Knowledge (XXG)

Icosahedral twins

Source 📝

189: 203: 47: 35: 55: 20: 176:
structures with long range rotational but not translational periodicity, that some initially tried to explain away as icosahedral twinning. Quasicrystals generally form only when the compositional makeup (e.g. of two dissimilar metals such as titanium and manganese) serves as an antagonist to
145:
At larger sizes the energy to distort becomes larger than the gain in surface energy, and bulk materials (i.e. sufficiently large clusters) generally revert to one of the crystalline close-packing configurations. In principle they will convert to a simple
166:
Icosahedral twinning has been seen in face-centered-cubic metal nanoparticles that have nucleated: (i) by evaporation onto surfaces, (ii) out of solution, and (iii) by reduction in a polymer matrix.
87:" in the 19th century, more recently as "decahedral multiply twinned particles", "pentagonal particles" or "star particles". A variety of different methods (e.g. condensing argon, metal atoms, and 142:, an approach later extended to 3D by Yoffe. The shape is also not always that of a simple icosahedron, and there are now several software codes that make it easy to calculate the shape. 134:
for icosahedral clustering is that it cannot fill space over large distances in a way that is translationally ordered, so there is some distortion of the atomic positions, that is
676: 83:) faces having three-fold symmetry. A related, more common structure has five units similarly arranged with twinning, which were known as " 315: 281: 241: 99:
When interatom bonding does not have strong directional preferences, it is not unusual for atoms to gravitate toward a
226: 813: 747:
Pauling, Linus (1987). "So-called icosahedral and decagonal quasicrystals are twins of an 820-atom cubic crystal".
23: 158:
in diameter, but it does not always happen that the shape changes and the particles can grow to millimeter sizes.
91:) lead to the icosahedral form at size scales where surface energies are more important than those from the bulk. 808: 75:
and also nanoparticles with some thousands of atoms. These clusters are twenty-faced, with twenty interlinked
260:
Hofmeister, H. (1998). "Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films".
658: 803: 756: 705: 621: 554: 507: 460: 413: 347: 269: 108: 27: 335: 135: 116: 729: 379: 151: 495: 448: 780: 772: 721: 672: 639: 590: 572: 523: 476: 429: 371: 363: 311: 285: 208: 154:
shape. The size when they become less energetically stable is typically in the range of 10-30
131: 72: 318: 764: 713: 664: 629: 580: 562: 515: 468: 421: 355: 277: 216: 67: 46: 760: 709: 625: 558: 511: 464: 417: 359: 351: 273: 585: 542: 231: 194: 147: 127: 100: 694:"Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects" 797: 693: 236: 169: 120: 112: 733: 472: 383: 188: 139: 80: 50:
Examples of digital dark field bowtie/butterfly images of an icosahedral particle.
221: 104: 76: 64: 768: 567: 717: 519: 202: 184: 776: 725: 668: 643: 576: 527: 480: 433: 367: 289: 155: 39: 784: 594: 375: 34: 401: 103:
of 12 nearest neighbors. The three most symmetric ways to do this are by
84: 634: 609: 425: 496:"Elastic strains and the energy balance for multiply twinned particles" 38:
FCC icosahedral model projected down the 5-fold on the left and 3-fold
177:
formation of one of the more common close-packed space-filling forms.
282:
10.1002/(sici)1521-4079(1998)33:1<3::aid-crat3>3.0.co;2-3
88: 54: 53: 45: 33: 18: 19: 138:. De Wit pointed out that these can be thought of in terms of 26:
of a 5-fold twinned Au nanoparticle with a shape similar to a
541:
Boukouvala, Christina; Daniel, Joshua; Ringe, Emilie (2021).
306:(ed. H. S. Nalwa, Amer. Sci. Publ., Stevenson Ranch CA) vol. 126:
Icosahedral arrangements, typically because of their smaller
302:
H. Hofmeister (2004) "Fivefold twinned nanoparticles" in
58:
Dark field analysis of dual-tetrahedron crystal pairs.
610:"WulffPack: A Python package for Wulff constructions" 130:, may be preferred for small clusters. However, the 16:
Structure found in atomic clusters and nanoparticles
543:"Approaches to modelling the shape of nanocrystals" 336:"Nanoparticle shape, thermodynamics and kinetics" 755:(4). American Physical Society (APS): 365–368. 692:Baletto, Francesca; Ferrando, Riccardo (2005). 657:Pimpinelli, Alberto; Villain, Jacques (1998). 304:Encyclopedia of Nanoscience and Nanotechnology 8: 663:(1 ed.). Cambridge University Press. 633: 584: 566: 453:Journal of Physics C: Solid State Physics 402:"Stability of Multiply-Twinned Particles" 406:Journal of the Physical Society of Japan 252: 79:crystals joined along triangular (e.g. 395: 393: 7: 340:Journal of Physics: Condensed Matter 329: 327: 71:is a nanostructure found in atomic 14: 494:Howie, A.; Marks, L. D. (1984). 201: 187: 614:Journal of Open Source Software 608:Rahm, J.; Erhart, Paul (2020). 262:Crystal Research and Technology 242:Self-assembly of nanoparticles 1: 360:10.1088/0953-8984/28/5/053001 334:Marks, L D; Peng, L (2016). 227:Nanomaterial based catalyst 107:clustering, by crystalline 830: 769:10.1103/physrevlett.58.365 568:10.1186/s40580-021-00275-6 718:10.1103/RevModPhys.77.371 698:Reviews of Modern Physics 660:Physics of Crystal Growth 520:10.1080/01418618408233432 473:10.1088/0022-3719/5/5/004 42:orientation on the right. 669:10.1017/cbo9780511622526 500:Philosophical Magazine A 24:Annular dark-field image 749:Physical Review Letters 449:"Partial disclinations" 59: 51: 43: 31: 57: 49: 37: 22: 115:) or hexagonal (tri- 28:pentagonal bipyramid 761:1987PhRvL..58..365P 710:2005RvMP...77..371B 635:10.21105/joss.01944 626:2020JOSS....5.1944R 559:2021NanoC...8...26B 512:1984PMagA..49...95H 465:1972JPhC....5..529D 426:10.1143/jpsj.27.941 418:1969JPSJ...27..941I 400:Ino, Shozo (1969). 352:2016JPCM...28e3001M 274:1998CryRT..33....3H 136:elastic deformation 109:face-centered-cubic 447:Wit, R de (1972). 152:Wulff construction 60: 52: 44: 32: 814:Materials science 678:978-0-521-55198-4 209:Technology portal 821: 789: 788: 744: 738: 737: 689: 683: 682: 654: 648: 647: 637: 605: 599: 598: 588: 570: 547:Nano Convergence 538: 532: 531: 491: 485: 484: 444: 438: 437: 397: 388: 387: 331: 322: 300: 294: 293: 257: 217:Crystal twinning 211: 206: 205: 197: 192: 191: 829: 828: 824: 823: 822: 820: 819: 818: 809:Crystallography 794: 793: 792: 746: 745: 741: 691: 690: 686: 679: 656: 655: 651: 607: 606: 602: 540: 539: 535: 493: 492: 488: 446: 445: 441: 399: 398: 391: 333: 332: 325: 301: 297: 259: 258: 254: 250: 207: 200: 193: 186: 183: 164: 97: 17: 12: 11: 5: 827: 825: 817: 816: 811: 806: 796: 795: 791: 790: 739: 704:(1): 371–423. 684: 677: 649: 600: 533: 486: 459:(5): 529–534. 439: 412:(4): 941–953. 389: 323: 310:, pp. 431-452 295: 251: 249: 246: 245: 244: 239: 234: 232:Nanotechnology 229: 224: 219: 213: 212: 198: 195:Science portal 182: 179: 163: 160: 148:single crystal 132:Achilles' heel 128:surface energy 117:orthobicupolar 101:kissing number 96: 93: 15: 13: 10: 9: 6: 4: 3: 2: 826: 815: 812: 810: 807: 805: 804:Nanoparticles 802: 801: 799: 786: 782: 778: 774: 770: 766: 762: 758: 754: 750: 743: 740: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 688: 685: 680: 674: 670: 666: 662: 661: 653: 650: 645: 641: 636: 631: 627: 623: 619: 615: 611: 604: 601: 596: 592: 587: 582: 578: 574: 569: 564: 560: 556: 552: 548: 544: 537: 534: 529: 525: 521: 517: 513: 509: 506:(1): 95–109. 505: 501: 497: 490: 487: 482: 478: 474: 470: 466: 462: 458: 454: 450: 443: 440: 435: 431: 427: 423: 419: 415: 411: 407: 403: 396: 394: 390: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 346:(5): 053001. 345: 341: 337: 330: 328: 324: 320: 317: 316:1-58883-059-4 313: 309: 305: 299: 296: 291: 287: 283: 279: 275: 271: 267: 263: 256: 253: 247: 243: 240: 238: 237:Quasicrystals 235: 233: 230: 228: 225: 223: 220: 218: 215: 214: 210: 204: 199: 196: 190: 185: 180: 178: 175: 171: 170:Quasicrystals 167: 161: 159: 157: 153: 149: 143: 141: 140:disclinations 137: 133: 129: 124: 122: 121:close packing 118: 114: 113:cuboctahedral 110: 106: 102: 94: 92: 90: 89:virus capsids 86: 82: 78: 74: 70: 69: 66: 56: 48: 41: 36: 29: 25: 21: 752: 748: 742: 701: 697: 687: 659: 652: 620:(45): 1944. 617: 613: 603: 550: 546: 536: 503: 499: 489: 456: 452: 442: 409: 405: 343: 339: 307: 303: 298: 265: 261: 255: 173: 168: 165: 144: 125: 98: 63: 61: 268:(1): 3–25. 222:Icosahedron 105:icosahedral 81:cubic-(111) 77:tetrahedral 65:icosahedral 798:Categories 248:References 174:un-twinned 156:nanometers 777:0031-9007 726:0034-6861 644:2475-9066 577:2196-5404 553:(1): 26. 528:0141-8610 481:0022-3719 434:0031-9015 368:0953-8984 290:0232-1300 85:fivelings 40:zone axis 785:10034915 734:54700637 595:34499259 384:12503859 376:26792459 181:See also 162:Ubiquity 73:clusters 757:Bibcode 706:Bibcode 622:Bibcode 586:8429535 555:Bibcode 508:Bibcode 461:Bibcode 414:Bibcode 348:Bibcode 270:Bibcode 150:with a 783:  775:  732:  724:  675:  642:  593:  583:  575:  526:  479:  432:  382:  374:  366:  314:  288:  95:Causes 730:S2CID 380:S2CID 781:PMID 773:ISSN 722:ISSN 673:ISBN 640:ISSN 591:PMID 573:ISSN 524:ISSN 477:ISSN 430:ISSN 372:PMID 364:ISSN 312:ISBN 286:ISSN 172:are 68:twin 765:doi 714:doi 665:doi 630:doi 581:PMC 563:doi 516:doi 469:doi 422:doi 356:doi 319:pdf 278:doi 62:An 800:: 779:. 771:. 763:. 753:58 751:. 728:. 720:. 712:. 702:77 700:. 696:. 671:. 638:. 628:. 616:. 612:. 589:. 579:. 571:. 561:. 549:. 545:. 522:. 514:. 504:49 502:. 498:. 475:. 467:. 455:. 451:. 428:. 420:. 410:27 408:. 404:. 392:^ 378:. 370:. 362:. 354:. 344:28 342:. 338:. 326:^ 284:. 276:. 266:33 264:. 123:. 119:) 787:. 767:: 759:: 736:. 716:: 708:: 681:. 667:: 646:. 632:: 624:: 618:5 597:. 565:: 557:: 551:8 530:. 518:: 510:: 483:. 471:: 463:: 457:5 436:. 424:: 416:: 386:. 358:: 350:: 321:. 308:3 292:. 280:: 272:: 111:( 30:.

Index


Annular dark-field image
pentagonal bipyramid

zone axis


icosahedral
twin
clusters
tetrahedral
cubic-(111)
fivelings
virus capsids
kissing number
icosahedral
face-centered-cubic
cuboctahedral
orthobicupolar
close packing
surface energy
Achilles' heel
elastic deformation
disclinations
single crystal
Wulff construction
nanometers
Quasicrystals
icon
Science portal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.