Knowledge

Induced homomorphism

Source 📝

190:
induce homomorphisms that are inverse to each other. A common use of induced homomorphisms is the following: by showing that a homomorphism with certain properties cannot exist, one concludes that there cannot exist a continuous map with properties that would induce it. Thanks to this, relations
191:
between spaces and continuous maps, often very intricate, can be inferred from relations between the homomorphisms they induce. The latter may be simpler to analyze, since they involve algebraic structures which can be often easily described, compared, and calculated in.
129:. This means that each space is associated with an algebraic structure, while each continuous map between spaces is associated with a structure-preserving map between structures, called an induced homomorphism. A homomorphism induced from a map 1190:
have isomorphic fundamental groups but are still not homeomorphic. Their fundamental groups are isomorphic because each space is simply connected. However, the two spaces cannot be homeomorphic because deleting a point from
1035: 1400: 695: 1784: 1556: 850: 1600: 1578: 1494: 1422: 1355: 465: 1472: 1122: 1083: 745: 588: 503: 296: 174: 1658: 1629: 1721: 1698: 1678: 147: 1175:
is homeomorphic to the circle). This also shows that the one-point compactification of a simply connected space need not be simply connected.
1850: 1898: 1825: 1496:(which is usually a continuous map, possibly preserving some other structure such as the base point) this functor induces an 1358: 1164: 248: 118: 44: 972: 1914: 1369: 1817: 1434: 1363:
or the category of pointed topological spaces (that is, topological spaces with a distinguished base point), and a
1234: 771: 1293: 1919: 1357:
of topological spaces (possibly with some additional structure) such as the category of all topological spaces
1216: 894:
it satisfies the definition of a functor, one has to further check that it is compatible with composition: for
478:
under homotopy, as in the definition of the fundamental group. It is easily checked from the definitions that
596: 1333: 1145: 179:
Induced homomorphisms often inherit properties of the maps they come from; for example, two maps that are
90: 17: 1140:
because their fundamental groups are not isomorphic (since their fundamental groups don’t have the same
1730: 1502: 1171:
has a fundamental group isomorphic to the group of integers (since the one-point compactification of
1317: 1285: 813: 560: 1583: 1561: 1477: 1405: 1338: 1425: 1313: 891: 122: 110: 59: 32: 1309: 410: 1894: 1856: 1846: 1821: 1445: 1289: 1258: 1087: 471: 214: 200: 126: 106: 98: 63: 48: 1439:
which then associates such an algebraic structure to every topological space, then for every
1098: 1059: 1787: 1300:
comes induced homomorphisms, though in the opposite direction (from a group associated with
1179: 723: 566: 481: 274: 152: 1634: 1605: 1281: 1219: 362: 78: 1706: 1683: 1663: 1277: 1273: 132: 102: 1320:
all have induced homomorphisms (IV.4.2–3, pp. 298–299). Generalizations such as
1908: 1811: 1807: 1431: 1242: 1149: 1045: 40: 1141: 180: 28: 1253:
induces an isomorphism between fundamental groups (so the fundamental group of
1203:, the space wouldn’t be simply connected any more. In fact this generalizes to 1091:
between fundamental groups (because the homomorphism induced by the inverse of
1297: 1124:, by the above equation). (See section III.5.4, p. 201, in H. Schubert.) 1860: 1321: 1296:
all have induced homomorphisms (IV.1.3, pp. 240–241) Similarly, any
1440: 187: 94: 563:
operation in fundamental groups (namely by concatenation of loops) that
1724: 1364: 1160: 82: 1156: 1727:
then by definition it induces morphisms in the opposite direction:
117:, meaning that their definition provides a functor from (e.g.) the 1148:
cannot be homeomorphic to a non-simply-connected space; one has a
1133: 184: 774:
to the category of groups: it associates the fundamental group
547:: loops in the same equivalence class, i.e. homotopic loops in 1199:
leaves a simply connected space (If we delete a line lying in
1195:
leaves a non-simply-connected space but deleting a point from
43:
derived in a canonical way from another map. For example, a
1893:
James Munkres (1999). Topology, 2nd edition, Prentice Hall.
1602:
is a category of groups) between the algebraic structures
1424:
of algebraic structures such as the category of groups
1733: 1709: 1686: 1666: 1637: 1608: 1586: 1564: 1505: 1480: 1448: 1408: 1372: 1341: 1101: 1062: 975: 816: 726: 599: 569: 484: 413: 277: 155: 135: 1882:
Topologie, Eine Einführung (Mathematische Leitfäden)
1030:{\displaystyle \pi (k\circ h)=\pi (k)\circ \pi (h).} 559:
as well. It also follows from the definition of the
1272:Likewise there are induced homomorphisms of higher 1778: 1715: 1692: 1672: 1652: 1623: 1594: 1572: 1550: 1488: 1466: 1416: 1394: 1349: 1116: 1077: 1029: 844: 739: 689: 582: 497: 459: 290: 168: 141: 1284:comes with induced homomorphisms. For instance, 1884:. B. G. Teubner Verlagsgesellschaft, Stuttgart. 704:denotes concatenation of loops, with the first 1580:(which for example is a group homomorphism if 1395:{\displaystyle F:\mathbf {T} \to \mathbf {A} } 8: 1182:of the theorem need not hold. For example, 1044:is not only a continuous map but in fact a 810:and it associates the induced homomorphism 1152:fundamental group and the other does not. 555:, because a homotopy can be composed with 1732: 1708: 1685: 1665: 1636: 1607: 1587: 1585: 1565: 1563: 1504: 1481: 1479: 1447: 1409: 1407: 1387: 1379: 1371: 1342: 1340: 1257:can be described using only loops in the 1100: 1061: 974: 836: 815: 731: 725: 666: 638: 604: 598: 574: 568: 489: 483: 418: 412: 282: 276: 160: 154: 134: 18:Induced homomorphism (algebraic topology) 1799: 690:{\displaystyle h_{*}()=h_{*}()+h_{*}()} 1402:from that category into some category 1226:leaves a non-simply-connected space). 201:Fundamental group § Functoriality 1843:Introduction to topological manifolds 97:in the source category. For example, 7: 1875: 1873: 1871: 1845:(2nd ed.). New York: Springer. 1723:is not a (covariant) functor but a 551:, are mapped to homotopic loops in 113:are algebraic structures that are 25: 1779:{\displaystyle F(f):F(Y)\to F(X)} 1551:{\displaystyle F(f):F(X)\to F(Y)} 1324:also have induced homomorphisms. 1588: 1566: 1482: 1410: 1388: 1380: 1343: 1155:2. The fundamental group of the 1056:, then the induced homomorphism 1773: 1767: 1761: 1758: 1752: 1743: 1737: 1647: 1641: 1618: 1612: 1545: 1539: 1533: 1530: 1524: 1515: 1509: 1458: 1384: 1159:is isomorphic to the group of 1111: 1105: 1072: 1066: 1021: 1015: 1006: 1000: 991: 979: 826: 820: 720:). The resulting homomorphism 684: 681: 675: 672: 656: 653: 647: 644: 628: 625: 613: 610: 454: 442: 436: 433: 427: 424: 119:category of topological spaces 1: 845:{\displaystyle \pi (h)=h_{*}} 1595:{\displaystyle \mathbf {A} } 1573:{\displaystyle \mathbf {A} } 1489:{\displaystyle \mathbf {T} } 1417:{\displaystyle \mathbf {A} } 1350:{\displaystyle \mathbf {T} } 70:to the fundamental group of 1304:to a group associated with 1163:. Therefore, the one-point 898:preserving continuous maps 505:is a well-defined function 400:obtained by composing with 379:, is mapped to the loop in 340:as follows: any element of 298:from the fundamental group 271:. Then we can define a map 1936: 1865:pg. 197, Proposition 7.24. 1818:Cambridge University Press 1235:strong deformation retract 856:preserving continuous map 772:category of pointed spaces 758:It may also be denoted as 590:is a group homomorphism: 198: 85:by definition provides an 770:gives a functor from the 460:{\displaystyle h_{*}():=} 319:to the fundamental group 1467:{\displaystyle f:X\to Y} 1237:of a topological space 1136:is not homeomorphic to 1117:{\displaystyle \pi (h)} 1078:{\displaystyle \pi (h)} 54:to a topological space 1780: 1717: 1694: 1674: 1654: 1625: 1596: 1574: 1552: 1490: 1468: 1418: 1396: 1351: 1146:simply connected space 1118: 1079: 1031: 846: 795:to each pointed space 741: 691: 584: 499: 461: 292: 170: 143: 1880:Schubert, H. (1975). 1841:Lee, John M. (2011). 1781: 1725:contravariant functor 1718: 1695: 1675: 1655: 1626: 1597: 1575: 1553: 1491: 1469: 1419: 1397: 1352: 1144:). More generally, a 1119: 1080: 1040:This implies that if 1032: 847: 742: 740:{\displaystyle h_{*}} 692: 585: 583:{\displaystyle h_{*}} 500: 498:{\displaystyle h_{*}} 462: 293: 291:{\displaystyle h_{*}} 195:In fundamental groups 171: 169:{\displaystyle h_{*}} 144: 1731: 1707: 1684: 1664: 1653:{\displaystyle F(Y)} 1635: 1624:{\displaystyle F(X)} 1606: 1584: 1562: 1503: 1478: 1446: 1406: 1370: 1339: 1294:Borel–Moore homology 1099: 1060: 973: 814: 747:is the homomorphism 724: 597: 567: 482: 411: 275: 153: 133: 37:induced homomorphism 1318:singular cohomology 1286:simplicial homology 1207:whereby deleting a 361:, represented by a 77:More generally, in 1915:Algebraic topology 1813:Algebraic Topology 1776: 1713: 1690: 1670: 1650: 1621: 1592: 1570: 1548: 1486: 1464: 1414: 1392: 1347: 1328:General definition 1314:de Rham cohomology 1308:). For instance, 1114: 1095:is the inverse of 1075: 1027: 842: 737: 687: 580: 495: 470:Here denotes the 457: 288: 215:topological spaces 166: 139: 123:category of groups 111:De Rham cohomology 99:fundamental groups 60:group homomorphism 33:algebraic topology 1790:give an example. 1788:Cohomology groups 1716:{\displaystyle F} 1693:{\displaystyle Y} 1673:{\displaystyle X} 1290:singular homology 472:equivalence class 149:is often denoted 142:{\displaystyle h} 107:singular homology 64:fundamental group 49:topological space 16:(Redirected from 1927: 1886: 1885: 1877: 1866: 1864: 1838: 1832: 1831: 1804: 1785: 1783: 1782: 1777: 1722: 1720: 1719: 1714: 1700:, respectively. 1699: 1697: 1696: 1691: 1679: 1677: 1676: 1671: 1659: 1657: 1656: 1651: 1630: 1628: 1627: 1622: 1601: 1599: 1598: 1593: 1591: 1579: 1577: 1576: 1571: 1569: 1557: 1555: 1554: 1549: 1498:induced morphism 1495: 1493: 1492: 1487: 1485: 1473: 1471: 1470: 1465: 1423: 1421: 1420: 1415: 1413: 1401: 1399: 1398: 1393: 1391: 1383: 1356: 1354: 1353: 1348: 1346: 1214: 1165:compactification 1123: 1121: 1120: 1115: 1084: 1082: 1081: 1076: 1036: 1034: 1033: 1028: 965: 950: 931: 916: 897: 889: 874: 855: 851: 849: 848: 843: 841: 840: 809: 794: 778: 769: 761: 746: 744: 743: 738: 736: 735: 696: 694: 693: 688: 671: 670: 643: 642: 609: 608: 589: 587: 586: 581: 579: 578: 546: 530: 525: 509: 504: 502: 501: 496: 494: 493: 466: 464: 463: 458: 423: 422: 399: 383: 360: 344: 339: 323: 318: 302: 297: 295: 294: 289: 287: 286: 270: 175: 173: 172: 167: 165: 164: 148: 146: 145: 140: 87:induced morphism 31:, especially in 21: 1935: 1934: 1930: 1929: 1928: 1926: 1925: 1924: 1920:Category theory 1905: 1904: 1890: 1889: 1879: 1878: 1869: 1853: 1840: 1839: 1835: 1828: 1806: 1805: 1801: 1796: 1729: 1728: 1705: 1704: 1682: 1681: 1662: 1661: 1633: 1632: 1604: 1603: 1582: 1581: 1560: 1559: 1501: 1500: 1476: 1475: 1444: 1443: 1404: 1403: 1368: 1367: 1337: 1336: 1330: 1310:Čech cohomology 1282:homology theory 1278:homology groups 1274:homotopy groups 1270: 1208: 1130: 1097: 1096: 1058: 1057: 971: 970: 963: 952: 948: 937: 929: 918: 914: 903: 895: 887: 876: 872: 861: 853: 832: 812: 811: 807: 796: 792: 781: 776: 775: 767: 759: 727: 722: 721: 712:and the second 662: 634: 600: 595: 594: 570: 565: 564: 544: 533: 528: 527: 523: 512: 507: 506: 485: 480: 479: 414: 409: 408: 397: 386: 381: 380: 378: 358: 347: 342: 341: 337: 326: 321: 320: 316: 305: 300: 299: 278: 273: 272: 269: 262: 252: 234: 223: 203: 197: 156: 151: 150: 131: 130: 103:homotopy groups 79:category theory 23: 22: 15: 12: 11: 5: 1933: 1931: 1923: 1922: 1917: 1907: 1906: 1903: 1902: 1888: 1887: 1867: 1852:978-1441979391 1851: 1833: 1826: 1808:Hatcher, Allen 1798: 1797: 1795: 1792: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1712: 1689: 1669: 1660:associated to 1649: 1646: 1643: 1640: 1620: 1617: 1614: 1611: 1590: 1568: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1484: 1463: 1460: 1457: 1454: 1451: 1432:abelian groups 1412: 1390: 1386: 1382: 1378: 1375: 1345: 1329: 1326: 1269: 1268:Other examples 1266: 1129: 1126: 1113: 1110: 1107: 1104: 1074: 1071: 1068: 1065: 1038: 1037: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 978: 961: 946: 927: 912: 885: 870: 839: 835: 831: 828: 825: 822: 819: 805: 790: 779: 734: 730: 698: 697: 686: 683: 680: 677: 674: 669: 665: 661: 658: 655: 652: 649: 646: 641: 637: 633: 630: 627: 624: 621: 618: 615: 612: 607: 603: 577: 573: 542: 531: 521: 510: 492: 488: 468: 467: 456: 453: 450: 447: 444: 441: 438: 435: 432: 429: 426: 421: 417: 395: 384: 376: 356: 345: 335: 324: 314: 303: 285: 281: 267: 260: 249:continuous map 232: 221: 196: 193: 183:to each other 163: 159: 138: 121:to (e.g.) the 89:in the target 45:continuous map 24: 14: 13: 10: 9: 6: 4: 3: 2: 1932: 1921: 1918: 1916: 1913: 1912: 1910: 1900: 1899:0-13-181629-2 1896: 1892: 1891: 1883: 1876: 1874: 1872: 1868: 1862: 1858: 1854: 1848: 1844: 1837: 1834: 1829: 1827:0-521-79540-0 1823: 1819: 1815: 1814: 1809: 1803: 1800: 1793: 1791: 1789: 1770: 1764: 1755: 1749: 1746: 1740: 1734: 1726: 1710: 1701: 1687: 1667: 1644: 1638: 1615: 1609: 1542: 1536: 1527: 1521: 1518: 1512: 1506: 1499: 1461: 1455: 1452: 1449: 1442: 1438: 1437: 1433: 1429: 1428: 1376: 1373: 1366: 1362: 1361: 1335: 1327: 1325: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1267: 1265: 1263: 1260: 1256: 1252: 1248: 1244: 1243:inclusion map 1240: 1236: 1232: 1227: 1225: 1221: 1218: 1212: 1206: 1202: 1198: 1194: 1189: 1185: 1181: 1176: 1174: 1170: 1166: 1162: 1158: 1153: 1151: 1147: 1143: 1139: 1135: 1127: 1125: 1108: 1102: 1094: 1090: 1089: 1069: 1063: 1055: 1051: 1047: 1046:homeomorphism 1043: 1024: 1018: 1012: 1009: 1003: 997: 994: 988: 985: 982: 976: 969: 968: 967: 960: 956: 945: 941: 935: 926: 922: 911: 907: 901: 893: 884: 880: 869: 865: 859: 837: 833: 829: 823: 817: 804: 800: 789: 785: 773: 765: 756: 754: 750: 732: 728: 719: 715: 711: 707: 703: 678: 667: 663: 659: 650: 639: 635: 631: 622: 619: 616: 605: 601: 593: 592: 591: 575: 571: 562: 558: 554: 550: 541: 537: 520: 516: 490: 486: 477: 473: 451: 448: 445: 439: 430: 419: 415: 407: 406: 405: 403: 394: 390: 375: 371: 367: 364: 355: 351: 334: 330: 313: 309: 283: 279: 266: 259: 255: 250: 246: 242: 238: 231: 227: 220: 216: 212: 208: 202: 194: 192: 189: 186: 182: 177: 161: 157: 136: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 75: 73: 69: 65: 61: 57: 53: 50: 46: 42: 38: 34: 30: 19: 1881: 1842: 1836: 1812: 1802: 1702: 1497: 1435: 1426: 1359: 1331: 1305: 1301: 1271: 1261: 1254: 1250: 1246: 1238: 1230: 1228: 1223: 1210: 1204: 1200: 1196: 1192: 1187: 1183: 1177: 1172: 1168: 1154: 1137: 1131: 1128:Applications 1092: 1086: 1053: 1049: 1041: 1039: 958: 954: 943: 939: 933: 924: 920: 909: 905: 899: 882: 878: 867: 863: 857: 802: 798: 787: 783: 763: 757: 752: 748: 717: 713: 709: 705: 701: 699: 556: 552: 548: 539: 535: 518: 514: 475: 469: 401: 392: 388: 373: 369: 365: 353: 349: 332: 328: 311: 307: 264: 257: 253: 244: 240: 236: 229: 225: 218: 217:with points 210: 206: 204: 178: 114: 86: 76: 71: 67: 55: 51: 41:homomorphism 36: 26: 1332:Given some 1241:, then the 1217:dimensional 1142:cardinality 1088:isomorphism 966:, we have: 766:). Indeed, 29:mathematics 1909:Categories 1794:References 1298:cohomology 896:base-point 854:base-point 251:such that 199:See also: 115:functorial 58:induces a 1861:697506452 1762:→ 1534:→ 1459:→ 1385:→ 1322:cobordism 1103:π 1064:π 1013:π 1010:∘ 998:π 986:∘ 977:π 838:∗ 818:π 733:∗ 668:∗ 640:∗ 606:∗ 576:∗ 491:∗ 449:∘ 420:∗ 372:based at 284:∗ 162:∗ 101:, higher 93:for each 62:from the 1810:(2002). 1441:morphism 1334:category 1259:subspace 1220:subspace 1180:converse 1161:integers 1048:between 936::  902::  860::  852:to each 243: : 188:homotopy 95:morphism 91:category 1365:functor 1178:3. The 1150:trivial 1132:1. The 749:induced 700:(where 181:inverse 83:functor 47:from a 1897:  1859:  1849:  1824:  1430:or of 1316:, and 1292:, and 1280:. Any 1229:4. If 1157:circle 1085:is an 239:. Let 109:, and 81:, any 1245:from 1233:is a 1222:from 1134:torus 892:prove 890:. To 751:from 561:group 247:be a 185:up to 127:rings 39:is a 35:, an 1895:ISBN 1857:OCLC 1847:ISBN 1822:ISBN 1680:and 1631:and 1276:and 1213:− 2) 1186:and 1052:and 932:and 363:loop 263:) = 228:and 209:and 205:Let 1703:If 1558:in 1474:of 1427:Grp 1360:Top 1264:). 1249:to 1167:of 716:in 708:in 474:of 368:in 245:X→Y 235:in 224:in 213:be 125:or 66:of 27:In 1911:: 1870:^ 1855:. 1820:. 1816:. 1786:. 1436:Ab 1312:, 1288:, 957:, 951:→ 942:, 923:, 917:→ 908:, 881:, 875:→ 866:, 801:, 786:, 755:. 538:, 526:→ 517:, 440::= 404:: 391:, 352:, 331:, 310:, 176:. 105:, 74:. 1901:. 1863:. 1830:. 1774:) 1771:X 1768:( 1765:F 1759:) 1756:Y 1753:( 1750:F 1747:: 1744:) 1741:f 1738:( 1735:F 1711:F 1688:Y 1668:X 1648:) 1645:Y 1642:( 1639:F 1619:) 1616:X 1613:( 1610:F 1589:A 1567:A 1546:) 1543:Y 1540:( 1537:F 1531:) 1528:X 1525:( 1522:F 1519:: 1516:) 1513:f 1510:( 1507:F 1483:T 1462:Y 1456:X 1453:: 1450:f 1411:A 1389:A 1381:T 1377:: 1374:F 1344:T 1306:X 1302:Y 1262:A 1255:X 1251:X 1247:A 1239:X 1231:A 1224:R 1215:- 1211:n 1209:( 1205:R 1201:R 1197:R 1193:R 1188:R 1184:R 1173:R 1169:R 1138:R 1112:) 1109:h 1106:( 1093:h 1073:) 1070:h 1067:( 1054:Y 1050:X 1042:h 1025:. 1022:) 1019:h 1016:( 1007:) 1004:k 1001:( 995:= 992:) 989:h 983:k 980:( 964:) 962:0 959:z 955:Z 953:( 949:) 947:0 944:y 940:Y 938:( 934:k 930:) 928:0 925:y 921:Y 919:( 915:) 913:0 910:x 906:X 904:( 900:h 888:) 886:0 883:y 879:Y 877:( 873:) 871:0 868:x 864:X 862:( 858:h 834:h 830:= 827:) 824:h 821:( 808:) 806:0 803:x 799:X 797:( 793:) 791:0 788:x 784:X 782:( 780:1 777:π 768:π 764:h 762:( 760:π 753:h 729:h 718:Y 714:+ 710:X 706:+ 702:+ 685:) 682:] 679:g 676:[ 673:( 664:h 660:+ 657:) 654:] 651:f 648:[ 645:( 636:h 632:= 629:) 626:] 623:g 620:+ 617:f 614:[ 611:( 602:h 572:h 557:h 553:Y 549:X 545:) 543:0 540:y 536:Y 534:( 532:1 529:π 524:) 522:0 519:x 515:X 513:( 511:1 508:π 487:h 476:f 455:] 452:f 446:h 443:[ 437:) 434:] 431:f 428:[ 425:( 416:h 402:h 398:) 396:0 393:y 389:Y 387:( 385:1 382:π 377:0 374:x 370:X 366:f 359:) 357:0 354:x 350:X 348:( 346:1 343:π 338:) 336:0 333:y 329:Y 327:( 325:1 322:π 317:) 315:0 312:x 308:X 306:( 304:1 301:π 280:h 268:0 265:y 261:0 258:x 256:( 254:h 241:h 237:Y 233:0 230:y 226:X 222:0 219:x 211:Y 207:X 158:h 137:h 72:Y 68:X 56:Y 52:X 20:)

Index

Induced homomorphism (algebraic topology)
mathematics
algebraic topology
homomorphism
continuous map
topological space
group homomorphism
fundamental group
category theory
functor
category
morphism
fundamental groups
homotopy groups
singular homology
De Rham cohomology
category of topological spaces
category of groups
rings
inverse
up to
homotopy
Fundamental group § Functoriality
topological spaces
continuous map
loop
equivalence class
group
category of pointed spaces
prove

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.