852: 814: 723: 470: 441: 386: 349: 316: 280: 41:renormalization group 1473:Hill, Christopher T. 1114: 1052: 1015: 980: 945: 894: 861: 823: 770: 484: 450: 395: 362: 354:and associated with 332: 292: 127: 76:critical temperature 45:quantum field theory 36:infrared fixed point 1599:1982NuPhB.196..189B 1556:2019PhRvD.100a5015H 1501:2019PhRvD.100a5051H 1443:1990PhRvD..41.1647B 1408:1981PhRvD..24..691H 1368:1981PhLB...98..291P 1331:1973PhRvD...8.3633G 1290:1973PhRvL..30.1346P 843: 706: 670: 634: 613: 263: 242: 68:statistical physics 62:Statistical physics 1194:conformal symmetry 1149: 1087: 1037: 1001: 966: 929: 880: 847: 829: 809: 718: 692: 656: 620: 597: 465: 436: 381: 356:asymptotic freedom 344: 311: 275: 249: 228: 84:critical exponents 1431:Physical Review D 1325:(10): 3633–3652. 1319:Physical Review D 1284:(26): 1346–1349. 1145: 1131: 1119: 1083: 1069: 1057: 1033: 1020: 1000: 985: 965: 950: 925: 911: 899: 879: 866: 846: 828: 805: 775: 764:grand unification 714: 690: 685: 679: 654: 649: 643: 595: 590: 584: 572: 560: 552: 547: 539: 518: 514: 501: 495: 489: 461: 455: 432: 400: 380: 367: 343: 337: 310: 297: 271: 226: 221: 215: 203: 201: 185: 156: 152: 138: 132: 72:phase transitions 16:(Redirected from 1649: 1611: 1610: 1582: 1576: 1575: 1549: 1527: 1521: 1520: 1494: 1469: 1463: 1462: 1437:(5): 1647–1660. 1426: 1420: 1419: 1386: 1380: 1379: 1351: 1345: 1344: 1342: 1310: 1304: 1303: 1301: 1273: 1264: 1258: 1251: 1235:Cutoff (physics) 1217: 1213: 1174: 1172: 1171: 1168: 1165: 1158: 1156: 1155: 1150: 1143: 1142: 1129: 1117: 1096: 1094: 1093: 1088: 1081: 1080: 1067: 1055: 1046: 1044: 1043: 1038: 1031: 1030: 1029: 1018: 1010: 1008: 1007: 1002: 998: 997: 996: 995: 983: 975: 973: 972: 967: 963: 962: 961: 960: 948: 938: 936: 935: 930: 923: 922: 909: 897: 889: 887: 886: 881: 877: 876: 875: 864: 856: 854: 853: 848: 844: 842: 837: 826: 818: 816: 815: 810: 803: 802: 791: 790: 773: 755: 748: 741: 734: 727: 725: 724: 719: 712: 711: 707: 705: 700: 691: 686: 683: 677: 675: 669: 664: 655: 650: 647: 641: 639: 633: 628: 612: 607: 606: 596: 591: 588: 582: 580: 573: 571: 570: 569: 558: 553: 550: 549: 548: 545: 537: 535: 530: 529: 528: 516: 515: 513: 505: 499: 497: 493: 487: 474: 472: 471: 466: 459: 453: 445: 443: 442: 437: 430: 426: 398: 390: 388: 387: 382: 378: 377: 376: 365: 353: 351: 350: 345: 341: 335: 320: 318: 317: 312: 308: 307: 306: 295: 284: 282: 281: 276: 269: 268: 264: 262: 257: 241: 236: 227: 222: 219: 213: 211: 204: 202: 199: 198: 197: 183: 181: 180: 171: 166: 165: 154: 153: 151: 140: 136: 130: 100:Yukawa couplings 70:of second order 21: 1657: 1656: 1652: 1651: 1650: 1648: 1647: 1646: 1617: 1616: 1615: 1614: 1593:(2): 189--204. 1584: 1583: 1579: 1533:Physical Review 1529: 1528: 1524: 1478:Physical Review 1471: 1470: 1466: 1428: 1427: 1423: 1395:Physical Review 1388: 1387: 1383: 1353: 1352: 1348: 1312: 1311: 1307: 1271: 1266: 1265: 1261: 1252: 1248: 1243: 1226: 1221: 1220: 1214: 1210: 1205: 1199: 1186: 1169: 1166: 1163: 1162: 1160: 1112: 1111: 1050: 1049: 1021: 1013: 1012: 986: 978: 977: 951: 943: 942: 892: 891: 867: 859: 858: 821: 820: 819:Therefore, the 782: 768: 767: 758: 753: 751: 746: 744: 739: 737: 732: 676: 640: 581: 578: 574: 561: 554: 540: 536: 519: 506: 498: 482: 481: 448: 447: 393: 392: 368: 360: 359: 330: 329: 298: 290: 289: 212: 209: 205: 189: 182: 172: 157: 144: 125: 124: 92: 64: 28: 23: 22: 15: 12: 11: 5: 1655: 1653: 1645: 1644: 1639: 1634: 1629: 1619: 1618: 1613: 1612: 1577: 1522: 1464: 1421: 1381: 1346: 1305: 1259: 1245: 1244: 1242: 1239: 1238: 1237: 1232: 1225: 1222: 1219: 1218: 1216:"ultraviolet". 1207: 1206: 1204: 1201: 1185: 1182: 1148: 1141: 1138: 1135: 1128: 1125: 1122: 1086: 1079: 1076: 1073: 1066: 1063: 1060: 1036: 1028: 1024: 994: 989: 959: 954: 928: 921: 918: 915: 908: 905: 902: 874: 870: 841: 836: 832: 808: 801: 798: 795: 789: 785: 781: 778: 756: 749: 742: 735: 729: 728: 717: 710: 704: 699: 695: 689: 682: 673: 668: 663: 659: 653: 646: 637: 632: 627: 623: 619: 616: 611: 605: 600: 594: 587: 577: 568: 564: 557: 543: 533: 527: 522: 512: 509: 504: 492: 464: 458: 435: 429: 425: 422: 419: 416: 413: 409: 406: 403: 375: 371: 340: 305: 301: 286: 285: 274: 267: 261: 256: 252: 248: 245: 240: 235: 231: 225: 218: 208: 196: 192: 188: 179: 175: 169: 164: 160: 150: 147: 143: 135: 96:Standard Model 91: 88: 80:critical point 63: 60: 26: 24: 18:IR fixed point 14: 13: 10: 9: 6: 4: 3: 2: 1654: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1624: 1622: 1608: 1604: 1600: 1596: 1592: 1588: 1587:Nucl. Phys. B 1581: 1578: 1573: 1569: 1565: 1561: 1557: 1553: 1548: 1543: 1540:(1): 015015. 1539: 1535: 1534: 1526: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1493: 1488: 1485:(1): 015051. 1484: 1480: 1479: 1474: 1468: 1465: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1425: 1422: 1417: 1413: 1409: 1405: 1401: 1397: 1396: 1391: 1385: 1382: 1377: 1373: 1369: 1365: 1361: 1357: 1350: 1347: 1341: 1336: 1332: 1328: 1324: 1320: 1316: 1309: 1306: 1300: 1295: 1291: 1287: 1283: 1279: 1278: 1270: 1263: 1260: 1256: 1250: 1247: 1240: 1236: 1233: 1231: 1228: 1227: 1223: 1212: 1209: 1202: 1200: 1197: 1195: 1191: 1183: 1181: 1179: 1146: 1126: 1123: 1120: 1108: 1106: 1102: 1097: 1084: 1064: 1061: 1058: 1034: 1026: 1022: 987: 952: 939: 926: 906: 903: 900: 872: 868: 839: 834: 830: 806: 787: 783: 779: 776: 765: 760: 715: 708: 702: 697: 693: 687: 680: 671: 666: 661: 657: 651: 644: 635: 630: 625: 621: 617: 614: 609: 598: 592: 585: 575: 566: 562: 555: 541: 531: 520: 510: 490: 480: 479: 478: 475: 462: 456: 433: 420: 414: 404: 401: 373: 369: 357: 338: 327: 324: 303: 299: 272: 265: 259: 254: 250: 246: 243: 238: 233: 229: 223: 216: 206: 194: 190: 186: 177: 173: 167: 162: 158: 148: 133: 123: 122: 121: 119: 115: 114: 109: 105: 101: 97: 89: 87: 85: 81: 77: 73: 69: 61: 59: 57: 53: 48: 46: 42: 37: 33: 19: 1590: 1586: 1580: 1537: 1531: 1525: 1482: 1476: 1467: 1434: 1430: 1424: 1399: 1393: 1384: 1359: 1355: 1349: 1322: 1318: 1308: 1281: 1275: 1262: 1249: 1211: 1198: 1187: 1109: 1098: 940: 761: 730: 476: 287: 111: 93: 65: 56:universality 49: 35: 29: 104:Higgs boson 1621:Categories 1547:1902.07214 1492:1904.04257 1402:(3): 691. 1390:Hill, C.T. 1362:(4): 291. 1356:Phys. Lett 1241:References 1572:119193325 1517:104291827 1230:Top quark 1203:Footnotes 1124:≈ 1062:≈ 904:≈ 901:μ 780:≈ 777:μ 672:− 636:− 615:− 563:π 532:≈ 511:μ 508:∂ 503:∂ 491:μ 457:μ 405:∈ 339:μ 244:− 191:π 168:≈ 149:μ 146:∂ 142:∂ 134:μ 108:top quark 102:" to the 90:Top Quark 1459:10012522 1224:See also 1595:Bibcode 1552:Bibcode 1497:Bibcode 1439:Bibcode 1404:Bibcode 1364:Bibcode 1327:Bibcode 1286:Bibcode 1173:⁠ 1161:⁠ 358:) and 321:is the 113:running 94:In the 66:In the 32:physics 1570:  1515:  1457:  1144:  1130:  1118:  1082:  1068:  1056:  1032:  1019:  999:  984:  964:  949:  924:  910:  898:  878:  865:  845:  827:  804:  774:  731:where 713:  684:  678:  648:  642:  589:  583:  559:  551:  538:  517:  500:  494:  488:  460:  454:  431:  399:  379:  366:  342:  336:  309:  296:  288:where 270:  220:  214:  200:  184:  155:  137:  131:  78:, or 1568:S2CID 1542:arXiv 1513:S2CID 1487:arXiv 1272:(PDF) 752:and 326:gauge 323:color 34:, an 1538:D100 1483:D100 1455:PMID 1253:See 1101:Hill 1603:doi 1591:196 1560:doi 1505:doi 1447:doi 1412:doi 1400:D24 1372:doi 1360:B98 1335:doi 1294:doi 1127:220 1065:220 907:125 30:In 1623:: 1601:. 1589:. 1566:. 1558:. 1550:. 1536:. 1511:. 1503:. 1495:. 1481:. 1453:. 1445:. 1435:41 1433:. 1410:. 1398:. 1370:. 1358:. 1333:. 1321:. 1317:. 1292:. 1282:30 1280:. 1274:. 1196:. 1180:. 1164:9 788:15 784:10 766:, 688:20 681:17 556:16 187:16 120:: 58:. 1609:. 1605:: 1597:: 1574:. 1562:: 1554:: 1544:: 1519:. 1507:: 1499:: 1489:: 1461:. 1449:: 1441:: 1418:. 1414:: 1406:: 1378:. 1374:: 1366:: 1343:. 1337:: 1329:: 1323:8 1302:. 1296:: 1288:: 1170:2 1167:/ 1147:, 1140:V 1137:e 1134:G 1121:m 1085:. 1078:V 1075:e 1072:G 1059:m 1035:. 1027:3 1023:g 993:t 988:y 958:t 953:y 927:. 920:V 917:e 914:G 873:q 869:y 840:2 835:q 831:y 807:. 800:V 797:e 794:G 757:2 754:g 750:1 747:g 743:1 740:g 736:2 733:g 716:, 709:) 703:2 698:1 694:g 667:2 662:2 658:g 652:4 645:9 631:2 626:3 622:g 618:8 610:2 604:t 599:y 593:2 586:9 576:( 567:2 546:t 542:y 526:t 521:y 463:. 434:. 428:} 424:t 421:, 418:b 415:, 412:u 408:{ 402:q 374:q 370:y 304:3 300:g 273:, 266:) 260:2 255:3 251:g 247:8 239:2 234:q 230:y 224:2 217:9 207:( 195:2 178:q 174:y 163:q 159:y 20:)

Index

IR fixed point
physics
renormalization group
quantum field theory
ultraviolet fixed points
universality
statistical physics
phase transitions
critical temperature
critical point
critical exponents
Standard Model
Yukawa couplings
Higgs boson
top quark
running
renormalization group equation
color
gauge
asymptotic freedom
grand unification
Hill
top quark condensation
Large Hadron Collider
Banks–Zaks fixed point
conformal symmetry
Top quark
Cutoff (physics)
renormalization group
"Reliable perturbative results for strong interactions?"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑