Knowledge

Coherence (physics)

Source 📝

1977: 1959: 1931: 1913: 1945: 1003: 2101: 1521: 1976: 2093: 4380: 901:
constant. If, when they are combined, they exhibit perfect constructive interference, perfect destructive interference, or something in-between but with constant phase difference, then it follows that they are perfectly coherent. As will be discussed below, the second wave need not be a separate entity. It could be the first wave at a different time or position. In this case, the measure of correlation is the
2057:, has large spatial coherence because antennas at opposite ends of the array emit with a fixed phase-relationship. Light waves produced by a laser often have high temporal and spatial coherence (though the degree of coherence depends strongly on the exact properties of the laser). Spatial coherence of laser beams also manifests itself as speckle patterns and diffraction fringes seen at the edges of shadow. 1958: 1457: 87: 1055: 1146:, at any pair of times. Temporal coherence tells us how monochromatic a source is. In other words, it characterizes how well a wave can interfere with itself at a different time. The delay over which the phase or amplitude wanders by a significant amount (and hence the correlation decreases by significant amount) is defined as the 1516:. At any particular time the red and green waves are uncorrelated; one oscillates while the other is constant and so there will be no interference at this delay. Another way of looking at this is the wavepackets are not overlapped in time and so at any particular time there is only one nonzero field so no interference can occur. 2300:, which is the direction in which the electric or magnetic field oscillates. Unpolarized light is composed of incoherent light waves with random polarization angles. The electric field of the unpolarized light wanders in every direction and changes in phase over the coherence time of the two light waves. An absorbing 1686:
in the extent of a wave to interfere when averaged over time. More precisely, the spatial coherence is the cross-correlation between two points in a wave for all times. If a wave has only 1 value of amplitude over an infinite length, it is perfectly spatially coherent. The range of separation between
900:
function. Cross-correlation quantifies the ability to predict the phase of the second wave by knowing the phase of the first. As an example, consider two waves perfectly correlated for all times (by using a monochromatic light source). At any time, the phase difference between the two waves will be
2401:
are examples of highly coherent quantum systems whose effects are evident at the macroscopic scale. The macroscopic quantum coherence (off-diagonal long-range order, ODLRO) for superfluidity, and laser light, is related to first-order (1-body) coherence/ODLRO, while superconductivity is related to
1524:
Figure 4: The time-averaged intensity (blue) detected at the output of an interferometer plotted as a function of delay τ for the example waves in Figures 2 and 3. As the delay is changed by half a period, the interference switches between constructive and destructive. The black lines indicate the
2349:
with atoms in place of light waves, a sufficiently collimated atomic beam creates a coherent atomic wave-function illuminating both slits. Each slit acts as a separate but in-phase beam contributing to the intensity pattern on a screen. These two contributions give rise to an intensity pattern of
2307:
If the electric field wanders by a smaller amount the light will be partially polarized so that at some angle, the polarizer will transmit more than half the intensity. If a wave is combined with an orthogonally polarized copy of itself delayed by less than the coherence time, partially polarized
993:
of the light. Most of the concepts involving coherence which will be introduced below were developed in the field of optics and then used in other fields. Therefore, many of the standard measurements of coherence are indirect measurements, even in fields where the wave can be measured directly.
2353:
As with light, transverse coherence (across the direction of propagation) of matter waves is controlled by collimation. Because light, at all frequencies, travels the same velocity, longitudinal and temporal coherence are linked; in matter waves these are independent. In matter waves, velocity
607:
signals, respectively. For instance, if the signals are functions of time, the cross-correlation is a measure of the similarity of the two signals as a function of the time lag relative to each other and the autocorrelation is a measure of the similarity of each signal with itself in different
90:
Two slits illuminated by one source show an interference pattern. The source is far to the left in the diagram, behind collimators that create a parallel beam. This combination ensures that a wave from the source strikes both slits at the same part of the wave cycle: the wave will have
1998:
Consider a tungsten light-bulb filament. Different points in the filament emit light independently and have no fixed phase-relationship. In detail, at any point in time the profile of the emitted light is going to be distorted. The profile will change randomly over the coherence time
1983:
Figure 9: A wave with infinite coherence area is combined with a spatially shifted copy of itself. Some sections in the wave interfere constructively and some will interfere destructively. Averaging over these sections, a detector with length D will measure reduced
666:
are functions of space, the cross-correlation measures the similarity of two signals in different points in space and the autocorrelations the similarity of the signal relative to itself for a certain separation distance. In that case, coherence is a function of
134:, if the space between the two slits is increased, the coherence dies gradually and finally the fringes disappear, showing spatial coherence. In both cases, the fringe amplitude slowly disappears, as the path difference increases past the coherence length. 2083:
state, can be made to flow and behave as a coherent beam as occurs in a laser. Moreover, the coherence properties of the output light from multimode nonlinear optical structures were found to obey the optical thermodynamic theory.
2425:
and co-workers constructed an operational formulation of quantum coherence as a resource theory. They introduced coherence monotones analogous to the entanglement monotones. Quantum coherence has been shown to be equivalent to
1585:. Since for most natural light sources, the coherence time is much shorter than the time resolution of any detector, the detector itself does the time averaging. Consider the example shown in Figure 3. At a fixed delay, here 1436:
Finally, white light, which has a very broad range of frequencies, is a wave which varies quickly in both amplitude and phase. Since it consequently has a very short coherence time (just 10 periods or so), it is often called
407: 1894: 2279: 130:, when one of the mirrors is moved away gradually from the beam-splitter, the time for the beam to travel increases and the fringes become dull and finally disappear, showing temporal coherence. Similarly, in a 2988:
a copy of the red wave; both are monochromatic waves with slightly different frequencies. A proper figure would be a combination of a chirp wave and its delayed copy to match the figure and the current figure
2315:. For polarized light the end of the vector lies on the surface of the sphere, whereas the vector has zero length for unpolarized light. The vector for partially polarized light lies within the sphere. 78:
is given by means of correlation functions. More generally, coherence describes the statistical similarity of a field (electromagnetic field, quantum wave packet etc.) at two points in space or time.
2370:
creation of uniquely quantum coherence analysis. Classical optical coherence becomes a classical limit for first-order quantum coherence; higher degree of coherence leads to many phenomena in
2350:
bright bands due to constructive interference, interlaced with dark bands due to destructive interference, on a downstream screen. Many variations of this experiment have been demonstrated.
728: 1930: 2506:
Coherence is used to check the quality of the transfer functions (FRFs) being measured. Low coherence can be caused by poor signal to noise ratio, and/or inadequate frequency resolution.
1380: 1237: 985:
In system with macroscopic waves, one can measure the wave directly. Consequently, its correlation with another wave can simply be calculated. However, in optics one cannot measure the
2333:, wave interference, relies on coherence. While initially patterned after optical coherence, the theory and experimental understanding of quantum coherence greatly expanded the topic. 2198: 1774:
is the relevant type of coherence for the Young's double-slit interferometer. It is also used in optical imaging systems and particularly in various types of astronomy telescopes.
1662: 1411:
LEDs are characterized by Δλ ≈ 50 nm, and tungsten filament lights exhibit Δλ ≈ 600 nm, so these sources have shorter coherence times than the most monochromatic lasers.
828: 778: 1944: 1487: 1338: 1298: 1176: 1085: 2488: 2248: 888:
the output, the coherence function will be unitary all over the spectrum. However, if non-linearities are present in the system the coherence will vary in the limit given above.
3039:
Hodgman, S. S.; Dall, R. G.; Manning, A. G.; Baldwin, K. G. H.; Truscott, A. G. (2011). "Direct Measurement of Long-Range Third-Order Coherence in Bose-Einstein Condensates".
1824: 1772: 1743: 1714: 1269: 1969:
out of the pinhole. Far from the pinhole the emerging spherical wavefronts are approximately flat. The coherence area is now infinite while the coherence length is unchanged.
3609: 1118:
the wave can interfere perfectly with its delayed copy. But, since half the time the red and green waves are in phase and half the time out of phase, when averaged over
2064:, produced successful holograms more than ten years before lasers were invented. To produce coherent light he passed the monochromatic light from an emission line of a 2051: 2024: 531: 492: 449: 2160: 2137: 1672:
In some systems, such as water waves or optics, wave-like states can extend over one or two dimensions. Spatial coherence describes the ability for two spatial points
1423:
A wave containing only a single frequency (monochromatic) is perfectly correlated with itself at all time delays, in accordance with the above relation. (See Figure 1)
1202: 1606: 1510: 1112: 4177: 1912: 1829: 1630: 1583: 1559: 1144: 1048: 1028: 886: 857: 664: 635: 593: 564: 266: 237: 67:. Constructive or destructive interference are limit cases, and two waves always interfere, even if the result of the addition is complicated or not remarkable. 3810: 1795: 1433:) of waves, which naturally have a broad range of frequencies, also have a short coherence time since the amplitude of the wave changes quickly. (See Figure 3) 74:, which looks at the size of the interference fringes relative to the input waves (as the phase offset is varied); a precise mathematical definition of the 2430:
in the sense that coherence can be faithfully described as entanglement, and conversely that each entanglement measure corresponds to a coherence measure.
2112:). Conversely, if waves of different frequencies are not coherent, then, when combined, they create a wave that is continuous in time (e.g. white light or 2409:
The classical electromagnetic field exhibits macroscopic quantum coherence. The most obvious example is the carrier signal for radio and TV. They satisfy
2205: 2108:
Waves of different frequencies (in light these are different colours) can interfere to form a pulse if they have a fixed relative phase-relationship (see
4348: 1565:
of the light exiting the interferometer. The resulting visibility of the interference pattern (e.g. see Figure 4) gives the temporal coherence at delay
274: 1898:
Sometimes people also use "spatial coherence" to refer to the visibility when a wave-like state is combined with a spatially shifted copy of itself.
4360: 3659: 1745:, often a feature of a source, is usually an industrial term related to the coherence time of the source, not the coherence area in the medium). 4044: 3602: 3978: 3023: 2969: 2899: 2867: 2838: 2809: 2736: 2711: 2678: 2628: 1404:
can easily produce light with coherence lengths of 300 m. Not all lasers have a high monochromaticity, however (e.g. for a mode-locked
3901: 185: 123: 3632: 3595: 2275: 114:
describes the correlation (or predictable relationship) between waves at different points in space, either lateral or longitudinal.
63:) or subtract from each other to create a wave of minima which may be zero (destructive interference), depending on their relative 4424: 3742: 2543: 2402:
second-order coherence/ODLRO. (For fermions, such as electrons, only even orders of coherence/ODLRO are possible.) For bosons, a
2209: 4024: 4019: 2490:(interpretation: density of the probability amplitude). Here the applications concern, among others, the future technologies of 1989: 1538: 119: 4315: 3727: 3999: 4327: 2363: 1311:
The larger the bandwidth – range of frequencies Δf a wave contains – the faster the wave decorrelates (and hence the smaller
1303:
The coherence time is not the time duration of the signal; the coherence length differs from the coherence area (see below).
3876: 4305: 4082: 4004: 3772: 3642: 3414:
Yang, C.N. (1962). "Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors".
2386: 4039: 2403: 2080: 4404: 3973: 3968: 3939: 3637: 3123:
Selim, Mahmoud A.; Wu, Fan O.; Pyrialakos, Georgios G.; Khajavikhan, Mercedeh; Christodoulides, Demetrios (2023-03-01).
2566: 1445: 181: 4014: 103:
pattern requires that both slits be illuminated by a coherent wave as illustrated in the figure. Large sources without
4107: 2406:
is an example of a system exhibiting macroscopic quantum coherence through a multiple occupied single-particle state.
2104:
Figure 11: Spectrally incoherent light interferes to form continuous light with a randomly varying phase and amplitude
3924: 677: 3125:"Coherence properties of light in highly multimoded nonlinear parabolic fibers under optical equilibrium conditions" 2915:
Peng, J.-L.; Liu, T.-A.; Shu, R.-H. (2008). "Optical frequency counter based on two mode-locked fiber laser combs".
4419: 4383: 4145: 3953: 2830: 2620: 31: 3856: 3792: 4167: 4034: 3958: 3919: 3835: 3685: 2561: 1346: 1207: 70:
Two waves with constant relative phase will be coherent. The amount of coherence can readily be measured by the
4234: 4214: 4204: 4194: 4150: 3710: 1534: 1126:
Temporal coherence is the measure of the average correlation between the value of a wave and itself delayed by
1030:(blue). The coherence time of the wave is infinite since it is perfectly correlated with itself for all delays 138: 127: 2447:
include holography. Holographic photographs have been used as art and as difficult to forge security labels.
59:
When interfering, two waves add together to create a wave of greater amplitude than either one (constructive
4414: 4343: 3929: 3891: 3840: 2801: 2555: 2459:. In quantum mechanics for example one considers a probability field, which is related to the wave function 2271: 2168: 1985: 71: 45: 1635: 783: 733: 4254: 4029: 4009: 3934: 3830: 3787: 2346: 1463: 1314: 1274: 1152: 1061: 452: 154: 142: 131: 100: 2462: 2218: 1529:. Although the waves in Figures 2 and 3 have different time durations, they have the same coherence time. 1401: 4279: 3777: 3757: 2354:(energy) selection controls longitudinal coherence and pulsing or chopping controls temporal coherence. 1687:
the two points over which there is significant interference defines the diameter of the coherence area,
170: 118:
describes the correlation between waves observed at different moments in time. Both are observed in the
3680: 99:
Coherence controls the visibility or contrast of interference patterns. For example, visibility of the
1800: 1748: 1719: 1690: 1245: 4310: 4239: 4184: 3914: 3722: 3529: 3468: 3423: 3388: 3050: 2926: 2859: 2615: 2574: â€“ Application of quantum mechanics and theoretical chemistry to biological objects and problems 2495: 2427: 2312: 2297: 1965:
Figure 8: A wave with finite coherence area is incident on a pinhole (small aperture). The wave will
989:
directly as it oscillates much faster than any detector's time resolution. Instead, one measures the
4295: 4264: 4209: 4189: 4097: 4054: 3909: 3820: 3747: 3737: 3649: 2577: 2549: 2324: 2255: 2096:
Figure 10: Waves of different frequencies interfere to form a localized pulse if they are coherent.
1608:, an infinitely fast detector would measure an intensity that fluctuates significantly over a time 1562: 1526: 1386: 990: 201: 75: 3576: 2704:
Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
2586: â€“ Fundamental physics principle stating that physical solutions of linear systems are linear 4224: 4122: 3815: 3762: 3654: 3553: 3519: 3492: 3458: 3320: 3227: 3201: 3170: 3136: 3074: 2942: 2583: 2422: 2065: 596: 4355: 3093: 2100: 1520: 48:
from a single source always interfere. Wave sources are not strictly monochromatic: they may be
2304:
rotated to any angle will always transmit half the incident intensity when averaged over time.
2029: 2002: 1400:
have long coherence lengths (up to hundreds of meters). For example, a stabilized and monomode
1002: 497: 458: 415: 4365: 4274: 4244: 4172: 4135: 4130: 4112: 4077: 4067: 3871: 3767: 3732: 3715: 3618: 3545: 3510:
Tan, K.C.; Jeong, H. (2018). "Entanglement as the Symmetric Portion of Correlated Coherence".
3484: 3361: 3312: 3219: 3162: 3154: 3066: 3041: 3019: 2965: 2917: 2895: 2863: 2834: 2805: 2732: 2707: 2684: 2674: 2624: 2491: 2394: 2382: 2291: 2142: 2119: 2109: 1426:
Conversely, a wave whose phase drifts quickly will have a short coherence time. (See Figure 2)
1405: 1390: 942: 897: 600: 162: 60: 41: 1181: 595:, respectively. The cross-spectral density and the power spectral density are defined as the 4092: 4087: 3944: 3825: 3537: 3476: 3431: 3396: 3351: 3302: 3294: 3261: 3211: 3146: 3058: 2934: 2778: 2522: 2516: 2267: 1920: 1588: 1492: 1240: 1094: 896:
The coherence of two waves expresses how well correlated the waves are as quantified by the
534: 1615: 1568: 1544: 1129: 1033: 1013: 4409: 4322: 4249: 4229: 4199: 4162: 4157: 4062: 3886: 3124: 3103: 2571: 2537: 2528: 938: 902: 862: 833: 640: 611: 604: 569: 540: 242: 213: 189: 2053:
is small, the filament is considered a spatially incoherent source. In contrast, a radio
608:
instants of time. In this case the coherence is a function of frequency. Analogously, if
3533: 3472: 3427: 3392: 3189: 3054: 2930: 4300: 4269: 4259: 3881: 3861: 3690: 2410: 2371: 2092: 1780: 1204:
the degree of coherence is perfect, whereas it drops significantly as the delay passes
1147: 986: 3282: 2525: â€“ Distance over which a propagating wave maintains a certain degree of coherence 1460:
Figure 3: The amplitude of a wavepacket whose amplitude changes significantly in time
4398: 4219: 4072: 3963: 3866: 3782: 3752: 3705: 3266: 3249: 3174: 2946: 2398: 2367: 2076: 1541:. In these devices, a wave is combined with a copy of itself that is delayed by time 932: 918: 64: 3557: 3496: 3324: 3231: 2984:
This figure needs to be changed because, in this figure, the green wave is actually
2766: 4102: 3700: 3695: 3541: 3480: 3078: 2342: 2061: 2054: 177: 158: 1937:
Figure 6: A wave with a varying profile (wavefront) and infinite coherence length.
3379:
Penrose, O.; Onsager, L. (1956). "Bose-Einstein Condensation and Liquid Helium".
3215: 2645: 402:{\displaystyle \gamma _{xy}^{2}(f)={\frac {|S_{xy}(f)|^{2}}{S_{xx}(f)S_{yy}(f)}}} 4140: 3098: 2774: 2330: 2113: 1966: 1951:
Figure 7: A wave with a varying profile (wavefront) and finite coherence length.
1430: 1393:
of the power spectrum (the intensity of each frequency) to its autocorrelation.
971: 104: 17: 3298: 3435: 2938: 1889:{\displaystyle A_{\mathrm {c} }={\frac {\lambda ^{2}z^{2}}{A_{\mathrm {s} }}}} 1441: 961: 956: 952: 780:
it means that the signals are perfectly correlated or linearly related and if
668: 166: 165:. The property of coherence is the basis for commercial applications such as 3365: 3356: 3339: 3316: 3223: 3158: 2782: 2688: 3994: 3675: 3400: 3281:
Cronin, Alexander D.; Schmiedmayer, Jörg; Pritchard, David E. (2009-07-28).
3062: 2301: 173: 150: 3549: 3488: 3166: 3070: 2060:
Holography requires temporally and spatially coherent light. Its inventor,
1533:
In optics, temporal coherence is measured in an interferometer such as the
1058:
Figure 2: The amplitude of a wave whose phase drifts significantly in time
917:
These states are unified by the fact that their behavior is described by a
107:
or sources that mix many different frequencies will have lower visibility.
2250:) then the pulse will have the minimum time duration for its bandwidth (a 2204:
which follows from the properties of the Fourier transform and results in
1456: 3449:
Baumgratz, T.; Cramer, M.; Plenio, M.B. (2014). "Quantifying Coherence".
2706:(6. ed., reprinted (with corrections) ed.). Oxford: Pergamon Press. 1006:
Figure 1: The amplitude of a single frequency wave as a function of time
975: 3307: 2341:
The simplest extension of optical coherence applies optical concepts to
1054: 3188:
Streltsov, Alexander; Adesso, Gerardo; Plenio, Martin B. (2017-10-30).
86: 3150: 2280:
spectral phase interferometry for direct electric-field reconstruction
2498:. Additionally the problems of the following subchapter are treated. 2072: 1397: 965: 926: 830:
they are totally uncorrelated. If a linear system is being measured,
146: 3587: 1448:, in its classical version, uses light with a short coherence time. 3524: 3206: 3141: 2753:
Fundamentals of signal processing for sound and vibration engineers
2311:
The polarization of a light beam is represented by a vector in the
3463: 2558: â€“ Electromagnetic radiation with a single constant frequency 2390: 2099: 2091: 1519: 1455: 1053: 947: 85: 2671:
Introduction to the theory of coherence and polarization of light
2546: â€“ Interaction of a quantum system with a classical observer 979: 3591: 2531: â€“ Specific quantum state of a quantum harmonic oscillator 2519: â€“ Type of state of an atom-electromagnetic field system 2455:
Further applications concern the coherent superposition of
2894:(4th ed.). United States of America: Addison Wesley. 2731:(3rd ed.). Addison Wesley Longman. pp. 554–574. 2385:
quantum coherence leads to novel phenomena, the so-called
2266:
Measurement of the spectral coherence of light requires a
149:
but is now used in any field that involves waves, such as
909:). Degree of correlation involves correlation functions. 1444:
requires light with a long coherence time. In contrast,
3018:(1st ed.). Wiley-Interscience. pp. 210, 221. 2646:"Article on Coherence in the RP Photonics Encyclopedia" 2588:
Pages displaying short descriptions of redirect targets
2533:
Pages displaying short descriptions of redirect targets
2026:. Since for a white-light source such as a light-bulb 137:
Coherence was originally conceived in connection with
2465: 2221: 2215:
If the phase depends linearly on the frequency (i.e.
2171: 2145: 2122: 2032: 2005: 1832: 1803: 1783: 1751: 1722: 1693: 1638: 1618: 1591: 1571: 1547: 1495: 1466: 1349: 1317: 1307:
The relationship between coherence time and bandwidth
1277: 1248: 1210: 1184: 1155: 1132: 1097: 1064: 1036: 1016: 865: 836: 786: 736: 680: 643: 614: 572: 543: 500: 461: 418: 277: 245: 216: 3283:"Optics and interferometry with atoms and molecules" 2366:– correlation of light upon coincidence – triggered 1271:
is defined as the distance the wave travels in time
4336: 4288: 4121: 4053: 3987: 3900: 3849: 3803: 3668: 3625: 3190:"Colloquium : Quantum coherence as a resource" 2482: 2242: 2192: 2154: 2139:is limited by the spectral bandwidth of the light 2131: 2045: 2018: 1888: 1818: 1789: 1766: 1737: 1708: 1656: 1632:. In this case, to find the temporal coherence at 1624: 1600: 1577: 1553: 1504: 1481: 1374: 1332: 1292: 1263: 1231: 1196: 1170: 1138: 1106: 1079: 1042: 1022: 880: 851: 822: 772: 722: 658: 629: 587: 558: 525: 486: 443: 401: 260: 231: 1797:away from an incoherent source with surface area 1664:, one would manually time-average the intensity. 723:{\displaystyle 0\leq \gamma _{xy}^{2}(f)\leq 1} 2765:Rolf G. Winter; Aephraim M. Steinberg (2008). 2552: â€“ Theoretical problem in quantum physics 2540: â€“ The spectral linewidth of a laser beam 2208:(for quantum particles it also results in the 110:Coherence contains several distinct concepts. 3603: 2270:optical interferometer, such as an intensity 1489:(red) and a copy of the same wave delayed by 1091:(red) and a copy of the same wave delayed by 1010:(red) and a copy of the same wave delayed by 8: 3248:Adams, C.S; Sigel, M; Mlynek, J (May 1994). 2885: 2883: 2881: 2879: 52:. Beams from different sources are mutually 1375:{\displaystyle \tau _{c}\Delta f\gtrsim 1.} 3610: 3596: 3588: 2608: 2606: 2604: 1232:{\displaystyle \tau =\tau _{\mathrm {c} }} 1122:any interference disappears at this delay. 3523: 3462: 3355: 3340:"The Quantum Theory of Optical Coherence" 3306: 3265: 3205: 3140: 2673:. Cambridge: Cambridge University Press. 2472: 2464: 2220: 2170: 2144: 2121: 2037: 2031: 2010: 2004: 1877: 1876: 1865: 1855: 1848: 1838: 1837: 1831: 1809: 1808: 1802: 1782: 1757: 1756: 1750: 1728: 1727: 1721: 1699: 1698: 1692: 1647: 1646: 1637: 1617: 1590: 1570: 1546: 1494: 1472: 1471: 1465: 1354: 1348: 1323: 1322: 1316: 1283: 1282: 1276: 1254: 1253: 1247: 1222: 1221: 1209: 1183: 1161: 1160: 1154: 1131: 1096: 1070: 1069: 1063: 1035: 1015: 864: 835: 799: 791: 785: 749: 741: 735: 699: 691: 679: 642: 613: 571: 542: 505: 499: 466: 460: 423: 417: 378: 356: 344: 339: 320: 311: 308: 290: 282: 276: 244: 215: 40:expresses the potential for two waves to 3243: 3241: 2960:Christopher Gerry; Peter Knight (2005). 2494:and the already available technology of 1919:Figure 5: A plane wave with an infinite 1561:. A detector measures the time-averaged 1419:Examples of temporal coherence include: 1001: 2600: 1905: 1525:interference envelope, which gives the 126:. Once the fringes are obtained in the 3094:"Cool laser makes atoms march in time" 2580: â€“ Quantum measurement phenomenon 2193:{\displaystyle \Delta f\Delta t\geq 1} 2116:). The temporal duration of the pulse 2071:In February 2011 it was reported that 1512:(green) plotted as a function of time 2413:'s quantum description of coherence. 2254:pulse), otherwise it is chirped (see 1657:{\displaystyle 2\tau _{\mathrm {c} }} 823:{\displaystyle \gamma _{xy}^{2}(f)=0} 773:{\displaystyle \gamma _{xy}^{2}(f)=1} 674:The coherence varies in the interval 7: 2856:Elements of Optical Coherence Theory 2827:Optical Coherence and Quantum Optics 1482:{\displaystyle \tau _{\mathrm {c} }} 1333:{\displaystyle \tau _{\mathrm {c} }} 1293:{\displaystyle \tau _{\mathrm {c} }} 1171:{\displaystyle \tau _{\mathrm {c} }} 1080:{\displaystyle \tau _{\mathrm {c} }} 186:Astronomical optical interferometers 27:Potential for two waves to interfere 2483:{\displaystyle \psi (\mathbf {r} )} 2345:. For example, when performing the 2243:{\displaystyle \theta (f)\propto f} 2825:Leonard Mandel; Emil Wolf (1995). 2329:The signature property of quantum 2206:KĂŒpfmĂŒller's uncertainty principle 2178: 2172: 2146: 2123: 2088:Spectral coherence of short pulses 2068:through a pinhole spatial filter. 1878: 1839: 1810: 1758: 1729: 1700: 1648: 1473: 1389:in mathematics, which relates the 1360: 1324: 1284: 1255: 1223: 1162: 1071: 25: 2276:frequency-resolved optical gating 2262:Measurement of spectral coherence 1452:Measurement of temporal coherence 925:Waves in a rope (up and down) or 4379: 4378: 3092:Pincock, S. (25 February 2011). 2544:Measurement in quantum mechanics 2473: 2210:Heisenberg uncertainty principle 1975: 1957: 1943: 1929: 1911: 1819:{\displaystyle A_{\mathrm {s} }} 1767:{\displaystyle A_{\mathrm {c} }} 1738:{\displaystyle l_{\mathrm {c} }} 1709:{\displaystyle A_{\mathrm {c} }} 1408:, Δλ ≈ 2 nm – 70 nm). 1385:Formally, this follows from the 1264:{\displaystyle L_{\mathrm {c} }} 1114:(green). At any particular time 921:or some generalization thereof. 2417:Quantum coherence as a resource 974:associated with, for examples, 184:and telescope interferometers ( 124:Young's interference experiment 4328:Relativistic quantum mechanics 3542:10.1103/PhysRevLett.121.220401 3481:10.1103/physrevlett.113.140401 3338:Glauber, Roy J. (1963-06-15). 2964:. Cambridge University Press. 2755:. John Wiley & Sons, 2008. 2702:Born, Max; Wolf, Emil (1993). 2477: 2469: 2364:Hanbury Brown and Twiss effect 2231: 2225: 1415:Examples of temporal coherence 875: 869: 846: 840: 811: 805: 761: 755: 711: 705: 653: 647: 624: 618: 582: 576: 553: 547: 520: 514: 481: 475: 438: 432: 393: 387: 371: 365: 340: 335: 329: 312: 302: 296: 255: 249: 226: 220: 1: 4306:Quantum statistical mechanics 4083:Quantum differential calculus 4005:Delayed-choice quantum eraser 3773:Symmetry in quantum mechanics 2387:macroscopic quantum phenomena 2378:Macroscopic quantum coherence 3267:10.1016/0370-1573(94)90066-3 3216:10.1103/RevModPhys.89.041003 2567:Optical heterodyne detection 1988:. For example, a misaligned 1446:optical coherence tomography 913:Examples of wave-like states 182:optical coherence tomography 4108:Quantum stochastic calculus 4098:Quantum measurement problem 4020:Mach–Zehnder interferometer 3575:Dr. SkySkull (2008-09-03). 2962:Introductory Quantum Optics 2798:The Quantum Theory of Light 2443:Coherent superpositions of 1990:Mach–Zehnder interferometer 1539:Mach–Zehnder interferometer 929:(compression and expansion) 905:function (sometimes called 120:Michelson–Morley experiment 4441: 3577:"Optics basics: Coherence" 3299:10.1103/RevModPhys.81.1051 2831:Cambridge University Press 2621:Cambridge University Press 2322: 2289: 2286:Polarization and coherence 199: 29: 4374: 4168:Quantum complexity theory 4146:Quantum cellular automata 3836:Path integral formulation 3436:10.1103/revmodphys.34.694 3287:Reviews of Modern Physics 3194:Reviews of Modern Physics 3001:Fundamentals of Photonics 2939:10.1007/s00340-008-3111-6 2650:RP Photonics Encyclopedia 2562:Mutual coherence function 2046:{\displaystyle \tau _{c}} 2019:{\displaystyle \tau _{c}} 892:Coherence and correlation 526:{\displaystyle S_{yy}(f)} 487:{\displaystyle S_{xx}(f)} 444:{\displaystyle S_{xy}(f)} 4235:Quantum machine learning 4215:Quantum key distribution 4205:Quantum image processing 4195:Quantum error correction 4045:Wheeler's delayed choice 3357:10.1103/PhysRev.130.2529 2854:Arvind Marathay (1982). 2783:10.1036/1097-8542.146900 2613:M.Born; E. Wolf (1999). 2404:Bose–Einstein condensate 2155:{\displaystyle \Delta f} 2132:{\displaystyle \Delta t} 2081:Bose–Einstein condensate 1535:Michelson interferometer 128:Michelson interferometer 4425:Radar signal processing 4151:Quantum finite automata 3401:10.1103/physrev.104.576 3063:10.1126/science.1198481 2802:Oxford University Press 2796:Loudon, Rodney (2000). 2556:Monochromatic radiation 2457:non-optical wave fields 2451:Non-optical wave fields 1986:interference visibility 1197:{\displaystyle \tau =0} 196:Mathematical definition 72:interference visibility 4255:Quantum neural network 2890:Hecht, Eugene (2002). 2484: 2347:double-slit experiment 2244: 2194: 2156: 2133: 2105: 2097: 2075:atoms, cooled to near 2047: 2020: 1890: 1820: 1791: 1768: 1739: 1710: 1658: 1626: 1602: 1601:{\displaystyle 2\tau } 1579: 1555: 1530: 1517: 1506: 1505:{\displaystyle 2\tau } 1483: 1376: 1334: 1294: 1265: 1233: 1198: 1172: 1140: 1123: 1108: 1107:{\displaystyle 2\tau } 1087:as a function of time 1081: 1051: 1044: 1024: 882: 853: 824: 774: 724: 660: 631: 589: 560: 527: 488: 453:cross-spectral density 445: 403: 262: 233: 155:electrical engineering 143:double-slit experiment 132:double-slit experiment 101:double slit experiment 96: 4280:Quantum teleportation 3793:Wave–particle duality 2860:John Wiley & Sons 2485: 2362:The discovery of the 2337:Matter wave coherence 2323:Further information: 2290:Further information: 2245: 2195: 2157: 2134: 2103: 2095: 2048: 2021: 1891: 1821: 1792: 1769: 1740: 1711: 1659: 1627: 1625:{\displaystyle \tau } 1603: 1580: 1578:{\displaystyle \tau } 1556: 1554:{\displaystyle \tau } 1523: 1507: 1484: 1459: 1377: 1335: 1295: 1266: 1234: 1199: 1173: 1141: 1139:{\displaystyle \tau } 1109: 1082: 1057: 1045: 1043:{\displaystyle \tau } 1025: 1023:{\displaystyle \tau } 1005: 883: 854: 825: 775: 725: 671:(spatial frequency). 661: 632: 590: 561: 528: 489: 446: 404: 263: 234: 200:Further information: 89: 4311:Quantum field theory 4240:Quantum metamaterial 4185:Quantum cryptography 3915:Consistent histories 2751:Shin. K, Hammond. J. 2644:Rudiger, Paschotta. 2616:Principles of Optics 2496:quantum cryptography 2463: 2428:quantum entanglement 2389:. For instance, the 2219: 2169: 2143: 2120: 2030: 2003: 1830: 1801: 1781: 1749: 1720: 1691: 1636: 1616: 1589: 1569: 1545: 1493: 1464: 1347: 1315: 1275: 1246: 1208: 1182: 1153: 1130: 1095: 1062: 1034: 1014: 941:signals (fields) in 881:{\displaystyle y(t)} 863: 859:being the input and 852:{\displaystyle x(t)} 834: 784: 734: 678: 659:{\displaystyle y(t)} 641: 630:{\displaystyle x(t)} 612: 588:{\displaystyle y(t)} 570: 559:{\displaystyle x(t)} 541: 498: 459: 416: 275: 261:{\displaystyle y(t)} 243: 232:{\displaystyle x(t)} 214: 210:between two signals 30:For other uses, see 4405:Concepts in physics 4296:Quantum fluctuation 4265:Quantum programming 4225:Quantum logic gates 4210:Quantum information 4190:Quantum electronics 3650:Classical mechanics 3581:Skulls in the Stars 3534:2018PhRvL.121v0401T 3473:2014PhRvL.113n0401B 3428:1962RvMP...34..694Y 3393:1956PhRv..104..576P 3055:2011Sci...331.1046H 3049:(6020): 1046–1049. 2931:2008ApPhB..92..513P 2669:Wolf, Emil (2007). 2578:Quantum Zeno effect 2550:Measurement problem 2445:optical wave fields 2325:Quantum decoherence 1527:degree of coherence 1429:Similarly, pulses ( 1387:convolution theorem 804: 754: 704: 295: 202:Degree of coherence 82:Qualitative concept 76:degree of coherence 46:monochromatic beams 4349:in popular culture 4131:Quantum algorithms 3979:Von Neumann–Wigner 3959:Objective collapse 3655:Old quantum theory 3016:Statistical Optics 2584:Wave superposition 2480: 2308:light is created. 2272:optical correlator 2240: 2190: 2152: 2129: 2106: 2098: 2066:mercury-vapor lamp 2043: 2016: 1886: 1816: 1787: 1764: 1735: 1716:(Coherence length 1706: 1654: 1622: 1598: 1575: 1551: 1531: 1518: 1502: 1479: 1372: 1330: 1290: 1261: 1229: 1194: 1168: 1136: 1124: 1104: 1077: 1052: 1040: 1020: 998:Temporal coherence 943:transmission lines 878: 849: 820: 787: 770: 737: 720: 687: 656: 627: 597:Fourier transforms 585: 556: 523: 484: 455:of the signal and 441: 399: 278: 258: 229: 208:coherence function 116:Temporal coherence 97: 4420:Quantum mechanics 4392: 4391: 4366:Quantum mysticism 4344:Schrödinger's cat 4275:Quantum simulator 4245:Quantum metrology 4173:Quantum computing 4136:Quantum amplifier 4113:Quantum spacetime 4078:Quantum cosmology 4068:Quantum chemistry 3768:Scattering theory 3716:Zero-point energy 3711:Degenerate levels 3619:Quantum mechanics 3151:10.1364/OL.483282 3025:978-0-471-01502-4 2971:978-0-521-52735-4 2918:Applied Physics B 2901:978-0-8053-8566-3 2869:978-0-471-56789-9 2840:978-0-521-41711-2 2811:978-0-19-850177-0 2738:978-0-201-83887-9 2713:978-0-08-026481-3 2680:978-0-521-82211-4 2630:978-0-521-64222-4 2492:quantum computing 2395:superconductivity 2383:Macroscopic scale 2319:Quantum coherence 2296:Light also has a 2292:Unpolarized light 2252:transform-limited 2110:Fourier transform 1993: 1970: 1952: 1938: 1924: 1907:Spatial coherence 1884: 1790:{\displaystyle z} 1668:Spatial coherence 1406:Ti-sapphire laser 1402:helium–neon laser 1396:Narrow bandwidth 1391:Fourier transform 898:cross-correlation 601:cross-correlation 397: 163:quantum mechanics 112:Spatial coherence 16:(Redirected from 4432: 4382: 4381: 4093:Quantum geometry 4088:Quantum dynamics 3945:Superdeterminism 3877:Rarita–Schwinger 3826:Matrix mechanics 3681:Bra–ket notation 3612: 3605: 3598: 3589: 3584: 3562: 3561: 3527: 3507: 3501: 3500: 3466: 3446: 3440: 3439: 3411: 3405: 3404: 3376: 3370: 3369: 3359: 3350:(6): 2529–2539. 3335: 3329: 3328: 3310: 3293:(3): 1051–1129. 3278: 3272: 3271: 3269: 3245: 3236: 3235: 3209: 3185: 3179: 3178: 3144: 3135:(5): 1208–1211. 3120: 3114: 3113: 3111: 3110: 3089: 3083: 3082: 3036: 3030: 3029: 3014:Goodman (1985). 3011: 3005: 3004: 2996: 2990: 2982: 2976: 2975: 2957: 2951: 2950: 2912: 2906: 2905: 2887: 2874: 2873: 2851: 2845: 2844: 2822: 2816: 2815: 2793: 2787: 2786: 2762: 2756: 2749: 2743: 2742: 2724: 2718: 2717: 2699: 2693: 2692: 2666: 2660: 2659: 2657: 2656: 2641: 2635: 2634: 2619:(7th ed.). 2610: 2589: 2534: 2523:Coherence length 2517:Atomic coherence 2489: 2487: 2486: 2481: 2476: 2249: 2247: 2246: 2241: 2199: 2197: 2196: 2191: 2161: 2159: 2158: 2153: 2138: 2136: 2135: 2130: 2052: 2050: 2049: 2044: 2042: 2041: 2025: 2023: 2022: 2017: 2015: 2014: 1982: 1979: 1964: 1961: 1950: 1947: 1936: 1933: 1921:coherence length 1918: 1915: 1895: 1893: 1892: 1887: 1885: 1883: 1882: 1881: 1871: 1870: 1869: 1860: 1859: 1849: 1844: 1843: 1842: 1825: 1823: 1822: 1817: 1815: 1814: 1813: 1796: 1794: 1793: 1788: 1773: 1771: 1770: 1765: 1763: 1762: 1761: 1744: 1742: 1741: 1736: 1734: 1733: 1732: 1715: 1713: 1712: 1707: 1705: 1704: 1703: 1663: 1661: 1660: 1655: 1653: 1652: 1651: 1631: 1629: 1628: 1623: 1607: 1605: 1604: 1599: 1584: 1582: 1581: 1576: 1560: 1558: 1557: 1552: 1511: 1509: 1508: 1503: 1488: 1486: 1485: 1480: 1478: 1477: 1476: 1381: 1379: 1378: 1373: 1359: 1358: 1339: 1337: 1336: 1331: 1329: 1328: 1327: 1299: 1297: 1296: 1291: 1289: 1288: 1287: 1270: 1268: 1267: 1262: 1260: 1259: 1258: 1241:coherence length 1238: 1236: 1235: 1230: 1228: 1227: 1226: 1203: 1201: 1200: 1195: 1178:. At a delay of 1177: 1175: 1174: 1169: 1167: 1166: 1165: 1145: 1143: 1142: 1137: 1113: 1111: 1110: 1105: 1086: 1084: 1083: 1078: 1076: 1075: 1074: 1049: 1047: 1046: 1041: 1029: 1027: 1026: 1021: 887: 885: 884: 879: 858: 856: 855: 850: 829: 827: 826: 821: 803: 798: 779: 777: 776: 771: 753: 748: 729: 727: 726: 721: 703: 698: 665: 663: 662: 657: 636: 634: 633: 628: 594: 592: 591: 586: 565: 563: 562: 557: 535:spectral density 532: 530: 529: 524: 513: 512: 493: 491: 490: 485: 474: 473: 450: 448: 447: 442: 431: 430: 408: 406: 405: 400: 398: 396: 386: 385: 364: 363: 350: 349: 348: 343: 328: 327: 315: 309: 294: 289: 267: 265: 264: 259: 238: 236: 235: 230: 190:radio telescopes 21: 18:Incoherent light 4440: 4439: 4435: 4434: 4433: 4431: 4430: 4429: 4395: 4394: 4393: 4388: 4370: 4356:Wigner's friend 4332: 4323:Quantum gravity 4284: 4270:Quantum sensing 4250:Quantum network 4230:Quantum machine 4200:Quantum imaging 4163:Quantum circuit 4158:Quantum channel 4117: 4063:Quantum biology 4049: 4025:Elitzur–Vaidman 4000:Davisson–Germer 3983: 3935:Hidden-variable 3925:de Broglie–Bohm 3902:Interpretations 3896: 3845: 3799: 3686:Complementarity 3664: 3621: 3616: 3574: 3571: 3566: 3565: 3512:Phys. Rev. Lett 3509: 3508: 3504: 3451:Phys. Rev. Lett 3448: 3447: 3443: 3413: 3412: 3408: 3378: 3377: 3373: 3344:Physical Review 3337: 3336: 3332: 3280: 3279: 3275: 3254:Physics Reports 3247: 3246: 3239: 3187: 3186: 3182: 3122: 3121: 3117: 3108: 3106: 3104:ABC News Online 3091: 3090: 3086: 3038: 3037: 3033: 3026: 3013: 3012: 3008: 2998: 2997: 2993: 2983: 2979: 2972: 2959: 2958: 2954: 2914: 2913: 2909: 2902: 2889: 2888: 2877: 2870: 2853: 2852: 2848: 2841: 2824: 2823: 2819: 2812: 2795: 2794: 2790: 2764: 2763: 2759: 2750: 2746: 2739: 2726: 2725: 2721: 2714: 2701: 2700: 2696: 2681: 2668: 2667: 2663: 2654: 2652: 2643: 2642: 2638: 2631: 2612: 2611: 2602: 2597: 2592: 2587: 2572:Quantum biology 2538:Laser linewidth 2532: 2529:Coherent states 2512: 2504: 2461: 2460: 2453: 2441: 2436: 2419: 2380: 2360: 2339: 2327: 2321: 2313:PoincarĂ© sphere 2294: 2288: 2264: 2217: 2216: 2167: 2166: 2141: 2140: 2118: 2117: 2090: 2033: 2028: 2027: 2006: 2001: 2000: 1994: 1980: 1971: 1962: 1953: 1948: 1939: 1934: 1925: 1916: 1904: 1872: 1861: 1851: 1850: 1833: 1828: 1827: 1804: 1799: 1798: 1779: 1778: 1752: 1747: 1746: 1723: 1718: 1717: 1694: 1689: 1688: 1684: 1677: 1670: 1642: 1634: 1633: 1614: 1613: 1587: 1586: 1567: 1566: 1543: 1542: 1491: 1490: 1467: 1462: 1461: 1454: 1417: 1350: 1345: 1344: 1318: 1313: 1312: 1309: 1278: 1273: 1272: 1249: 1244: 1243: 1217: 1206: 1205: 1180: 1179: 1156: 1151: 1150: 1128: 1127: 1093: 1092: 1065: 1060: 1059: 1032: 1031: 1012: 1011: 1000: 939:Electromagnetic 915: 903:autocorrelation 894: 861: 860: 832: 831: 782: 781: 732: 731: 676: 675: 639: 638: 610: 609: 605:autocorrelation 568: 567: 539: 538: 501: 496: 495: 462: 457: 456: 419: 414: 413: 374: 352: 351: 338: 316: 310: 273: 272: 241: 240: 212: 211: 204: 198: 84: 50:partly coherent 35: 28: 23: 22: 15: 12: 11: 5: 4438: 4436: 4428: 4427: 4422: 4417: 4415:Wave mechanics 4412: 4407: 4397: 4396: 4390: 4389: 4387: 4386: 4375: 4372: 4371: 4369: 4368: 4363: 4358: 4353: 4352: 4351: 4340: 4338: 4334: 4333: 4331: 4330: 4325: 4320: 4319: 4318: 4308: 4303: 4301:Casimir effect 4298: 4292: 4290: 4286: 4285: 4283: 4282: 4277: 4272: 4267: 4262: 4260:Quantum optics 4257: 4252: 4247: 4242: 4237: 4232: 4227: 4222: 4217: 4212: 4207: 4202: 4197: 4192: 4187: 4182: 4181: 4180: 4170: 4165: 4160: 4155: 4154: 4153: 4143: 4138: 4133: 4127: 4125: 4119: 4118: 4116: 4115: 4110: 4105: 4100: 4095: 4090: 4085: 4080: 4075: 4070: 4065: 4059: 4057: 4051: 4050: 4048: 4047: 4042: 4037: 4035:Quantum eraser 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3991: 3989: 3985: 3984: 3982: 3981: 3976: 3971: 3966: 3961: 3956: 3951: 3950: 3949: 3948: 3947: 3932: 3927: 3922: 3917: 3912: 3906: 3904: 3898: 3897: 3895: 3894: 3889: 3884: 3879: 3874: 3869: 3864: 3859: 3853: 3851: 3847: 3846: 3844: 3843: 3838: 3833: 3828: 3823: 3818: 3813: 3807: 3805: 3801: 3800: 3798: 3797: 3796: 3795: 3790: 3780: 3775: 3770: 3765: 3760: 3755: 3750: 3745: 3740: 3735: 3730: 3725: 3720: 3719: 3718: 3713: 3708: 3703: 3693: 3691:Density matrix 3688: 3683: 3678: 3672: 3670: 3666: 3665: 3663: 3662: 3657: 3652: 3647: 3646: 3645: 3635: 3629: 3627: 3623: 3622: 3617: 3615: 3614: 3607: 3600: 3592: 3586: 3585: 3570: 3569:External links 3567: 3564: 3563: 3518:(22): 220401. 3502: 3457:(14): 140401. 3441: 3422:(4): 694–704. 3416:Rev. Mod. Phys 3406: 3387:(3): 576–584. 3371: 3330: 3273: 3260:(3): 143–210. 3237: 3180: 3129:Optics Letters 3115: 3084: 3031: 3024: 3006: 2999:Saleh, Teich. 2991: 2977: 2970: 2952: 2907: 2900: 2875: 2868: 2846: 2839: 2817: 2810: 2788: 2757: 2744: 2737: 2727:Hecht (1998). 2719: 2712: 2694: 2679: 2661: 2636: 2629: 2599: 2598: 2596: 2593: 2591: 2590: 2581: 2575: 2569: 2564: 2559: 2553: 2547: 2541: 2535: 2526: 2520: 2513: 2511: 2508: 2503: 2502:Modal analysis 2500: 2479: 2475: 2471: 2468: 2452: 2449: 2440: 2437: 2435: 2432: 2418: 2415: 2379: 2376: 2372:quantum optics 2359: 2358:Quantum optics 2356: 2338: 2335: 2320: 2317: 2287: 2284: 2263: 2260: 2239: 2236: 2233: 2230: 2227: 2224: 2202: 2201: 2189: 2186: 2183: 2180: 2177: 2174: 2162:according to: 2151: 2148: 2128: 2125: 2089: 2086: 2040: 2036: 2013: 2009: 1996: 1995: 1981: 1974: 1972: 1963: 1956: 1954: 1949: 1942: 1940: 1935: 1928: 1926: 1917: 1910: 1908: 1903: 1900: 1880: 1875: 1868: 1864: 1858: 1854: 1847: 1841: 1836: 1812: 1807: 1786: 1760: 1755: 1731: 1726: 1702: 1697: 1682: 1675: 1669: 1666: 1650: 1645: 1641: 1621: 1597: 1594: 1574: 1550: 1501: 1498: 1475: 1470: 1453: 1450: 1439: 1438: 1434: 1427: 1424: 1416: 1413: 1383: 1382: 1371: 1368: 1365: 1362: 1357: 1353: 1326: 1321: 1308: 1305: 1286: 1281: 1257: 1252: 1225: 1220: 1216: 1213: 1193: 1190: 1187: 1164: 1159: 1148:coherence time 1135: 1103: 1100: 1073: 1068: 1039: 1019: 999: 996: 987:electric field 983: 982: 969: 959: 950: 945: 936: 930: 914: 911: 907:self-coherence 893: 890: 877: 874: 871: 868: 848: 845: 842: 839: 819: 816: 813: 810: 807: 802: 797: 794: 790: 769: 766: 763: 760: 757: 752: 747: 744: 740: 719: 716: 713: 710: 707: 702: 697: 694: 690: 686: 683: 655: 652: 649: 646: 626: 623: 620: 617: 584: 581: 578: 575: 555: 552: 549: 546: 533:are the power 522: 519: 516: 511: 508: 504: 483: 480: 477: 472: 469: 465: 440: 437: 434: 429: 426: 422: 410: 409: 395: 392: 389: 384: 381: 377: 373: 370: 367: 362: 359: 355: 347: 342: 337: 334: 331: 326: 323: 319: 314: 307: 304: 301: 298: 293: 288: 285: 281: 268:is defined as 257: 254: 251: 248: 228: 225: 222: 219: 197: 194: 178:antenna arrays 83: 80: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4437: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4402: 4400: 4385: 4377: 4376: 4373: 4367: 4364: 4362: 4359: 4357: 4354: 4350: 4347: 4346: 4345: 4342: 4341: 4339: 4335: 4329: 4326: 4324: 4321: 4317: 4314: 4313: 4312: 4309: 4307: 4304: 4302: 4299: 4297: 4294: 4293: 4291: 4287: 4281: 4278: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4220:Quantum logic 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4179: 4176: 4175: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4152: 4149: 4148: 4147: 4144: 4142: 4139: 4137: 4134: 4132: 4129: 4128: 4126: 4124: 4120: 4114: 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4073:Quantum chaos 4071: 4069: 4066: 4064: 4061: 4060: 4058: 4056: 4052: 4046: 4043: 4041: 4040:Stern–Gerlach 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3992: 3990: 3986: 3980: 3977: 3975: 3974:Transactional 3972: 3970: 3967: 3965: 3964:Quantum logic 3962: 3960: 3957: 3955: 3952: 3946: 3943: 3942: 3941: 3938: 3937: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3907: 3905: 3903: 3899: 3893: 3890: 3888: 3885: 3883: 3880: 3878: 3875: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3854: 3852: 3848: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3808: 3806: 3802: 3794: 3791: 3789: 3786: 3785: 3784: 3783:Wave function 3781: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3758:Superposition 3756: 3754: 3753:Quantum state 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3717: 3714: 3712: 3709: 3707: 3706:Excited state 3704: 3702: 3699: 3698: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3673: 3671: 3667: 3661: 3658: 3656: 3653: 3651: 3648: 3644: 3641: 3640: 3639: 3636: 3634: 3631: 3630: 3628: 3624: 3620: 3613: 3608: 3606: 3601: 3599: 3594: 3593: 3590: 3582: 3578: 3573: 3572: 3568: 3559: 3555: 3551: 3547: 3543: 3539: 3535: 3531: 3526: 3521: 3517: 3513: 3506: 3503: 3498: 3494: 3490: 3486: 3482: 3478: 3474: 3470: 3465: 3460: 3456: 3452: 3445: 3442: 3437: 3433: 3429: 3425: 3421: 3417: 3410: 3407: 3402: 3398: 3394: 3390: 3386: 3382: 3375: 3372: 3367: 3363: 3358: 3353: 3349: 3345: 3341: 3334: 3331: 3326: 3322: 3318: 3314: 3309: 3304: 3300: 3296: 3292: 3288: 3284: 3277: 3274: 3268: 3263: 3259: 3255: 3251: 3250:"Atom optics" 3244: 3242: 3238: 3233: 3229: 3225: 3221: 3217: 3213: 3208: 3203: 3200:(4): 041003. 3199: 3195: 3191: 3184: 3181: 3176: 3172: 3168: 3164: 3160: 3156: 3152: 3148: 3143: 3138: 3134: 3130: 3126: 3119: 3116: 3105: 3101: 3100: 3095: 3088: 3085: 3080: 3076: 3072: 3068: 3064: 3060: 3056: 3052: 3048: 3044: 3043: 3035: 3032: 3027: 3021: 3017: 3010: 3007: 3002: 2995: 2992: 2987: 2981: 2978: 2973: 2967: 2963: 2956: 2953: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2919: 2911: 2908: 2903: 2897: 2893: 2886: 2884: 2882: 2880: 2876: 2871: 2865: 2861: 2857: 2850: 2847: 2842: 2836: 2832: 2828: 2821: 2818: 2813: 2807: 2803: 2799: 2792: 2789: 2784: 2780: 2776: 2772: 2771:AccessScience 2768: 2761: 2758: 2754: 2748: 2745: 2740: 2734: 2730: 2723: 2720: 2715: 2709: 2705: 2698: 2695: 2690: 2686: 2682: 2676: 2672: 2665: 2662: 2651: 2647: 2640: 2637: 2632: 2626: 2622: 2618: 2617: 2609: 2607: 2605: 2601: 2594: 2585: 2582: 2579: 2576: 2573: 2570: 2568: 2565: 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2530: 2527: 2524: 2521: 2518: 2515: 2514: 2509: 2507: 2501: 2499: 2497: 2493: 2466: 2458: 2450: 2448: 2446: 2438: 2433: 2431: 2429: 2424: 2416: 2414: 2412: 2407: 2405: 2400: 2399:superfluidity 2396: 2392: 2388: 2384: 2377: 2375: 2373: 2369: 2365: 2357: 2355: 2351: 2348: 2344: 2336: 2334: 2332: 2326: 2318: 2316: 2314: 2309: 2305: 2303: 2299: 2293: 2285: 2283: 2281: 2277: 2273: 2269: 2261: 2259: 2257: 2253: 2237: 2234: 2228: 2222: 2213: 2211: 2207: 2187: 2184: 2181: 2175: 2165: 2164: 2163: 2149: 2126: 2115: 2111: 2102: 2094: 2087: 2085: 2082: 2078: 2077:absolute zero 2074: 2069: 2067: 2063: 2058: 2056: 2055:antenna array 2038: 2034: 2011: 2007: 1992:will do this. 1991: 1987: 1978: 1973: 1968: 1960: 1955: 1946: 1941: 1932: 1927: 1922: 1914: 1909: 1906: 1901: 1899: 1896: 1873: 1866: 1862: 1856: 1852: 1845: 1834: 1805: 1784: 1775: 1753: 1724: 1695: 1685: 1678: 1667: 1665: 1643: 1639: 1619: 1611: 1595: 1592: 1572: 1564: 1548: 1540: 1536: 1528: 1522: 1515: 1499: 1496: 1468: 1458: 1451: 1449: 1447: 1443: 1435: 1432: 1428: 1425: 1422: 1421: 1420: 1414: 1412: 1409: 1407: 1403: 1399: 1394: 1392: 1388: 1369: 1366: 1363: 1355: 1351: 1343: 1342: 1341: 1319: 1306: 1304: 1301: 1279: 1250: 1242: 1218: 1214: 1211: 1191: 1188: 1185: 1157: 1149: 1133: 1121: 1117: 1101: 1098: 1090: 1066: 1056: 1037: 1017: 1009: 1004: 997: 995: 992: 988: 981: 977: 973: 970: 967: 963: 960: 958: 954: 951: 949: 946: 944: 940: 937: 934: 933:Surface waves 931: 928: 924: 923: 922: 920: 919:wave equation 912: 910: 908: 904: 899: 891: 889: 872: 866: 843: 837: 817: 814: 808: 800: 795: 792: 788: 767: 764: 758: 750: 745: 742: 738: 717: 714: 708: 700: 695: 692: 688: 684: 681: 672: 670: 650: 644: 621: 615: 606: 602: 598: 579: 573: 550: 544: 537:functions of 536: 517: 509: 506: 502: 478: 470: 467: 463: 454: 435: 427: 424: 420: 390: 382: 379: 375: 368: 360: 357: 353: 345: 332: 324: 321: 317: 305: 299: 291: 286: 283: 279: 271: 270: 269: 252: 246: 223: 217: 209: 203: 195: 193: 191: 187: 183: 179: 175: 172: 168: 164: 160: 156: 152: 148: 144: 140: 135: 133: 129: 125: 121: 117: 113: 108: 106: 102: 94: 88: 81: 79: 77: 73: 68: 66: 62: 57: 55: 51: 47: 43: 39: 33: 19: 4103:Quantum mind 4015:Franck–Hertz 3857:Klein–Gordon 3811:Formulations 3804:Formulations 3733:Interference 3723:Entanglement 3701:Ground state 3696:Energy level 3669:Fundamentals 3633:Introduction 3580: 3515: 3511: 3505: 3454: 3450: 3444: 3419: 3415: 3409: 3384: 3380: 3374: 3347: 3343: 3333: 3308:1721.1/52372 3290: 3286: 3276: 3257: 3253: 3197: 3193: 3183: 3132: 3128: 3118: 3107:. Retrieved 3097: 3087: 3046: 3040: 3034: 3015: 3009: 3000: 2994: 2989:description. 2985: 2980: 2961: 2955: 2922: 2916: 2910: 2891: 2855: 2849: 2826: 2820: 2797: 2791: 2770: 2760: 2752: 2747: 2728: 2722: 2703: 2697: 2670: 2664: 2653:. Retrieved 2649: 2639: 2614: 2505: 2456: 2454: 2444: 2442: 2434:Applications 2423:M. B. Plenio 2420: 2408: 2381: 2361: 2352: 2343:matter waves 2340: 2331:matter waves 2328: 2310: 2306: 2298:polarization 2295: 2265: 2251: 2214: 2203: 2107: 2070: 2062:Dennis Gabor 2059: 1997: 1897: 1776: 1680: 1673: 1671: 1609: 1532: 1513: 1440: 1431:wave packets 1418: 1410: 1395: 1384: 1310: 1302: 1125: 1119: 1115: 1088: 1007: 984: 972:Matter waves 916: 906: 895: 673: 411: 207: 205: 159:neuroscience 139:Thomas Young 136: 115: 111: 109: 98: 92: 69: 61:interference 58: 53: 49: 37: 36: 4361:EPR paradox 4141:Quantum bus 4010:Double-slit 3988:Experiments 3954:Many-worlds 3892:Schrödinger 3841:Phase space 3831:Schrödinger 3821:Interaction 3778:Uncertainty 3748:Nonlocality 3743:Measurement 3738:Decoherence 3728:Hamiltonian 3099:ABC Science 2775:McGraw-Hill 2767:"Coherence" 2278:(FROG), or 2114:white noise 1777:A distance 1437:incoherent. 962:Light waves 953:Radio waves 935:in a liquid 105:collimation 4399:Categories 4289:Extensions 4123:Technology 3969:Relational 3920:Copenhagen 3816:Heisenberg 3763:Tunnelling 3626:Background 3525:1805.10750 3207:1609.02439 3142:2212.10063 3109:2011-03-02 2925:(4): 513. 2655:2023-06-07 2595:References 2439:Holography 2282:(SPIDER). 2256:dispersion 1442:Holography 957:microwaves 669:wavenumber 167:holography 54:incoherent 3995:Bell test 3850:Equations 3676:Born rule 3464:1311.0275 3381:Phys. Rev 3366:0031-899X 3317:0034-6861 3224:0034-6861 3175:254877557 3159:1539-4794 2947:121675431 2689:149011826 2467:ψ 2421:Recently 2368:Glauber's 2302:polarizer 2268:nonlinear 2235:∝ 2223:θ 2185:≥ 2179:Δ 2173:Δ 2147:Δ 2124:Δ 2035:τ 2008:τ 1853:λ 1644:τ 1620:τ 1612:equal to 1596:τ 1573:τ 1563:intensity 1549:τ 1500:τ 1469:τ 1367:≳ 1361:Δ 1352:τ 1320:τ 1280:τ 1219:τ 1212:τ 1186:τ 1158:τ 1134:τ 1102:τ 1067:τ 1038:τ 1018:τ 991:intensity 976:electrons 789:γ 739:γ 715:≤ 689:γ 685:≤ 280:γ 174:gyroscope 151:acoustics 93:coherence 42:interfere 38:Coherence 32:Coherence 4384:Category 4178:Timeline 3930:Ensemble 3910:Bayesian 3872:Majorana 3788:Collapse 3660:Glossary 3643:Timeline 3558:51690149 3550:30547638 3497:45904642 3489:25325620 3325:28009912 3232:62899253 3167:36857250 3071:21350171 3003:. Wiley. 2510:See also 1967:diffract 1902:Examples 603:and the 176:, radio 4337:Related 4316:History 4055:Science 3887:Rydberg 3638:History 3530:Bibcode 3469:Bibcode 3424:Bibcode 3389:Bibcode 3079:5336898 3051:Bibcode 3042:Science 2927:Bibcode 2411:Glauber 599:of the 451:is the 4410:Optics 4030:Popper 3556:  3548:  3495:  3487:  3364:  3323:  3315:  3230:  3222:  3173:  3165:  3157:  3077:  3069:  3022:  2968:  2945:  2898:  2892:Optics 2866:  2837:  2808:  2735:  2729:Optics 2710:  2687:  2677:  2627:  2073:helium 1398:lasers 1239:. The 966:optics 927:slinky 412:where 171:Sagnac 169:, the 161:, and 147:optics 44:. Two 3940:Local 3882:Pauli 3862:Dirac 3554:S2CID 3520:arXiv 3493:S2CID 3459:arXiv 3321:S2CID 3228:S2CID 3202:arXiv 3171:S2CID 3137:arXiv 3075:S2CID 2943:S2CID 2391:laser 1340:is): 980:atoms 948:Sound 730:. If 65:phase 3867:Weyl 3546:PMID 3485:PMID 3362:ISSN 3313:ISSN 3220:ISSN 3163:PMID 3155:ISSN 3067:PMID 3020:ISBN 2966:ISBN 2896:ISBN 2864:ISBN 2835:ISBN 2806:ISBN 2733:ISBN 2708:ISBN 2685:OCLC 2675:ISBN 2625:ISBN 2397:and 1679:and 978:and 955:and 637:and 566:and 494:and 239:and 206:The 188:and 122:and 3538:doi 3516:121 3477:doi 3455:113 3432:doi 3397:doi 3385:104 3352:doi 3348:130 3303:hdl 3295:doi 3262:doi 3258:240 3212:doi 3147:doi 3059:doi 3047:331 2986:not 2935:doi 2779:doi 2258:). 2212:). 1537:or 192:). 145:in 141:'s 4401:: 3579:. 3552:. 3544:. 3536:. 3528:. 3514:. 3491:. 3483:. 3475:. 3467:. 3453:. 3430:. 3420:34 3418:. 3395:. 3383:. 3360:. 3346:. 3342:. 3319:. 3311:. 3301:. 3291:81 3289:. 3285:. 3256:. 3252:. 3240:^ 3226:. 3218:. 3210:. 3198:89 3196:. 3192:. 3169:. 3161:. 3153:. 3145:. 3133:48 3131:. 3127:. 3102:. 3096:. 3073:. 3065:. 3057:. 3045:. 2941:. 2933:. 2923:92 2921:. 2878:^ 2862:. 2858:. 2833:. 2829:. 2804:. 2800:. 2777:. 2773:. 2769:. 2683:. 2648:. 2623:. 2603:^ 2393:, 2374:. 2274:, 2079:/ 1826:, 1370:1. 1300:. 180:, 157:, 153:, 56:. 3611:e 3604:t 3597:v 3583:. 3560:. 3540:: 3532:: 3522:: 3499:. 3479:: 3471:: 3461:: 3438:. 3434:: 3426:: 3403:. 3399:: 3391:: 3368:. 3354:: 3327:. 3305:: 3297:: 3270:. 3264:: 3234:. 3214:: 3204:: 3177:. 3149:: 3139:: 3112:. 3081:. 3061:: 3053:: 3028:. 2974:. 2949:. 2937:: 2929:: 2904:. 2872:. 2843:. 2814:. 2785:. 2781:: 2741:. 2716:. 2691:. 2658:. 2633:. 2478:) 2474:r 2470:( 2238:f 2232:) 2229:f 2226:( 2200:, 2188:1 2182:t 2176:f 2150:f 2127:t 2039:c 2012:c 1923:. 1879:s 1874:A 1867:2 1863:z 1857:2 1846:= 1840:c 1835:A 1811:s 1806:A 1785:z 1759:c 1754:A 1730:c 1725:l 1701:c 1696:A 1683:2 1681:x 1676:1 1674:x 1649:c 1640:2 1610:t 1593:2 1514:t 1497:2 1474:c 1364:f 1356:c 1325:c 1285:c 1256:c 1251:L 1224:c 1215:= 1192:0 1189:= 1163:c 1120:t 1116:t 1099:2 1089:t 1072:c 1050:. 1008:t 968:) 964:( 876:) 873:t 870:( 867:y 847:) 844:t 841:( 838:x 818:0 815:= 812:) 809:f 806:( 801:2 796:y 793:x 768:1 765:= 762:) 759:f 756:( 751:2 746:y 743:x 718:1 712:) 709:f 706:( 701:2 696:y 693:x 682:0 654:) 651:t 648:( 645:y 625:) 622:t 619:( 616:x 583:) 580:t 577:( 574:y 554:) 551:t 548:( 545:x 521:) 518:f 515:( 510:y 507:y 503:S 482:) 479:f 476:( 471:x 468:x 464:S 439:) 436:f 433:( 428:y 425:x 421:S 394:) 391:f 388:( 383:y 380:y 376:S 372:) 369:f 366:( 361:x 358:x 354:S 346:2 341:| 336:) 333:f 330:( 325:y 322:x 318:S 313:| 306:= 303:) 300:f 297:( 292:2 287:y 284:x 256:) 253:t 250:( 247:y 227:) 224:t 221:( 218:x 95:. 34:. 20:)

Index

Incoherent light
Coherence
interfere
monochromatic beams
interference
phase
interference visibility
degree of coherence

double slit experiment
collimation
Michelson–Morley experiment
Young's interference experiment
Michelson interferometer
double-slit experiment
Thomas Young
double-slit experiment
optics
acoustics
electrical engineering
neuroscience
quantum mechanics
holography
Sagnac
gyroscope
antenna arrays
optical coherence tomography
Astronomical optical interferometers
radio telescopes
Degree of coherence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑