Knowledge (XXG)

Inflection point

Source 📝

36: 115: 840: 93: 588:
for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but
1047:
Some continuous functions have an inflection point even though the second derivative is never 0. For example, the cube root function is concave upward when x is negative, and concave downward when x is positive, but has no derivatives of any order at the origin.
434:
of the tangent line and the curve (at the point of tangency) is greater than 2. The main motivation of this different definition, is that otherwise the set of the inflection points of a curve would not be an
856:
has a 2nd derivative of zero at point (0,0), but it is not an inflection point because the fourth derivative is the first higher order non-zero derivative (the third derivative is zero as well).
274:
and changes its sign at the point (from positive to negative or from negative to positive). A point where the second derivative vanishes but does not change its sign is sometimes called a
1029: 998:
Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function
389:
is an inflection point where the derivative is negative on both sides of the point; in other words, it is an inflection point near which the function is decreasing. A
455: 393:
is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing.
290: 633:, which is not necessarily the case. If it is the case, the condition that the first nonzero derivative has an odd order implies that the sign of 1112: 286: 57: 927: 1183: 79: 1269: 411:
For a smooth curve which is a graph of a twice differentiable function, an inflection point is a point on the graph at which the
1254: 1249: 1136: 1232: 1057: 1227: 50: 44: 1259: 1160: 827: 652: 454: 61: 1001: 313: 218: 1222: 448: 165: 161: 114: 1062: 585: 1067: 444: 431: 397: 197: 593:. However, in algebraic geometry, both inflection points and undulation points are usually called 1154: 440: 419: 405: 119: 261:
from a positive value (concave upward) to a negative value (concave downward) or vice versa as
1204: 1179: 1142: 1132: 1108: 412: 233: 894: 201: 193: 135: 131: 123: 107: 1264: 668: 660: 505: 423: 205: 1082: 1071: 923: 439:. In fact, the set of the inflection points of a plane algebraic curve are exactly its 371: 340: 1243: 1207: 1039:, but it has no points of inflection because 0 is not in the domain of the function. 436: 839: 931: 509: 285:
In algebraic geometry an inflection point is defined slightly more generally, as a
305:
Inflection points in differential geometry are the points of the curve where the
17: 189: 482: 333: 153: 512:), green where concave (below its tangent), and red at inflection points: 0, 297:
is defined as a point where the tangent meets the curve to order at least 4.
1212: 1146: 684:
A sufficient existence condition for a point of inflection in the case that
401: 306: 152:(solid black curve) and its first (dashed red) and second (dotted orange) 92: 363: 343: 1043:
Functions with inflection points whose second derivative does not vanish
699:
times continuously differentiable in a certain neighborhood of a point
379: 860:
Points of inflection can also be categorized according to whether
838: 453: 91: 1076: 958:
An example of a non-stationary point of inflection is the point
404:
changes from plus to minus or from minus to plus, i.e., changes
930:, a stationary point that is not a local extremum is called a 248:
can also be used to find an inflection point since a point of
29: 781:
Another more general sufficient existence condition requires
937:
An example of a stationary point of inflection is the point
267:
is continuous; an inflection point of the curve is where
374:, then an inflection point is a point on the graph of 200:, it is a point where the function changes from being 1107:(8 ed.). Boston: Cengage Learning. p. 281. 1004: 1131:. Baranenkov, G. S. Moscow: Mir Publishers. 1976 . 817:
to have opposite signs in the neighborhood of 
500:, and its sign is thus the opposite of the sign of 106:with an inflection point at (0,0), which is also a 1023: 354:has an extremum). That is, in some neighborhood, 27:Point where the curvature of a curve changes sign 1079:, an architectural form with an inflection point 625:In the preceding assertions, it is assumed that 196:changes sign. In particular, in the case of the 1178:(4th ed.). Berlin: Springer. p. 231. 629:has some higher-order non-zero derivative at 8: 1070:formed by the nine inflection points of an 955:-axis, which cuts the graph at this point. 241:, exist and are continuous), the condition 922:A stationary point of inflection is not a 1085:, a local minimum or maximum of curvature 1011: 1003: 362:has a (local) minimum or maximum. If all 80:Learn how and when to remove this message 980:. The tangent at the origin is the line 529:A necessary but not sufficient condition 400:, a point is an inflection point if its 113: 43:This article includes a list of general 1095: 1024:{\displaystyle x\mapsto {\frac {1}{x}}} 597:. An example of an undulation point is 415:has an isolated zero and changes sign. 350:. (this is not the same as saying that 293:at least 3, and an undulation point or 1152: 990:, which cuts the graph at this point. 835:Categorization of points of inflection 504:. Tangent is blue where the curve is 289:where the tangent meets the curve to 7: 926:. More generally, in the context of 928:functions of several real variables 358:is the one and only point at which 917:non-stationary point of inflection 49:it lacks sufficient corresponding 25: 1129:Problems in mathematical analysis 208:(concave upward), or vice versa. 1174:Bronshtein; Semendyayev (2004). 34: 1008: 994:Functions with discontinuities 647:is the same on either side of 312:For example, the graph of the 1: 769:has a point of inflection at 422:, a non singular point of an 1058:Critical point (mathematics) 915:is not zero, the point is a 584:, but this condition is not 396:For a smooth curve given by 211:For the graph of a function 1228:Encyclopedia of Mathematics 673:falling point of inflection 566:is an inflection point for 537:, if its second derivative 387:falling point of inflection 316:has an inflection point at 1286: 828:Bronshtein and Semendyayev 665:rising point of inflection 391:rising point of inflection 255:must be passed to change 1035:and convex for positive 1031:is concave for negative 892:is zero, the point is a 1270:Curvature (mathematics) 1176:Handbook of Mathematics 1103:Stewart, James (2015). 314:differentiable function 219:differentiability class 64:more precise citations. 1159:: CS1 maint: others ( 1025: 857: 520: 443:that are zeros of the 226:(its first derivative 204:(concave downward) to 157: 111: 1255:Differential geometry 1250:Differential calculus 1223:"Point of inflection" 1026: 951:. The tangent is the 842: 679:Sufficient conditions 457: 449:projective completion 166:differential geometry 162:differential calculus 117: 95: 1063:Ecological threshold 1002: 874:is zero or nonzero. 398:parametric equations 1068:Hesse configuration 830:2004, p. 231). 445:Hessian determinant 441:non-singular points 432:intersection number 430:if and only if the 382:crosses the curve. 332:if and only if its 276:point of undulation 198:graph of a function 174:point of inflection 1208:"Inflection Point" 1205:Weisstein, Eric W. 1021: 976:, for any nonzero 858: 659:. If this sign is 521: 420:algebraic geometry 309:changes its sign. 190:smooth plane curve 188:) is a point on a 158: 112: 1260:Analytic geometry 1114:978-1-285-74062-1 1019: 671:, the point is a 663:, the point is a 604:for the function 595:inflection points 413:second derivative 234:second derivative 124:stationary points 90: 89: 82: 18:Inflection points 16:(Redirected from 1277: 1236: 1218: 1217: 1190: 1189: 1171: 1165: 1164: 1158: 1150: 1125: 1119: 1118: 1100: 1038: 1034: 1030: 1028: 1027: 1022: 1020: 1012: 989: 979: 975: 962:on the graph of 961: 954: 950: 941:on the graph of 940: 914: 907: 895:stationary point 891: 884: 873: 866: 855: 825: 816: 798: 777: 768: 757: 743: 732: 718: 711: 707: 698: 694: 658: 650: 646: 639: 632: 628: 621: 607: 603: 591:undulation point 583: 569: 565: 556: 547: 519: 515: 503: 499: 480: 476: 472: 428:inflection point 402:signed curvature 377: 369: 361: 357: 353: 349: 338: 334:first derivative 331: 280:undulation point 273: 266: 260: 254: 247: 240: 231: 225: 216: 170:inflection point 151: 136:cubic polynomial 128:inflection point 108:stationary point 105: 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 1285: 1284: 1280: 1279: 1278: 1276: 1275: 1274: 1240: 1239: 1221: 1203: 1202: 1199: 1194: 1193: 1186: 1173: 1172: 1168: 1151: 1139: 1127: 1126: 1122: 1115: 1102: 1101: 1097: 1092: 1054: 1045: 1036: 1032: 1000: 999: 996: 981: 977: 963: 959: 952: 942: 938: 905: 902: 882: 879: 864: 861: 843: 837: 824: 818: 810: 800: 792: 782: 776: 770: 759: 755: 745: 734: 730: 720: 713: 709: 706: 700: 696: 685: 681: 656: 648: 637: 634: 630: 626: 609: 605: 598: 581: 571: 567: 564: 558: 555: 549: 538: 533:For a function 531: 526: 517: 513: 508:(above its own 501: 486: 481:/4; the second 478: 474: 459: 424:algebraic curve 375: 367: 359: 355: 351: 347: 336: 317: 303: 268: 262: 256: 249: 242: 236: 227: 221: 212: 138: 97: 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1283: 1281: 1273: 1272: 1267: 1262: 1257: 1252: 1242: 1241: 1238: 1237: 1219: 1198: 1195: 1192: 1191: 1184: 1166: 1137: 1120: 1113: 1094: 1093: 1091: 1088: 1087: 1086: 1083:Vertex (curve) 1080: 1074: 1072:elliptic curve 1065: 1060: 1053: 1050: 1044: 1041: 1018: 1015: 1010: 1007: 995: 992: 924:local extremum 920: 919: 899: 836: 833: 832: 831: 822: 808: 790: 779: 774: 753: 728: 704: 680: 677: 579: 562: 553: 530: 527: 525: 522: 302: 299: 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1282: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1247: 1245: 1234: 1230: 1229: 1224: 1220: 1215: 1214: 1209: 1206: 1201: 1200: 1196: 1187: 1185:3-540-43491-7 1181: 1177: 1170: 1167: 1162: 1156: 1148: 1144: 1140: 1134: 1130: 1124: 1121: 1116: 1110: 1106: 1099: 1096: 1089: 1084: 1081: 1078: 1075: 1073: 1069: 1066: 1064: 1061: 1059: 1056: 1055: 1051: 1049: 1042: 1040: 1016: 1013: 1005: 993: 991: 988: 984: 974: 970: 966: 956: 949: 945: 935: 933: 929: 925: 918: 912: 908: 900: 898: 897:of inflection 896: 889: 885: 877: 876: 875: 871: 867: 854: 850: 846: 841: 834: 829: 821: 814: 807: 803: 796: 789: 785: 780: 773: 766: 762: 752: 748: 741: 737: 727: 723: 716: 703: 692: 688: 683: 682: 678: 676: 674: 670: 666: 662: 654: 644: 640: 623: 620: 616: 612: 601: 596: 592: 587: 578: 574: 561: 552: 545: 541: 536: 528: 523: 511: 507: 497: 493: 489: 484: 470: 466: 462: 456: 452: 450: 446: 442: 438: 437:algebraic set 433: 429: 425: 421: 416: 414: 409: 407: 403: 399: 394: 392: 388: 383: 381: 378:at which the 373: 365: 345: 342: 335: 329: 325: 321: 315: 310: 308: 300: 298: 296: 292: 288: 287:regular point 283: 281: 277: 271: 265: 259: 252: 245: 239: 235: 230: 224: 220: 215: 209: 207: 203: 199: 195: 192:at which the 191: 187: 183: 179: 175: 171: 167: 163: 155: 149: 145: 141: 137: 133: 129: 125: 121: 116: 109: 104: 100: 94: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 1226: 1211: 1175: 1169: 1128: 1123: 1104: 1098: 1046: 997: 986: 982: 972: 968: 964: 957: 947: 943: 936: 932:saddle point 921: 916: 910: 903: 893: 887: 880: 869: 862: 859: 852: 848: 844: 819: 812: 805: 801: 794: 787: 783: 771: 764: 760: 750: 746: 739: 735: 725: 721: 714: 701: 690: 686: 672: 664: 653:neighborhood 642: 635: 624: 618: 614: 610: 599: 594: 590: 576: 572: 559: 550: 543: 539: 534: 532: 495: 491: 487: 468: 464: 460: 427: 417: 410: 395: 390: 386: 384: 327: 323: 319: 311: 304: 294: 284: 279: 275: 269: 263: 257: 250: 243: 237: 228: 222: 213: 210: 185: 181: 177: 173: 169: 159: 147: 143: 139: 127: 102: 98: 76: 67: 48: 719:, is that 667:; if it is 494:) = –4sin(2 154:derivatives 62:introducing 1244:Categories 1138:5030009434 1090:References 738:= 2, ..., 586:sufficient 548:exists at 524:Conditions 483:derivative 301:Definition 232:, and its 182:inflection 45:references 1233:EMS Press 1213:MathWorld 1155:cite book 1009:↦ 608:given by 467:) = sin(2 307:curvature 295:hyperflex 194:curvature 186:inflexion 132:concavity 70:July 2013 1147:21598952 1105:Calculus 1052:See also 802:f″ 784:f″ 712:odd and 669:negative 661:positive 573:f″ 540:f″ 488:f″ 458:Plot of 372:isolated 344:extremum 341:isolated 184:(rarely 96:Plot of 1235:, 2001 1197:Sources 758:. Then 570:, then 516:/2 and 510:tangent 477:/4 to 5 447:of its 380:tangent 364:extrema 339:has an 202:concave 58:improve 1265:Curves 1182:  1145:  1135:  1111:  960:(0, 0) 939:(0, 0) 506:convex 473:from − 426:is an 270:f'' = 244:f'' = 206:convex 47:, but 906:' 883:' 865:' 756:) ≠ 0 731:) = 0 708:with 651:in a 638:' 582:) = 0 291:order 251:f'' = 180:, or 168:, an 134:of a 120:roots 1180:ISBN 1161:link 1143:OCLC 1133:ISBN 1109:ISBN 1077:Ogee 799:and 744:and 733:for 617:) = 557:and 406:sign 370:are 178:flex 164:and 130:and 118:The 901:if 878:if 742:− 1 717:≥ 3 695:is 655:of 602:= 0 589:an 485:is 418:In 366:of 346:at 278:or 264:f'' 258:f'' 238:f'' 217:of 160:In 150:− 4 146:+ 9 142:− 6 1246:: 1231:, 1225:, 1210:. 1157:}} 1153:{{ 1141:. 987:ax 985:= 973:ax 971:+ 967:= 946:= 934:. 851:– 847:= 811:− 793:+ 675:. 622:. 451:. 408:. 385:A 368:f' 360:f' 337:f' 330:)) 322:, 282:. 229:f' 176:, 172:, 126:, 122:, 101:= 1216:. 1188:. 1163:) 1149:. 1117:. 1037:x 1033:x 1017:x 1014:1 1006:x 983:y 978:a 969:x 965:y 953:x 948:x 944:y 913:) 911:x 909:( 904:f 890:) 888:x 886:( 881:f 872:) 870:x 868:( 863:f 853:x 849:x 845:y 826:( 823:0 820:x 815:) 813:ε 809:0 806:x 804:( 797:) 795:ε 791:0 788:x 786:( 778:. 775:0 772:x 767:) 765:x 763:( 761:f 754:0 751:x 749:( 747:f 740:k 736:n 729:0 726:x 724:( 722:f 715:k 710:k 705:0 702:x 697:k 693:) 691:x 689:( 687:f 657:x 649:x 645:) 643:x 641:( 636:f 631:x 627:f 619:x 615:x 613:( 611:f 606:f 600:x 580:0 577:x 575:( 568:f 563:0 560:x 554:0 551:x 546:) 544:x 542:( 535:f 518:π 514:π 502:f 498:) 496:x 492:x 490:( 479:π 475:π 471:) 469:x 465:x 463:( 461:f 376:f 356:x 352:f 348:x 328:x 326:( 324:f 320:x 318:( 272:0 253:0 246:0 223:C 214:f 156:. 148:x 144:x 140:x 110:. 103:x 99:y 83:) 77:( 72:) 68:( 54:. 20:)

Index

Inflection points
references
inline citations
improve
introducing
Learn how and when to remove this message

stationary point

roots
stationary points
inflection point
concavity
cubic polynomial
derivatives
differential calculus
differential geometry
smooth plane curve
curvature
graph of a function
concave
convex
differentiability class
second derivative
regular point
order
curvature
differentiable function
first derivative
isolated

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.