Knowledge (XXG)

Ideal (order theory)

Source đź“ť

36: 552:
The above definitions of "ideal" and "order ideal" are the standard ones, but there is some confusion in terminology. Sometimes the words and definitions such as "ideal", "order ideal", "
1213: 573:. Also note that, since we require ideals and filters to be non-empty, every prime ideal is necessarily proper. For lattices, prime ideals can be characterized as follows: 716: 564:
An important special case of an ideal is constituted by those ideals whose set-theoretic complements are filters, i.e. ideals in the inverse order. Such ideals are called
514: 662: 610: 316: 161: 435: 362: 412: 826:, but this terminology is often reserved for Boolean algebras, where a maximal filter (ideal) is a filter (ideal) that contains exactly one of the elements { 2429: 2412: 1942: 1778: 1200:. It is strictly weaker than the axiom of choice and it turns out that nothing more is needed for many order-theoretic applications of ideals. 2259: 57: 1568: 764:
The existence of prime ideals is in general not obvious, and often a satisfactory amount of prime ideals cannot be derived within ZF (
2395: 2254: 1597: 1578: 1553: 1266:
in the ideal completion, so the original poset can be recovered as the sub-poset consisting of compact elements. Furthermore, every
79: 2249: 115:, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and 765: 1885: 1255: 1967: 1394: 2462: 2286: 2206: 1687: 1637: 1880: 2071: 2000: 1974: 1962: 1925: 1900: 1875: 1829: 1798: 1338: 1292: 1287:, where the name was derived from the ring ideals of abstract algebra. He adopted this terminology because, using the 1284: 1236: 1197: 1193: 773: 1905: 1895: 1216:, the maximal ideals (or, equivalently via the negation map, ultrafilters) are used to obtain the set of points of a 50: 44: 2271: 1771: 2244: 1910: 1288: 1232: 61: 2176: 1803: 819:, maximal ideals and filters are necessarily prime, while the converse of this statement is false in general. 2424: 2407: 2336: 1952: 391: 278:
While this is the most general way to define an ideal for arbitrary posets, it was originally defined for
2467: 2314: 2149: 2140: 2009: 1844: 1808: 1764: 1615: 104: 1890: 1385:. Encyclopedia of Mathematics and its Applications. Vol. 93. Cambridge University Press. p.  1240: 1192:
for every disjoint filter–ideal-pair can be shown. In the special case that the considered order is a
2402: 2361: 2341: 2086: 2049: 2039: 2019: 2004: 1696: 1646: 1315: 816: 438: 2329: 2240: 2186: 2145: 2135: 2024: 1957: 1920: 1321: 1592:, Cambridge Studies in Advanced Mathematics, vol. 59, Cambridge University Press, Cambridge, 1208:
The construction of ideals and filters is an important tool in many applications of order theory.
695: 496: 2368: 2221: 2130: 2120: 2061: 1979: 1493: 1478: 1327: 2441: 2281: 1915: 1685:
Stone, M. H. (1935), "Subsumption of the Theory of Boolean Algebras under the Theory of Rings",
641: 583: 289: 134: 2378: 2356: 2216: 2201: 2181: 1984: 1724: 1674: 1593: 1574: 1549: 1457: 1390: 1386: 1380: 1362: 1280: 1217: 761:. So this is just a specific prime ideal that extends the above conditions to infinite meets. 417: 341: 2191: 2044: 1746: 1714: 1704: 1664: 1654: 1564: 722: 112: 1607: 1379:
Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M. W.; Scott, D. S. (2003).
397: 2373: 2156: 2034: 2029: 2014: 1839: 1824: 1603: 1333: 1267: 1263: 1185: 769: 279: 1930: 1700: 1650: 383:
that satisfies the above conditions 1 and 2. In other words, an order ideal is simply a
2291: 2276: 2266: 2125: 2103: 2081: 1737: 1719: 1669: 1451: 319: 116: 17: 2456: 2390: 2346: 2324: 2196: 2066: 2054: 1859: 870: 812:
is maximal if it is proper and there is no proper filter that is a strict superset.
2211: 2093: 2076: 1994: 1834: 1787: 1750: 1543: 1296: 271: 96: 972:
by taking the downward closure of the set of all binary joins of this form, i.e.
394:
notion of an ideal, i.e., the concept obtained by reversing all ≤ and exchanging
2417: 2110: 1989: 1854: 1303: 1252: 1225: 823: 553: 452: 448: 444: 93: 1330: â€“ Non-empty family of sets that is closed under finite unions and subsets 857:
There is another interesting notion of maximality of ideals: Consider an ideal
282:
only. In this case, the following equivalent definition can be given: a subset
2385: 2319: 2160: 1221: 108: 2436: 2309: 2115: 1324: â€“ Additive subgroup of a mathematical ring that absorbs multiplication 1270:
can be reconstructed as the ideal completion of its set of compact elements.
384: 220: 175: 1728: 1678: 1635:
Stone, M. H. (1934), "Boolean Algebras and Their Application to Topology",
1709: 1659: 107:(poset). Although this term historically was derived from the notion of a 2231: 2098: 1849: 1479:"On lattices and their ideal lattices, and posets and their ideal posets" 1410: 1408: 1406: 1621: 776:, which are necessary for many applications that require prime ideals. 738: 323: 387:. Similarly, an ideal can also be defined as a "directed lower set". 692:
It is easily checked that this is indeed equivalent to stating that
1341: â€“ Ideals in a Boolean algebra can be extended to prime ideals 1318: â€“ In mathematics, a special subset of a partially ordered set 1180:
However, in general it is not clear whether there exists any ideal
1498: 1144:
contradicts the disjointness of the two sets. Hence all elements
455:
are different generalizations of the notion of a lattice ideal.
1760: 1756: 29: 1542:
Burris, Stanley N.; Sankappanavar, Hanamantagouda P. (1981).
893:
is always a prime ideal. A proof of this statement follows.
718:
is a filter (which is then also prime, in the dual sense).
1251:
ordered by subset inclusion. This construction yields the
1735:
Frink, Orrin (1954), "Ideals In Partially Ordered Sets",
1160:. Consequently one can apply the above construction with 1132:
too. On the other hand, this finite join of elements of
904:
is maximal with respect to disjointness from the filter
838:
of the Boolean algebra. In Boolean algebras, the terms
737:
with the additional property that, whenever the meet (
1184:
that is maximal in this sense. Yet, if we assume the
698: 644: 586: 499: 420: 400: 344: 322:
it is a lower set that is closed under finite joins (
292: 137: 493:
of the ideal in this situation. The principal ideal
2302: 2230: 2169: 1939: 1868: 1817: 1414: 1214:
Stone's representation theorem for Boolean algebras
912:is not prime, i.e. there exists a pair of elements 733:is meaningful. It is defined to be a proper ideal 710: 656: 604: 508: 429: 406: 356: 310: 155: 1168:to obtain an ideal that is strictly greater than 469:The smallest ideal that contains a given element 889:. In the case of distributive lattices such an 27:Nonempty, upper-bounded, downward-closed subset 1426: 1026:For the other case, assume that there is some 881:that is maximal among all ideals that contain 556:", or "partial order ideal" mean one another. 1772: 1438: 1262:. An ideal is principal if and only if it is 8: 1573:(2nd ed.). Cambridge University Press. 1235:to turn posets into posets with additional 2430:Positive cone of a partially ordered group 1779: 1765: 1757: 1718: 1708: 1668: 1658: 1497: 1302:Generalization to any posets was done by 1188:in our set theory, then the existence of 1015:. But this contradicts the maximality of 697: 643: 585: 498: 419: 399: 343: 291: 136: 80:Learn how and when to remove this message 2413:Positive cone of an ordered vector space 43:This article includes a list of general 1351: 702: 326:); that is, it is nonempty and for all 1365:: "A directed lower subset of a poset 1358: 1299:, the two notions do indeed coincide. 772:). This issue is discussed in various 1614:Frenchman, Zack; Hart, James (2020), 1526: 1515: 1511: 1140:, such that the assumed existence of 822:Maximal filters are sometimes called 379:is defined to be a subset of a poset 7: 1590:Practical foundations of mathematics 462:if it is not equal to the whole set 167:, if the following conditions hold: 908:. Suppose for a contradiction that 1940:Properties & Types ( 1570:Introduction to Lattices and Order 49:it lacks sufficient corresponding 25: 2396:Positive cone of an ordered field 1007:is indeed an ideal disjoint from 946:. Consider the case that for all 612:is a prime ideal, if and only if 458:An ideal or filter is said to be 2250:Ordered topological vector space 1228:to the original Boolean algebra. 877:. We are interested in an ideal 796:if it is proper and there is no 34: 1617:An Introduction to Order Theory 1415:Burris & Sankappanavar 1981 1382:Continuous Lattices and Domains 1011:which is strictly greater than 1751:10.1080/00029890.1954.11988449 599: 587: 500: 305: 293: 150: 138: 1: 2207:Series-parallel partial order 1688:Proc. Natl. Acad. Sci. U.S.A. 1638:Proc. Natl. Acad. Sci. U.S.A. 1545:A Course in Universal Algebra 1289:isomorphism of the categories 1239:properties. For example, the 1196:, this theorem is called the 1019:and thus the assumption that 1003:. It is readily checked that 968:. One can construct an ideal 804:that is a strict superset of 1886:Cantor's isomorphism theorem 1247:is the set of all ideals of 1104:. But then their meet is in 711:{\displaystyle P\setminus I} 509:{\displaystyle \downarrow p} 1926:Szpilrajn extension theorem 1901:Hausdorff maximal principle 1876:Boolean prime ideal theorem 1339:Boolean prime ideal theorem 1198:Boolean prime ideal theorem 1176:. This finishes the proof. 766:Zermelo–Fraenkel set theory 131:of a partially ordered set 2484: 2272:Topological vector lattice 1477:George M. Bergman (2008), 1427:Davey & Priestley 2002 1279:Ideals were introduced by 1172:while being disjoint from 846:coincide, as do the terms 1794: 1439:Frenchman & Hart 2020 1243:of a given partial order 657:{\displaystyle x\wedge y} 605:{\displaystyle (P,\leq )} 311:{\displaystyle (P,\leq )} 156:{\displaystyle (P,\leq )} 103:is a special subset of a 1881:Cantor–Bernstein theorem 1231:Order theory knows many 1108:and, by distributivity, 741:) of some arbitrary set 725:the further notion of a 430:{\displaystyle \wedge ,} 238:, there is some element 2425:Partially ordered group 2245:Specialization preorder 357:{\displaystyle x\vee y} 64:more precise citations. 1911:Kruskal's tree theorem 1906:Knaster–Tarski theorem 1896:Dushnik–Miller theorem 885:and are disjoint from 729:completely prime ideal 712: 658: 606: 510: 431: 408: 358: 312: 157: 18:Ideal (lattice theory) 1710:10.1073/pnas.21.2.103 1660:10.1073/pnas.20.3.197 1588:Taylor, Paul (1999), 1565:Priestley, Hilary Ann 1233:completion procedures 1048:. Now if any element 808:. Likewise, a filter 713: 659: 619:is a proper ideal of 607: 548:Terminology confusion 511: 432: 409: 407:{\displaystyle \vee } 359: 313: 158: 105:partially ordered set 2463:Ideals (ring theory) 2403:Ordered vector space 1316:Filter (mathematics) 834:}, for each element 817:distributive lattice 774:prime ideal theorems 696: 642: 584: 497: 418: 398: 342: 290: 135: 2241:Alexandrov topology 2187:Lexicographic order 2146:Well-quasi-ordering 1701:1935PNAS...21..103S 1651:1934PNAS...20..197S 1548:. Springer-Verlag. 1453:Partial Order Ideal 1369:is called an ideal" 1322:Ideal (ring theory) 375:A weaker notion of 2222:Transitive closure 2182:Converse/Transpose 1891:Dilworth's theorem 1429:, pp. 20, 44. 1328:Ideal (set theory) 898: 815:When a poset is a 753:, some element of 708: 654: 602: 506: 453:Doyle pseudoideals 427: 404: 354: 308: 153: 2450: 2449: 2408:Partially ordered 2217:Symmetric closure 2202:Reflexive closure 1945: 1563:Davey, Brian A.; 1458:Wolfram MathWorld 1281:Marshall H. Stone 1218:topological space 1152:have a join with 1070:, one finds that 900:Assume the ideal 896: 626:for all elements 520:is thus given by 489:principal element 90: 89: 82: 16:(Redirected from 2475: 2192:Linear extension 1941: 1921:Mirsky's theorem 1781: 1774: 1767: 1758: 1753: 1731: 1722: 1712: 1681: 1672: 1662: 1624: 1610: 1584: 1559: 1529: 1524: 1518: 1509: 1503: 1502: 1501: 1486:Tbilisi Math. J. 1483: 1474: 1468: 1467: 1466: 1465: 1448: 1442: 1441:, pp. 2, 7. 1436: 1430: 1424: 1418: 1412: 1401: 1400: 1376: 1370: 1356: 1293:Boolean algebras 1285:Boolean algebras 1241:ideal completion 1127: 1099: 1084: 1065: 1043: 1002: 963: 929: 884: 868: 860: 807: 794: 793: 787: 760: 752: 746: 736: 731: 730: 723:complete lattice 717: 715: 714: 709: 687: 677: 667: 663: 661: 660: 655: 618: 611: 609: 608: 603: 579: 570: 569: 543: 516:for a principal 515: 513: 512: 507: 491: 490: 485:is said to be a 479: 478: 436: 434: 433: 428: 413: 411: 410: 405: 382: 371: 363: 361: 360: 355: 337: 317: 315: 314: 309: 285: 269: 265: 255: 245: 237: 218: 214: 206: 188: 173: 162: 160: 159: 154: 130: 113:abstract algebra 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 2483: 2482: 2478: 2477: 2476: 2474: 2473: 2472: 2453: 2452: 2451: 2446: 2442:Young's lattice 2298: 2226: 2165: 2015:Heyting algebra 1963:Boolean algebra 1935: 1916:Laver's theorem 1864: 1830:Boolean algebra 1825:Binary relation 1813: 1790: 1785: 1734: 1684: 1634: 1631: 1613: 1600: 1587: 1581: 1562: 1556: 1541: 1538: 1533: 1532: 1525: 1521: 1510: 1506: 1481: 1476: 1475: 1471: 1463: 1461: 1450: 1449: 1445: 1437: 1433: 1425: 1421: 1413: 1404: 1397: 1378: 1377: 1373: 1357: 1353: 1348: 1334:Semigroup ideal 1312: 1277: 1206: 1194:Boolean algebra 1186:axiom of choice 1178: 1156:that is not in 1109: 1086: 1071: 1057: 1035: 973: 955: 921: 882: 866: 858: 805: 791: 790: 785: 782: 770:axiom of choice 758: 748: 742: 734: 728: 727: 694: 693: 679: 669: 665: 640: 639: 616: 582: 581: 577: 567: 566: 562: 550: 521: 495: 494: 488: 487: 477:principal ideal 476: 475: 416: 415: 396: 395: 380: 369: 340: 339: 335: 288: 287: 283: 267: 257: 247: 243: 235: 216: 212: 198: 186: 171: 133: 132: 128: 125: 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 2481: 2479: 2471: 2470: 2465: 2455: 2454: 2448: 2447: 2445: 2444: 2439: 2434: 2433: 2432: 2422: 2421: 2420: 2415: 2410: 2400: 2399: 2398: 2388: 2383: 2382: 2381: 2376: 2369:Order morphism 2366: 2365: 2364: 2354: 2349: 2344: 2339: 2334: 2333: 2332: 2322: 2317: 2312: 2306: 2304: 2300: 2299: 2297: 2296: 2295: 2294: 2289: 2287:Locally convex 2284: 2279: 2269: 2267:Order topology 2264: 2263: 2262: 2260:Order topology 2257: 2247: 2237: 2235: 2228: 2227: 2225: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2173: 2171: 2167: 2166: 2164: 2163: 2153: 2143: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2107: 2106: 2096: 2091: 2090: 2089: 2084: 2079: 2074: 2072:Chain-complete 2064: 2059: 2058: 2057: 2052: 2047: 2042: 2037: 2027: 2022: 2017: 2012: 2007: 1997: 1992: 1987: 1982: 1977: 1972: 1971: 1970: 1960: 1955: 1949: 1947: 1937: 1936: 1934: 1933: 1928: 1923: 1918: 1913: 1908: 1903: 1898: 1893: 1888: 1883: 1878: 1872: 1870: 1866: 1865: 1863: 1862: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1821: 1819: 1815: 1814: 1812: 1811: 1806: 1801: 1795: 1792: 1791: 1786: 1784: 1783: 1776: 1769: 1761: 1755: 1754: 1745:(4): 223–234, 1738:Am. Math. Mon. 1732: 1695:(2): 103–105, 1682: 1645:(3): 197–202, 1630: 1627: 1626: 1625: 1611: 1598: 1585: 1579: 1560: 1554: 1537: 1534: 1531: 1530: 1519: 1504: 1469: 1443: 1431: 1419: 1402: 1395: 1371: 1350: 1349: 1347: 1344: 1343: 1342: 1336: 1331: 1325: 1319: 1311: 1308: 1276: 1273: 1272: 1271: 1268:algebraic dcpo 1229: 1205: 1202: 1136:is clearly in 1023:is not prime. 895: 852:maximal filter 795: 781: 780:Maximal ideals 778: 707: 704: 701: 690: 689: 653: 650: 647: 624: 601: 598: 595: 592: 589: 561: 558: 549: 546: 505: 502: 492: 480: 426: 423: 403: 353: 350: 347: 338:, the element 320:if and only if 307: 304: 301: 298: 295: 276: 275: 224: 179: 152: 149: 146: 143: 140: 124: 121: 117:lattice theory 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2480: 2469: 2466: 2464: 2461: 2460: 2458: 2443: 2440: 2438: 2435: 2431: 2428: 2427: 2426: 2423: 2419: 2416: 2414: 2411: 2409: 2406: 2405: 2404: 2401: 2397: 2394: 2393: 2392: 2391:Ordered field 2389: 2387: 2384: 2380: 2377: 2375: 2372: 2371: 2370: 2367: 2363: 2360: 2359: 2358: 2355: 2353: 2350: 2348: 2347:Hasse diagram 2345: 2343: 2340: 2338: 2335: 2331: 2328: 2327: 2326: 2325:Comparability 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2307: 2305: 2301: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2274: 2273: 2270: 2268: 2265: 2261: 2258: 2256: 2253: 2252: 2251: 2248: 2246: 2242: 2239: 2238: 2236: 2233: 2229: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2197:Product order 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2174: 2172: 2170:Constructions 2168: 2162: 2158: 2154: 2151: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2105: 2102: 2101: 2100: 2097: 2095: 2092: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2069: 2068: 2067:Partial order 2065: 2063: 2060: 2056: 2055:Join and meet 2053: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2032: 2031: 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2002: 1998: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1969: 1966: 1965: 1964: 1961: 1959: 1956: 1954: 1953:Antisymmetric 1951: 1950: 1948: 1944: 1938: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1873: 1871: 1867: 1861: 1860:Weak ordering 1858: 1856: 1853: 1851: 1848: 1846: 1845:Partial order 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1822: 1820: 1816: 1810: 1807: 1805: 1802: 1800: 1797: 1796: 1793: 1789: 1782: 1777: 1775: 1770: 1768: 1763: 1762: 1759: 1752: 1748: 1744: 1740: 1739: 1733: 1730: 1726: 1721: 1716: 1711: 1706: 1702: 1698: 1694: 1690: 1689: 1683: 1680: 1676: 1671: 1666: 1661: 1656: 1652: 1648: 1644: 1640: 1639: 1633: 1632: 1629:About history 1628: 1623: 1619: 1618: 1612: 1609: 1605: 1601: 1599:0-521-63107-6 1595: 1591: 1586: 1582: 1580:0-521-78451-4 1576: 1572: 1571: 1566: 1561: 1557: 1555:3-540-90578-2 1551: 1547: 1546: 1540: 1539: 1535: 1528: 1523: 1520: 1517: 1513: 1508: 1505: 1500: 1495: 1491: 1487: 1480: 1473: 1470: 1459: 1455: 1454: 1447: 1444: 1440: 1435: 1432: 1428: 1423: 1420: 1416: 1411: 1409: 1407: 1403: 1398: 1392: 1388: 1384: 1383: 1375: 1372: 1368: 1364: 1360: 1359:Taylor (1999) 1355: 1352: 1345: 1340: 1337: 1335: 1332: 1329: 1326: 1323: 1320: 1317: 1314: 1313: 1309: 1307: 1305: 1300: 1298: 1297:Boolean rings 1294: 1290: 1286: 1282: 1274: 1269: 1265: 1261: 1258:generated by 1257: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1227: 1223: 1219: 1215: 1211: 1210: 1209: 1203: 1201: 1199: 1195: 1191: 1187: 1183: 1177: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1125: 1121: 1117: 1113: 1107: 1103: 1098: 1094: 1090: 1083: 1079: 1075: 1069: 1064: 1060: 1056:is such that 1055: 1051: 1047: 1042: 1038: 1033: 1029: 1024: 1022: 1018: 1014: 1010: 1006: 1000: 996: 992: 988: 984: 980: 976: 971: 967: 962: 958: 953: 949: 945: 941: 937: 933: 928: 924: 919: 915: 911: 907: 903: 894: 892: 888: 880: 876: 872: 864: 861:and a filter 855: 853: 849: 845: 844:maximal ideal 841: 837: 833: 829: 825: 820: 818: 813: 811: 803: 799: 792:maximal ideal 789: 779: 777: 775: 771: 767: 762: 756: 751: 745: 740: 732: 724: 719: 705: 699: 686: 682: 676: 672: 668:implies that 651: 648: 645: 637: 633: 629: 625: 622: 615: 614: 613: 596: 593: 590: 580:of a lattice 574: 572: 559: 557: 555: 547: 545: 541: 537: 533: 529: 525: 519: 503: 486: 484: 474: 472: 467: 465: 461: 456: 454: 450: 446: 442: 440: 424: 421: 401: 393: 388: 386: 378: 373: 367: 351: 348: 345: 333: 329: 325: 321: 302: 299: 296: 286:of a lattice 281: 273: 264: 260: 254: 250: 241: 233: 229: 225: 222: 210: 207:implies that 205: 201: 196: 192: 184: 180: 177: 170: 169: 168: 166: 147: 144: 141: 122: 120: 118: 114: 110: 106: 102: 98: 95: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 2468:Order theory 2351: 2234:& Orders 2212:Star product 2141:Well-founded 2094:Prefix order 2050:Distributive 2040:Complemented 2010:Foundational 1975:Completeness 1931:Zorn's lemma 1835:Cyclic order 1818:Key concepts 1788:Order theory 1742: 1736: 1692: 1686: 1642: 1636: 1616: 1589: 1569: 1544: 1527:Frink (1954) 1522: 1516:Stone (1935) 1512:Stone (1934) 1507: 1489: 1485: 1472: 1462:, retrieved 1452: 1446: 1434: 1422: 1381: 1374: 1366: 1354: 1301: 1278: 1259: 1248: 1244: 1237:completeness 1207: 1204:Applications 1189: 1181: 1179: 1173: 1169: 1165: 1164:in place of 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1123: 1119: 1115: 1111: 1105: 1101: 1100:are both in 1096: 1092: 1088: 1081: 1077: 1073: 1067: 1062: 1058: 1053: 1049: 1045: 1040: 1036: 1031: 1027: 1025: 1020: 1016: 1012: 1008: 1004: 998: 994: 990: 986: 982: 978: 974: 969: 965: 960: 956: 951: 947: 943: 939: 935: 934:but neither 931: 926: 922: 917: 913: 909: 905: 901: 899: 890: 886: 878: 874: 862: 856: 851: 848:prime filter 847: 843: 839: 835: 831: 827: 824:ultrafilters 821: 814: 809: 801: 797: 783: 768:without the 763: 754: 749: 743: 726: 720: 691: 684: 680: 674: 670: 635: 631: 627: 620: 575: 565: 563: 560:Prime ideals 551: 539: 535: 531: 527: 523: 517: 482: 470: 468: 463: 459: 457: 449:pseudoideals 445:Frink ideals 443: 389: 376: 374: 365: 331: 327: 318:is an ideal 277: 272:directed set 262: 258: 252: 248: 246:, such that 239: 231: 227: 208: 203: 199: 194: 190: 182: 164: 126: 100: 97:order theory 94:mathematical 91: 76: 67: 48: 2418:Riesz space 2379:Isomorphism 2255:Normal cone 2177:Composition 2111:Semilattice 2020:Homogeneous 2005:Equivalence 1855:Total order 1417:, Def. 8.2. 1222:clopen sets 1118:) ∨ ( 840:prime ideal 757:is also in 568:prime ideal 554:Frink ideal 377:order ideal 368:is also in 123:Definitions 62:introducing 2457:Categories 2386:Order type 2320:Cofinality 2161:Well-order 2136:Transitive 2025:Idempotent 1958:Asymmetric 1536:References 1492:: 89–103, 1464:2023-02-26 1396:0521803381 1283:first for 1226:isomorphic 1095:) ∨ 1080:) ∨ 964:is not in 920:such that 865:such that 226:for every 181:for every 109:ring ideal 45:references 2437:Upper set 2374:Embedding 2310:Antichain 2131:Tolerance 2121:Symmetric 2116:Semiorder 2062:Reflexive 1980:Connected 1499:0801.0751 993:for some 784:An ideal 703:∖ 649:∧ 597:≤ 576:A subset 501:↓ 422:∧ 402:∨ 385:lower set 349:∨ 303:≤ 221:lower set 176:non-empty 148:≤ 127:A subset 70:June 2017 2232:Topology 2099:Preorder 2082:Eulerian 2045:Complete 1995:Directed 1985:Covering 1850:Preorder 1809:Category 1804:Glossary 1729:16587931 1679:16587875 1567:(2002). 1310:See also 1220:, whose 1122:∧ 1114:∨ 1091:∨ 1076:∨ 1061:∨ 1039:∨ 997:∈ 989:∨ 959:∨ 925:∧ 871:disjoint 683:∈ 673:∈ 530:∈ 280:lattices 2337:Duality 2315:Cofinal 2303:Related 2282:FrĂ©chet 2159:)  2035:Bounded 2030:Lattice 2003:)  2001:Partial 1869:Results 1840:Lattice 1720:1076539 1697:Bibcode 1670:1076376 1647:Bibcode 1608:1694820 1295:and of 1275:History 1264:compact 942:are in 739:infimum 324:suprema 266: ( 215: ( 58:improve 2362:Subnet 2342:Filter 2292:Normed 2277:Banach 2243:& 2150:Better 2087:Strict 2077:Graded 1968:topics 1799:Topics 1727:  1717:  1677:  1667:  1606:  1596:  1577:  1552:  1460:, 2002 1393:  1363:p. 141 1128:is in 1066:is in 800:ideal 798:proper 747:is in 721:For a 460:proper 439:filter 211:is in 163:is an 47:, but 2352:Ideal 2330:Graph 2126:Total 2104:Total 1990:Dense 1494:arXiv 1482:(PDF) 1346:Notes 1304:Frink 1034:with 897:Proof 873:from 788:is a 623:, and 473:is a 437:is a 414:with 270:is a 219:is a 165:ideal 101:ideal 99:, an 1943:list 1725:PMID 1675:PMID 1594:ISBN 1575:ISBN 1550:ISBN 1514:and 1391:ISBN 1256:dcpo 1253:free 1224:are 1085:and 977:= { 938:nor 916:and 850:and 842:and 630:and 481:and 451:and 392:dual 390:The 256:and 189:and 174:is 2357:Net 2157:Pre 1747:doi 1715:PMC 1705:doi 1665:PMC 1655:doi 1622:AMS 1291:of 1212:In 1148:of 1052:in 1044:in 1030:in 950:in 930:in 869:is 830:, ¬ 678:or 664:in 634:of 526:= { 364:of 334:in 242:in 234:in 193:in 185:in 111:of 92:In 2459:: 1743:61 1741:, 1723:, 1713:, 1703:, 1693:21 1691:, 1673:, 1663:, 1653:, 1643:20 1641:, 1620:, 1604:MR 1602:, 1488:, 1484:, 1456:, 1405:^ 1389:. 1361:, 1306:. 985:≤ 981:| 954:, 854:. 638:, 544:. 538:≤ 534:| 522:↓ 466:. 447:, 441:. 372:. 330:, 274:). 261:≤ 251:≤ 230:, 223:), 202:≤ 197:, 119:. 2155:( 2152:) 2148:( 1999:( 1946:) 1780:e 1773:t 1766:v 1749:: 1707:: 1699:: 1657:: 1649:: 1583:. 1558:. 1496:: 1490:1 1399:. 1387:3 1367:X 1260:P 1249:P 1245:P 1190:M 1182:M 1174:F 1170:M 1166:a 1162:b 1158:F 1154:b 1150:M 1146:n 1142:n 1138:M 1134:M 1130:F 1126:) 1124:b 1120:a 1116:n 1112:m 1110:( 1106:F 1102:F 1097:a 1093:n 1089:m 1087:( 1082:b 1078:n 1074:m 1072:( 1068:F 1063:b 1059:n 1054:M 1050:n 1046:F 1041:a 1037:m 1032:M 1028:m 1021:M 1017:M 1013:M 1009:F 1005:N 1001:} 999:M 995:m 991:a 987:m 983:x 979:x 975:N 970:N 966:F 961:a 957:m 952:M 948:m 944:M 940:b 936:a 932:M 927:b 923:a 918:b 914:a 910:M 906:F 902:M 891:M 887:F 883:I 879:M 875:F 867:I 863:F 859:I 836:a 832:a 828:a 810:F 806:I 802:J 786:I 759:I 755:A 750:I 744:A 735:I 706:I 700:P 688:. 685:I 681:y 675:I 671:x 666:I 652:y 646:x 636:P 632:y 628:x 621:P 617:I 600:) 594:, 591:P 588:( 578:I 571:s 542:} 540:p 536:x 532:P 528:x 524:p 518:p 504:p 483:p 471:p 464:P 425:, 381:P 370:I 366:P 352:y 346:x 336:I 332:y 328:x 306:) 300:, 297:P 294:( 284:I 268:I 263:z 259:y 253:z 249:x 244:I 240:z 236:I 232:y 228:x 217:I 213:I 209:y 204:x 200:y 195:P 191:y 187:I 183:x 178:, 172:I 151:) 145:, 142:P 139:( 129:I 83:) 77:( 72:) 68:( 54:. 20:)

Index

Ideal (lattice theory)
references
inline citations
improve
introducing
Learn how and when to remove this message
mathematical
order theory
partially ordered set
ring ideal
abstract algebra
lattice theory
non-empty
lower set
directed set
lattices
if and only if
suprema
lower set
dual
filter
Frink ideals
pseudoideals
Doyle pseudoideals
Frink ideal
complete lattice
infimum
Zermelo–Fraenkel set theory
axiom of choice
prime ideal theorems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑