Knowledge (XXG)

Inductively coupled plasma

Source 📝

84: 20: 72: 347:
suggests that the gas ion motion is most intense in the outer region of the flame, where the temperature is the greatest. In the real torch, the flame is cooled by the cooling gas from the outside , so the hottest outer part is at thermal equilibrium. Temperature there reaches 5 000 – 6 000 K. For
75:
Fig. 2. The construction of Inductively Coupled Plasma torch. A: cooling gas tangential flow to the outer quartz tube B: discharge gas flow (usually Ar) C: flow of carrier gas with sample D: induction coil which forms the strong magnetic field inside the torch E: force vectors of the magnetic
359:
which contains the coil is usually 27–41 MHz. To induce plasma, a spark is produced at the electrodes at the gas outlet. Argon is one example of a commonly used rarefied gas. The high temperature of the plasma allows the atomization of molecules and thus determination of many elements, and in
379:
can range between ~6,000 K and ~10,000 K and are usually several orders of magnitude greater than the temperature of the neutral species. Temperatures of argon ICP plasma discharge are typically ~5,500 to 6,500 K and are therefore comparable to those reached at the surface
338: 384:) of the sun (~4,500 K to ~6,000 K). ICP discharges are of relatively high electron density, on the order of 10 cm. As a result, ICP discharges have wide applications wherever a high-density plasma (HDP) is needed. 360:
addition, for about 60 elements the degree of ionization in the torch exceeds 90%. The ICP torch consumes c. 1250–1550 W of power, and this depends on the element composition of the sample (due to different
179: 367:
The ICPs have two operation modes, called capacitive (E) mode with low plasma density and inductive (H) mode with high plasma density. Transition from E to H heating mode occurs with external inputs.
397: 252: 558:
Shun'ko, Evgeny V.; Stevenson, David E.; Belkin, Veniamin S. (2014). "Inductively Coupling Plasma Reactor With Plasma Electron Energy Controllable in the Range From ~6 to ~100 eV".
609:Бабушкин, А. А.; Бажулин, П. А.; Королёв, Ф. А.; Левшин, Л. В.; Прокофьев, В. К.; Стриганов, А. Р. (1962). "Эмиссионный спектральный анализ". In Гольденберг, Г. С. (ed.). 428:
Another benefit of ICP discharges is that they are relatively free of contamination, because the electrodes are completely outside the reaction chamber. By contrast, in a
407: 685: 471:
High density fluorocarbon etching of silicon in an inductively coupled plasma: Mechanism of etching through a thick steady state fluorocarbon layer
262: 432:(CCP), the electrodes are often placed inside the reactor chamber and are thus exposed to the plasma and to subsequent reactive chemical species. 388: 514: 539: 361: 107: 91:
In planar geometry, the electrode is a length of flat metal wound like a spiral (or coil). In cylindrical geometry, it is like a
102:
When a time-varying electric current is passed through the coil, it creates a time-varying magnetic field around it, with flux
473: 192: 349: 80:
There are three types of ICP geometries: planar (Fig. 3 (a)), cylindrical (Fig. 3 (b)), and half-toroidal (Fig. 3 (c)).
401: 392: 651:
Hyo-Chang Lee (2018) Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics 5 011108
446: 441: 429: 451: 56: 670: 211: 675: 343:
leading to the formation of the electron trajectories providing a plasma generation. The dependence on
567: 421: 417: 376: 630:
Flame Atomic Absorbance and Emission Spectrometry and Inductively Coupled Plasma — Mass Spectrometry
680: 199: 591: 583: 535: 510: 411: 96: 575: 52: 44: 19: 628: 477: 83: 571: 480:
T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, and G. S. Oehrleinc
60: 664: 595: 470: 381: 356: 203: 587: 579: 333:{\displaystyle E={\frac {U}{2\pi r}}={\frac {\omega rH_{0}}{2}}\sin \omega t} 196: 71: 48: 652: 92: 82: 70: 18: 188:
is the distance to the center of coil (and of the quartz tube).
492:
Inductively Coupled Plasmas in Analytical Atomic Spectrometry
174:{\displaystyle \Phi =\pi r^{2}H=\pi r^{2}H_{0}\cos \omega t} 534:. Cambridge University Press, Cambridge. pp. 219–259. 507:
Spectrochemical Analysis by Atomic Absorption and Emission
509:(2 ed.). Cambridge: RSC Publishing. p. 205. 553: 551: 265: 214: 110: 332: 246: 173: 530:Pascal Chambert and Nicholas Braithwaite (2011). 355:The frequency of alternating current used in the 257:which corresponds to electric field strengths of 99:cut along its main diameter to two equal halves. 490:A. Montaser and D. W. Golightly, ed. (1992). 8: 622: 620: 95:spring. In half-toroidal geometry, it is a 76:field F: the plasma torch (the discharge). 627:Dunnivant, F. M.; Ginsbach, J. W. (2017). 23:Fig. 1. Picture of an analytical ICP torch 306: 293: 272: 264: 224: 213: 153: 143: 124: 109: 505:Lajunen, L. H. J.; Perämäki, P. (2004). 613:. Москва: Издательство МГУ. p. 58. 463: 247:{\displaystyle U=-{\frac {d\Phi }{dt}}} 87:Fig. 3. Conventional Plasma Inductors 7: 560:IEEE Transactions on Plasma Science 686:Plasma technology and applications 532:Physics of Radio-Frequency Plasmas 230: 111: 14: 653:https://doi.org/10.1063/1.5012001 494:. VCH Publishers, Inc., New York. 348:more rigorous description, see 193:Faraday–Lenz's law of induction 1: 611:Методы спектрального анализа 402:atomic emission spectroscopy 393:atomic emission spectroscopy 447:Induction plasma technology 442:Capacitively coupled plasma 430:capacitively coupled plasma 352:in electromagnetic fields. 59:, that is, by time-varying 702: 37:transformer coupled plasma 29:inductively coupled plasma 452:Pulsed inductive thruster 57:electromagnetic induction 580:10.1109/TPS.2014.2299954 350:Hamilton–Jacobi equation 334: 248: 175: 88: 77: 55:which are produced by 24: 377:electron temperatures 335: 249: 176: 86: 74: 22: 16:Type of plasma source 422:reactive-ion etching 263: 212: 108: 47:source in which the 572:2014ITPS...42..774S 362:ionization energies 200:electromotive force 476:2016-02-07 at the 330: 244: 171: 89: 78: 25: 633:. Whitman College 516:978-0-85404-624-9 412:mass spectrometry 316: 288: 242: 191:According to the 97:toroidal solenoid 53:electric currents 693: 655: 649: 643: 642: 640: 638: 624: 615: 614: 606: 600: 599: 555: 546: 545: 541:978-0521-76300-4 527: 521: 520: 502: 496: 495: 487: 481: 468: 339: 337: 336: 331: 317: 312: 311: 310: 294: 289: 287: 273: 253: 251: 250: 245: 243: 241: 233: 225: 180: 178: 177: 172: 158: 157: 148: 147: 129: 128: 701: 700: 696: 695: 694: 692: 691: 690: 671:Electrodynamics 661: 660: 659: 658: 650: 646: 636: 634: 626: 625: 618: 608: 607: 603: 557: 556: 549: 542: 529: 528: 524: 517: 504: 503: 499: 489: 488: 484: 478:Wayback Machine 469: 465: 460: 438: 373: 302: 295: 277: 261: 260: 234: 226: 210: 209: 195:, this creates 149: 139: 120: 106: 105: 69: 61:magnetic fields 51:is supplied by 43:) is a type of 17: 12: 11: 5: 699: 697: 689: 688: 683: 678: 673: 663: 662: 657: 656: 644: 616: 601: 566:(3): 774–785. 547: 540: 522: 515: 497: 482: 462: 461: 459: 456: 455: 454: 449: 444: 437: 434: 426: 425: 415: 405: 395: 372: 369: 329: 326: 323: 320: 315: 309: 305: 301: 298: 292: 286: 283: 280: 276: 271: 268: 240: 237: 232: 229: 223: 220: 217: 170: 167: 164: 161: 156: 152: 146: 142: 138: 135: 132: 127: 123: 119: 116: 113: 68: 65: 15: 13: 10: 9: 6: 4: 3: 2: 698: 687: 684: 682: 679: 677: 674: 672: 669: 668: 666: 654: 648: 645: 632: 631: 623: 621: 617: 612: 605: 602: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 554: 552: 548: 543: 537: 533: 526: 523: 518: 512: 508: 501: 498: 493: 486: 483: 479: 475: 472: 467: 464: 457: 453: 450: 448: 445: 443: 440: 439: 435: 433: 431: 423: 419: 416: 413: 409: 406: 403: 399: 396: 394: 390: 387: 386: 385: 383: 378: 370: 368: 365: 363: 358: 353: 351: 346: 341: 327: 324: 321: 318: 313: 307: 303: 299: 296: 290: 284: 281: 278: 274: 269: 266: 258: 255: 238: 235: 227: 221: 218: 215: 207: 205: 201: 198: 194: 189: 187: 182: 168: 165: 162: 159: 154: 150: 144: 140: 136: 133: 130: 125: 121: 117: 114: 103: 100: 98: 94: 85: 81: 73: 66: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 21: 676:Spectroscopy 647: 635:. Retrieved 629: 610: 604: 563: 559: 531: 525: 506: 500: 491: 485: 466: 427: 420:, a type of 410:, a type of 400:, a type of 391:, a type of 374: 371:Applications 366: 354: 344: 342: 259: 256: 208: 190: 185: 183: 104: 101: 90: 79: 40: 36: 32: 28: 26: 382:photosphere 357:RLC circuit 681:Ion source 665:Categories 637:10 January 458:References 588:0093-3813 325:ω 322:⁡ 297:ω 282:π 231:Φ 222:− 197:azimuthal 166:ω 163:⁡ 137:π 118:π 112:Φ 67:Operation 596:34765246 474:Archived 436:See also 204:rarefied 568:Bibcode 418:ICP-RIE 398:ICP-AES 389:ICP-OES 375:Plasma 202:in the 93:helical 594:  586:  538:  513:  408:ICP-MS 184:where 49:energy 45:plasma 592:S2CID 206:gas: 35:) or 639:2018 584:ISSN 536:ISBN 511:ISBN 576:doi 364:). 319:sin 160:cos 41:TCP 33:ICP 27:An 667:: 619:^ 590:. 582:. 574:. 564:42 562:. 550:^ 340:, 254:, 181:, 63:. 641:. 598:. 578:: 570:: 544:. 519:. 424:. 414:. 404:. 380:( 345:r 328:t 314:2 308:0 304:H 300:r 291:= 285:r 279:2 275:U 270:= 267:E 239:t 236:d 228:d 219:= 216:U 186:r 169:t 155:0 151:H 145:2 141:r 134:= 131:H 126:2 122:r 115:= 39:( 31:(

Index


plasma
energy
electric currents
electromagnetic induction
magnetic fields


helical
toroidal solenoid
Faraday–Lenz's law of induction
azimuthal
electromotive force
rarefied
Hamilton–Jacobi equation
RLC circuit
ionization energies
electron temperatures
photosphere
ICP-OES
atomic emission spectroscopy
ICP-AES
atomic emission spectroscopy
ICP-MS
mass spectrometry
ICP-RIE
reactive-ion etching
capacitively coupled plasma
Capacitively coupled plasma
Induction plasma technology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.