Knowledge (XXG)

Insect flight

Source 📝

3569: 542:
rushes into the created gap and generates a strong leading edge vortex, and a second one developing at the wingtips. A third, weaker, vortex develops on the trailing edge. The strength of the developing vortices relies, in-part, on the initial gap of the inter-wing separation at the start of the flinging motion. With a decreased gap inter-wing gap indicating a larger lift generation, at the cost of larger drag forces. The implementation of a heaving motion during fling, flexible wings, and a delayed stall mechanism were found to reinforce vortex stability and attachment. Finally, to compensate the overall lower lift production during low Reynolds number flight (with
3487: 3294: 653: 381:
wing at the same angle of attack. By dividing the flapping wing into a large number of motionless positions and then analyzing each position, it would be possible to create a timeline of the instantaneous forces on the wing at every moment. The calculated lift was found to be too small by a factor of three, so researchers realized that there must be unsteady phenomena providing aerodynamic forces. There were several developing analytical models attempting to approximate flow close to a flapping wing. Some researchers predicted force peaks at supination. With a dynamically scaled model of a
3588:, in which a variation called "pod" (for podomeres, limb segments) displayed a mutation that transformed normal wings. The result was interpreted as a triple-jointed leg arrangement with some additional appendages but lacking the tarsus, where the wing's costal surface would normally be. This mutation was reinterpreted as strong evidence for a dorsal exite and endite fusion, rather than a leg, with the appendages fitting in much better with this hypothesis. The innervation, articulation and musculature required for the evolution of wings are already present in the limb segments. 1787:, or stay in one spot in the air, doing so by beating their wings rapidly. Doing so requires sideways stabilization as well as the production of lift. The lifting force is mainly produced by the downstroke. As the wings push down on the surrounding air, the resulting reaction force of the air on the wings pushes the insect up. The wings of most insects are evolved so that, during the upward stroke, the force on the wing is small. Since the downbeat and return stroke force the insect up and down respectively, the insect oscillates and winds up staying in the same position. 188: 468:
flight more efficient as this efficiency becomes more necessary. Additionally, by changing the geometric angle of attack on the downstroke, the insect is able to keep its flight at an optimal efficiency through as many manoeuvres as possible. The development of general thrust is relatively small compared with lift forces. Lift forces may be more than three times the insect's weight, while thrust at even the highest speeds may be as low as 20% of the weight. This force is developed primarily through the less powerful upstroke of the flapping motion.
612: 596: 1770: 641: 629: 3039: 418:. At high angles of attack, the flow separates over the leading edge, but reattaches before reaching the trailing edge. Within this bubble of separated flow is a vortex. Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift. Because the flow has separated, yet it still provides large amounts of lift, this phenomenon is called 176: 312:, use asynchronous muscle; this is a type of muscle that contracts more than once per nerve impulse. This is achieved by the muscle being stimulated to contract again by a release in tension in the muscle, which can happen more rapidly than through simple nerve stimulation alone. This allows the frequency of wing beats to exceed the rate at which the nervous system can send impulses. The asynchronous muscle is one of the final refinements that has appeared in some of the higher Neoptera ( 286: 584: 274: 3049:. When the wings begin to decelerate toward the end of the stroke, this energy must dissipate. During the downstroke, the kinetic energy is dissipated by the muscles themselves and is converted into heat (this heat is sometimes used to maintain core body temperature). Some insects are able to utilize the kinetic energy in the upward movement of the wings to aid in their flight. The wing joints of these insects contain a pad of elastic, rubber-like protein called 443: 502: 482: 3471:, the group of winged insects that includes grasshoppers, evolved from a terrestrial ancestor, making the evolution of wings from gills unlikely. Additional study of the jumping behavior of mayfly larvae has determined that tracheal gills play no role in guiding insect descent, providing further evidence against this evolutionary hypothesis. This leaves two major historic theories: that wings developed from paranotal lobes, extensions of the 3342:), there is no arrangement of frenulum and retinaculum to couple the wings. Instead, an enlarged humeral area of the hindwing is broadly overlapped by the forewing. Despite the absence of a specific mechanical connection, the wings overlap and operate in phase. The power stroke of the forewing pushes down the hindwing in unison. This type of coupling is a variation of frenate type but where the frenulum and retinaculum are completely lost. 455: 22: 414:(smooth) when the Reynolds number is low, and turbulent when it is high. The Wagner effect was ignored, consciously, in at least one model. One of the most important phenomena that occurs during insect flight is leading edge suction. This force is significant to the calculation of efficiency. The concept of leading edge suction first was put forth by D. G. Ellis and J. L. Stollery in 1988 to describe vortex lift on sharp-edged 1144: 1175:
around an airfoil and Stokes flow experienced by a swimming bacterium. For this reason, this intermediate range is not well understood. On the other hand, it is perhaps the most ubiquitous regime among the things we see. Falling leaves and seeds, fishes, and birds all encounter unsteady flows similar to that seen around an insect. The chordwise Reynolds number can be described by:
2166:, applied by the two wings during the downward stroke is two times the weight. Because the pressure applied by the wings is uniformly distributed over the total wing area, that means one can assume the force generated by each wing acts through a single point at the midsection of the wings. During the downward stroke, the center of the wings traverses a vertical distance 1585:(α). The typical angle of attack at 70% wingspan ranges from 25° to 45° in hovering insects (15° in hummingbirds). Despite the wealth of data available for many insects, relatively few experiments report the time variation of α during a stroke. Among these are wind tunnel experiments of a tethered locust and a tethered fly, and free hovering flight of a fruit fly. 3405: 964: 434:
to about 3 grams. As insect body mass increases, wing area increases and wing beat frequency decreases. For larger insects, the Reynolds number (Re) may be as high as 10000, where flow is starting to become turbulent. For smaller insects, it may be as low as 10. This means that viscous effects are much more important to the smaller insects.
3144:/cm. Typically in an insect the size of a bee, the volume of the resilin may be equivalent to a cylinder 2×10 cm long and 4×10 cm in area. In the example given, the length of the resilin rod is increased by 50% when stretched. That is, Δℓ is 10 cm. Therefore, in this case the potential energy stored in the resilin of each wing is: 58:, some 300 to 350 million years ago, making them the first animals to evolve flight. Wings may have evolved from appendages on the sides of existing limbs, which already had nerves, joints, and muscles used for other purposes. These may initially have been used for sailing on water, or to slow the rate of descent when gliding. 2014: 3451:
How and why insect wings developed is not well understood, largely due to the scarcity of appropriate fossils from the period of their development in the Lower Carboniferous. There have historically been three main theories on the origins of insect flight. The first was that they are modifications of
2149:
In the examples used the frequency used is 110 beats/s, which is the typical frequency found in insects. Butterflies have a much slower frequency with about 10 beats/s, which means that they can't hover. Other insects may be able to produce a frequency of 1000 beats/s. To restore the insect
1790:
The distance the insect falls between wingbeats depends on how rapidly its wings are beating: the slower it flaps, the longer the interval in which it falls, and the farther it falls between each wingbeat. One can calculate the wingbeat frequency necessary for the insect to maintain a given stability
1169:
and an airfoil: An insect wing is much smaller and it flaps. Using a dragonfly as an example, Its chord (c) is about 1 cm (0.39 in), its wing length (l) about 4 cm (1.6 in), and its wing frequency (f) about 40 Hz. The tip speed (u) is about 1 m/s (3.3 ft/s), and the
467:
Another interesting feature of insect flight is the body tilt. As flight speed increases, the insect body tends to tilt nose-down and become more horizontal. This reduces the frontal area and therefore, the body drag. Since drag also increases as forward velocity increases, the insect is making its
433:
All of the effects on a flapping wing may be reduced to three major sources of aerodynamic phenomena: the leading edge vortex, the steady-state aerodynamic forces on the wing, and the wing's contact with its wake from previous strokes. The size of flying insects ranges from about 20 micrograms
380:
Identification of major forces is critical to understanding insect flight. The first attempts to understand flapping wings assumed a quasi-steady state. This means that the air flow over the wing at any given time was assumed to be the same as how the flow would be over a non-flapping, steady-state
327:
Asynchronous muscle is, by definition, under relatively coarse control by the nervous system. To balance this evolutionary trade-off, insects that evolved indirect flight have also developed a separate neuromuscular system for fine-grained control of the wingstroke. Known as "direct muscles", these
3060:
Using a few simplifying assumptions, we can calculate the amount of energy stored in the stretched resilin. Although the resilin is bent into a complex shape, the example given shows the calculation as a straight rod of area A and length. Furthermore, we will assume that throughout the stretch the
2496:
In the calculation of the power used in hovering, the examples used neglected the kinetic energy of the moving wings. The wings of insects, light as they are, have a finite mass; therefore, as they move they possess kinetic energy. Because the wings are in rotary motion, the maximum kinetic energy
549:
The overall largest expected drag forces occur during the dorsal fling motion, as the wings need to separate and rotate. The attenuation of the large drag forces occurs through several mechanisms. Flexible wings were found to decrease the drag in flinging motion by up to 50% and further reduce the
3547:
and enable the insect to land more softly. The theory suggests that these lobes gradually grew larger and in a later stage developed a joint with the thorax. Even later would appear the muscles to move these crude wings. This model implies a progressive increase in the effectiveness of the wings,
1588:
Because they are relatively easy to measure, the wing-tip trajectories have been reported more frequently. For example, selecting only flight sequences that produced enough lift to support a weight, will show that the wing tip follows an elliptical shape. Noncrossing shapes were also reported for
401:
in 1925, says that circulation rises slowly to its steady-state due to viscosity when an inclined wing is accelerated from rest. This phenomenon would explain a lift value that is less than what is predicted. Typically, the case has been to find sources for the added lift. It has been argued that
1174:
has a wing length of about 0.5–0.7 mm (0.020–0.028 in) and beats its wing at about 400 Hz. Its Reynolds number is about 25. The range of Reynolds number in insect flight is about 10 to 10, which lies in between the two limits that are convenient for theories: inviscid steady flows
541:
Lift generation from the clap and fling mechanism occurs during several processes throughout the motion. First, the mechanism relies on a wing-wing interaction, as a single wing motion does not produce sufficient lift. As the wings rotate about the trailing edge in the flinging motion, air
168:
have fore and hind wings similar in shape and size. Each operates independently, which gives a degree of fine control and mobility in terms of the abruptness with which they can change direction and speed, not seen in other flying insects. Odonates are all aerial predators, and they have always
537:
and utilize the leading edge during an upstroke rowing motion. As the clap motion begins, the leading edges meet and rotate together until the gap vanishes. Initially, it was thought that the wings were touching, but several incidents indicate a gap between the wings and suggest it provides an
304:
Insects that beat their wings fewer than one hundred times a second use synchronous muscle. Synchronous muscle is a type of muscle that contracts once for every nerve impulse. This generally produces less power and is less efficient than asynchronous muscle, which accounts for the independent
3021: 556:, cause a porosity in the flow which augments and reduces the drag forces, at the cost of lower lift generation. Further, the inter-wing separation before fling plays an important role in the overall effect of drag. As the distance increases between the wings, the overall drag decreases. 1139:{\displaystyle {\begin{aligned}{\frac {\partial \mathbf {u} }{\partial t}}+\left(\mathbf {u} \cdot \nabla \right)\mathbf {u} &=-{\frac {\nabla p}{\rho }}+v\nabla ^{2}\mathbf {u} \\\nabla \cdot \mathbf {u} &=0\\\mathbf {u} _{\text{bd}}&=\mathbf {u} _{\text{s}}.\end{aligned}}} 2389:
of the air that is accelerated by the downward stroke of the wings. The power is the amount of work done in 1 s; in the insect used as an example, makes 110 downward strokes per second. Therefore, its power output P is, strokes per second, and that means its power output P is:
532:
become dominant and the efficacy of lift generation from an airfoil decreases drastically. Starting from the clap position, the two wings fling apart and rotate about the trailing edge. The wings then separate and sweep horizontally until the end of the downstroke. Next, the wings
834: 385:, these predicted forces later were confirmed. Others argued that the force peaks during supination and pronation are caused by an unknown rotational effect that fundamentally is different from the translational phenomena. There is some disagreement with this argument. Through 3521:
gills, which started their way as exits of the respiratory system and over time were modified into locomotive purposes, eventually developed into wings. The tracheal gills are equipped with little winglets that perpetually vibrate and have their own tiny straight muscles.
3273: 392:
Similar to the rotational effect mentioned above, the phenomena associated with flapping wings are not completely understood or agreed upon. Because every model is an approximation, different models leave out effects that are presumed to be negligible. For example, the
3560:. Still, lack of substantial fossil evidence of the development of the wing joints and muscles poses a major difficulty to the theory, as does the seemingly spontaneous development of articulation and venation, and it has been largely rejected by experts in the field. 2486: 422:, first noticed on aircraft propellers by H. Himmelskamp in 1945. This effect was observed in flapping insect flight and it was proven to be capable of providing enough lift to account for the deficiency in the quasi-steady-state models. This effect is used by 240:; it corresponds, probably not coincidentally, with the appearance of a wing-folding mechanism, which allows Neopteran insects to fold the wings back over the abdomen when at rest (though this ability has been lost secondarily in some groups, such as in the 328:
muscles attach directly to the sclerites that make up the wing hinge and are contract with 1:1 impulses from motor neurons. Recent work has begun to address the complex non-linear muscular dynamics at the wing hinge and its effects on the wingtip path.
1859:
The upward stroke then restores the insect to its original position. Typically, it may be required that the vertical position of the insect changes by no more than 0.1 mm (i.e., h = 0.1 mm). The maximum allowable time for free fall is then
3278:
The stored energy in the two wings for a bee-sized insect is 36 erg, which is comparable to the kinetic energy in the upstroke of the wings. Experiments show that as much as 80% of the kinetic energy of the wing may be stored in the resilin.
1866: 2805: 208: 3641:
with both tergal and pleural structures, potentially resolving the centuries-old debate. Jakub Prokop and colleagues have in 2017 found palaeontological evidence from Paleozoic nymphal wing pads that wings indeed had such a dual origin.
3542:
that would have assisted stabilization while hopping or falling. In favor of this hypothesis is the tendency of most insects, when startled while climbing on branches, to escape by dropping to the ground. Such lobes would have served as
652: 2384:
This is a negligible fraction of the total energy expended which clearly, most of the energy is expended in other processes. A more detailed analysis of the problem shows that the work done by the wings is converted primarily into
2379: 941: 1791:
in its amplitude. To simplify the calculations, one must assume that the lifting force is at a finite constant value while the wings are moving down and that it is zero while the wings are moving up. During the time interval Δ
2298: 2877: 214: 213: 210: 209: 1357: 2232: 215: 2698: 3131: 231:
Other than the two orders with direct flight muscles, all other living winged insects fly using a different mechanism, involving indirect flight muscles. This mechanism evolved once and is the defining feature
2237:
If the wings swing through the beat at an angle of 70°, then in the case presented for the insect with 1 cm long wings, d is 0.57 cm. Therefore, the work done during each stroke by the two wings is:
373:(Hz). In those with asynchronous flight muscles, wing beat frequency may exceed 1000 Hz. When the insect is hovering, the two strokes take the same amount of time. A slower downstroke, however, provides 2810:
The velocity of the wings is zero both at the beginning and at the end of the wing stroke, meaning the maximum linear velocity is higher than the average velocity. If we assume that the velocity oscillates
708: 5058:
Dickerson, Bradley H., Alysha M. de Souza, Ainul Huda, and Michael H. Dickinson. "Flies regulate wing motion via active control of a dual-function gyroscope." Current Biology 29, no. 20 (2019): 3517-3524.
2866: 2144: 69:, have flight muscles attached directly to the wings. In other winged insects, flight muscles attach to the thorax, which make it oscillate in order to induce the wings to beat. Of these insects, some ( 2552: 2154:, must be equal to twice the weight of the insect. Note that since the upward force on the insect body is applied only for half the time, the average upward force on the insect is simply its weight. 2084: 3150: 3517:
in 1905 have suggested that a possible origin for insect wings might have been movable abdominal gills found in many aquatic insects, such as on naiads of mayflies. According to this theory these
212: 5772:
Niwa, Nao; Akimoto-Kato, Ai; Niimi, Teruyuki; Tojo, Koji; Machida, Ryuichiro; Hayashi, Shigeo (2010-03-17). "Evolutionary origin of the insect wing via integration of two developmental modules".
255:, the deformations of the thorax cause the wings to move as well. A set of longitudinal muscles along the back compresses the thorax from front to back, causing the dorsal surface of the thorax ( 2396: 969: 5067:
Wolf, Harald. "The locust tegula: significance for flight rhythm generation, wing movement control and aerodynamic force production." Journal of Experimental Biology 182, no. 1 (1993): 229-253.
187: 3534:
in 1875 and reworked by G. Crampton in 1916, Jarmila Kukalova-Peck in 1978 and Alexander P. Rasnitsyn in 1981 among others, suggests that the insect's wings developed from paranotal lobes, a
1854: 5171: 1225: 2623: 864:
of a 2D airfoil further assumes that the flow leaves the sharp trailing edge smoothly, and this determines the total circulation around an airfoil. The corresponding lift is given by
1523:
In addition to the Reynolds number, there are at least two other relevant dimensionless parameters. A wing has three velocity scales: the flapping velocity with respect to the body (
285: 4119: 5077:
Misof, B.; Liu, S.; Meusemann, K.; Peters, R. S.; Donath, A.; Mayer, C.; Frandsen, P.; et al. (2014). "Phylogenomics resolves the timing and pattern of insect evolution".
3693: 1268: 595: 127:, generating large lift forces at the expense of wear and tear on the wings. Many insects can hover, maintaining height and controlling their position. Some insects such as 5049:
Sane, Sanjay P., Alexandre Dieudonné, Mark A. Willis, and Thomas L. Daniel. "Antennal mechanosensors mediate flight control in moths." science 315, no. 5813 (2007): 863-866.
2009:{\displaystyle \Delta t=\left({\frac {2h}{g}}\right)^{1/2}={\sqrt {\frac {2\times 10^{-2}{\text{ cm}}}{980{\text{ cm}}/{\text{s}}^{2}}}}\approx 4.5\times 10^{-3}{\text{ s}}} 156:(dragonflies and damselflies) insert directly at the wing bases, which are hinged so that a small downward movement of the wing base lifts the wing itself upward, much like 1391: 357:. These flapping wings move through two basic half-strokes. The downstroke starts up and back and is plunged downward and forward. Then the wing is quickly flipped over ( 77:) achieve very high wingbeat frequencies through the evolution of an "asynchronous" nervous system, in which the thorax oscillates faster than the rate of nerve impulses. 611: 1161:
the velocity of the solid. By choosing a length scale, L, and velocity scale, U, the equation can be expressed in nondimensional form containing the Reynolds number, R
1431: 2720: 1589:
other insects. Regardless of their exact shapes, the plugging-down motion indicates that insects may use aerodynamic drag in addition to lift to support its weight.
389:, some researchers argue that there is no rotational effect. They claim that the high forces are caused by an interaction with the wake shed by the previous stroke. 1478: 640: 2714:
traversed by the center of the wing divided by the duration Δt of the wing stroke. From our previous example, d = 0.57 cm and Δt = 4.5×10 s. Therefore:
1581:ψ(t), about the axis connecting the root and the tip. To estimate the aerodynamic forces based on blade-element analysis, it is also necessary to determine the 1518: 1498: 1451: 1411: 175: 2313: 6443: 628: 6420: 954:, or velocity relative to the speed of sound in air, is typically 1/300 and the wing frequency is about 10–103 Hz. Using the governing equation as the 878: 273: 2244: 3428:, some 350 to 300 million years ago, when there were only two major land masses, insects began flying. Among the oldest winged insect fossils is 3016:{\displaystyle KE={\frac {1}{2}}I\omega _{max}^{2}=\left(10^{-3}{\frac {\ell ^{2}}{3}}\right)\left({\frac {254}{\ell /2}}\right)^{2}=43{\text{ erg}}} 211: 3621:
Stephen P. Yanoviak and colleagues proposed in 2009 that the wing derives from directed aerial gliding descent—a preflight phenomenon found in some
3057:
in the stretched resilin, which stores the energy much like a spring. When the wing moves down, this energy is released and aids in the downstroke.
676:, which follows the conventions found in aerodynamics. The force component normal to the direction of the flow relative to the wing is called lift ( 3568: 5491:
Kukalova-Peck, Jarmila (1978). "Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record".
2019:
Since the up movements and the down movements of the wings are about equal in duration, the period T for a complete up-and-down wing is twice Δ
1273: 4967: 4281: 3707: 3699: 2577:
for the wing, we will assume that the wing can be approximated by a thin rod pivoted at one end. The moment of inertia for the wing is then:
2176: 684:). At the Reynolds numbers considered here, an appropriate force unit is 1/2(ρUS), where ρ is the density of the fluid, S the wing area, and 574:(a fly), exploit a partial clap and fling, using the mechanism only on the outer part of the wing to increase lift by some 7% when hovering. 2646: 251:
work: these muscles, rather than attaching to the wings, attach to the thorax and deform it; since the wings are extensions of the thoracic
2628:
Where l is the length of the wing (1 cm) and m is the mass of two wings, which may be typically 10 g. The maximum angular velocity, ω
3075: 3026:
Since there are two wing strokes (the upstroke and downstroke) in each cycle of the wing movement, the kinetic energy is 2×43 = 86 
3293: 829:{\displaystyle C_{\text{L}}(\alpha )={\frac {2L}{\rho U^{2}S}}\quad {\text{and}}\quad C_{\text{D}}(\alpha )={\frac {2D}{\rho U^{2}S}}.} 361:) so that the leading edge is pointed backward. The upstroke then pushes the wing upward and backward. Then the wing is flipped again ( 5947:
Prokop, Jakub; PecharovĂĄ, Martina; Nel, AndrĂ©; Hörnschemeyer, Thomas; KrzemiƄska, Ewa; KrzemiƄski, WiesƂaw; Engel, Michael S. (2017).
3486: 3779:
Josephson, Robert K.; Malamud, Jean G.; Stokes, Darrell R. (2001). "The efficiency of an asynchronous flight muscle from a beetle".
2162:
One can now compute the power required to maintain hovering by, considering again an insect with mass m 0.1 g, average force, F
2815:) along the wing path, the maximum velocity is twice as high as the average velocity. Therefore, the maximum angular velocity is: 4790: 4008: 2821: 2095: 3268:{\displaystyle U={\frac {1}{2}}{\frac {1.8\times 10^{7}\times 4\times 10^{-4}\times 10^{-4}}{2\times 10^{-2}}}=18\ {\text{erg}}} 2503: 583: 5023: 4821: 4625: 4574: 4484: 4369: 4065: 3828: 3781: 3506: 3320:
The more primitive groups have an enlarged lobe-like area near the basal posterior margin, i.e. at the base of the forewing, a
2029: 1573:
wing is approximately so, its motion relative to a fixed body can be described by three variables: the position of the tip in
4959: 3633:
Biologists including Averof, Niwa, Elias-Neto and their colleagues have begun to explore the origin of the insect wing using
324:). The overall effect is that many higher Neoptera can beat their wings much faster than insects with direct flight muscles. 3614:
and Åke Norberg suggested in 2003 that wings may have evolved initially for sailing on the surface of water as seen in some
2481:{\displaystyle {\text{P}}=112{\text{erg}}\times 110{\text{/s}}=1.23\times 10^{4}{\text{erg/s}}=1.23\times 10^{-3}{\text{W}}} 546:), tiny insects often have a higher stroke frequency to generate wing-tip velocities that are comparable to larger insects. 6142:
Lewin, G. C.; Haj-Hariri, H. (2003). "Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow".
869: 658:
Fling 3: new vortex forms at leading edge, trailing edge vortices cancel each other, perhaps helping flow to grow faster (
5404:
Crampton, G. (1916). "The Phylogenetic Origin and the Nature of the Wings of Insects According to the Paranotal Theory".
3713: 386: 6452: 5007:
Woiwod, I.P.; Reynolds, D.R.; Thomas, C.D. (Eds) 2001. Insect Movement: Mechanisms and Consequences. CAB International.
5387: 1574: 264: 5169:
Tillyard, R. J. (2009). "Some remarks on the Devonian fossil insects from the Rhynie chert beds, Old Red Sandstone".
1805: 6477: 5441: 4914: 4210: 3656: 534: 342:
There are two basic aerodynamic models of insect flight: creating a leading edge vortex, and using clap and fling.
6440: 6435: 6368:
Zbikowski, R. (2002). "On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles".
6010:
Dickinson, M. H.; Lehmann, F. O.; Sane, S. P. (1999). "Wing rotation and the aerodynamic basis of insect flight".
4057: 6040: 5597: 3611: 3065:. This is not strictly true as the resilin is stretched by a considerable amount and therefore both the area and 1180: 550:
overall drag through the entire wing stroke when compared to rigid wings. Bristles on the wing edges, as seen in
4367:(1973). "Quick estimates of flight fitness in hovering animals, including novel mechanisms of lift production". 860:
around an airfoil can be approximated by a potential flow satisfying the no-penetration boundary condition. The
2583: 2170:. The total work done by the insect during each downward stroke is the product of force and distance; that is, 1775: 528:, is a lift generation method utilized during small insect flight. As insect sizes become less than 1 mm, 3053:. During the upstroke of the wing, the resilin is stretched. The kinetic energy of the wing is converted into 865: 5142:[A Lower Carboniferous insect from the Bitterfeld/Delitzsch area (Pterygota, Arnsbergian, Germany)]. 116:
before shedding their wings after mating, while the members of other castes are wingless their entire lives.
861: 382: 248: 2089:
The frequency of the beats, f, meaning the number of wingbeats per second, is represented by the equation:
6482: 3313:
which render these taxa functionally two-winged. All but the most basal forms exhibit this wing-coupling.
955: 5261:"Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects" 1553:, the former is often referred to as the advance ratio, and it is also related to the reduced frequency, 5713:
Averof, Michalis; Cohen, Stephen M. (1997). "Evolutionary origin of insect wings from ancestral gills".
5546: 5493: 4621:"The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings" 1769: 1741: 856:
may reach a steady state when it slices through the fluid at a small angle of attack. In this case, the
89: 5825:"Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches" 5140:"Ein unter-karbonisches Insekt aus dem Raum Bitterfeld/Delitzsch (Pterygota, Arnsbergium, Deutschland)" 3572:
Generalized arthropod biramous limb. Trueman proposed that an endite and an exite fused to form a wing.
3038: 6425: 1231: 6377: 6305: 6151: 6089: 6080:
Ellington, C. P. (1984). "The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis".
6052: 5962: 5836: 5722: 5609: 5339: 5272: 5088: 4755: 4690: 4456: 4338: 4128: 4017: 3824: 3745: 3597: 3518: 3425: 1784: 1637: 1578: 427: 4734:
Kasoju, V.; Santhanakrishnan, A. (2021). "Aerodynamic interaction of bristled wing pairs in fling".
4794: 4399:
Santhanakrishnan, A.; Robinson, A.; Jones, S.; Low, A.; Gadi, S.; Hendrick, T.; Miller, L. (2014).
4342: 3736: 3638: 947: 6370:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
4858: 1364: 1153:(x, t) is the flow field, p the pressure, ρ the density of the fluid, Μ the kinematic viscosity, u 6457: 6401: 6280: 6213: 6167: 6068: 5805: 5754: 5579: 5526: 5449: 5413: 5365: 5120: 4918: 4771: 4745: 4652: 4601: 4547: 4092: 4000: 3887: 3384:
to maintain and control flight. Research has demonstrated the role of sensory structures such as
3351:
The biochemistry of insect flight has been a focus of considerable study. While many insects use
4154: 3069:
change in the process of stretching. The potential energy U stored in the stretched resilin is:
3066: 4445:"Two- and three- dimensional numerical simulations of the clap-fling-sweep of hovering insects" 4177: 2800:{\displaystyle v_{av}={\frac {d}{\Delta t}}={\frac {0.57}{4.5\times 10^{-3}}}=127{\text{cm/s}}} 6393: 6356: 6336: 6205: 6130: 6110: 6027: 5988: 5980: 5929: 5911: 5870: 5852: 5797: 5789: 5746: 5738: 5695: 5625: 5571: 5563: 5518: 5510: 5385:
Trueman, J. W. H. (1990), Comment: evolution of insect wings: a limb exite plus endite model.
5357: 5308: 5290: 5241: 5188: 5112: 5104: 5079: 4963: 4840: 4736: 4716: 4644: 4593: 4539: 4422: 4320: 4277: 4110: 4084: 3951: 3879: 3871: 3806: 3798: 3761: 3703: 3435: 3413: 3385: 2574: 570: 564: 513: 398: 1416: 6385: 6348: 6321: 6313: 6272: 6238: 6197: 6159: 6122: 6097: 6060: 6019: 5970: 5919: 5901: 5860: 5844: 5781: 5730: 5685: 5677: 5643:
Marden, James (2003). "The Surface-Skimming Hypothesis for the Evolution of Insect Flight".
5617: 5555: 5502: 5347: 5298: 5280: 5231: 5221: 5180: 5151: 5096: 5032: 4830: 4763: 4706: 4698: 4634: 4583: 4529: 4493: 4464: 4412: 4378: 4364: 4310: 4136: 4074: 4025: 3941: 3933: 3861: 3790: 3753: 3666: 3327:
Other groups have a frenulum on the hindwing that hooks under a retinaculum on the forewing.
3054: 2570: 659: 623:
Black (curved) arrows: flow; Blue arrows: induced velocity; Orange arrows: net force on wing
552: 525: 354: 27: 4029: 1456: 501: 481: 21: 6447: 6226: 5953: 5668: 5461: 4884: 3584:, also called the pleural hypothesis. This was based on a study by Goldschmidt in 1945 on 3502: 3478:; or that they arose from modifications of leg segments, which already contained muscles. 3460: 3316:
The mechanisms are of three different types – jugal, frenulo-retinacular and amplexiform:
1582: 508: 442: 403: 85: 5474: 3531: 3366:
as their energy source. Some species also use a combination of sources and moths such as
2150:
to its original vertical position, the average upward force during the downward stroke, F
6430: 6381: 6309: 6155: 6093: 6056: 5966: 5840: 5726: 5613: 5343: 5328:"Jumping and the aerial behavior of aquatic mayfly larvae (Myobaetis ellenae, Baetidae)" 5276: 5092: 4759: 4694: 4468: 4460: 4132: 4021: 3946: 3749: 2374:{\displaystyle {\text{E}}={\text{mgh}}=0.1\times 980\times 10^{-2}=0.98{\text{erg}}\,\!} 6326: 6293: 5924: 5889: 5865: 5824: 5690: 5663: 5303: 5260: 5236: 5207: 5184: 4711: 4678: 4273: 3514: 3445: 3062: 2386: 1503: 1483: 1436: 1396: 673: 529: 492: 454: 113: 6462: 6227:"The role of vortices and unsteady effects during the hovering flight of dragon flies" 3757: 3305:
Some four-winged insect orders, such as the Lepidoptera, have developed morphological
6471: 6171: 5785: 5621: 5600:; Norberg, R. Åke (1996). "Skimming the surface — the origin of flight in insects?". 5544:
Rasnitsyn, Alexander P. (1981). "A modified paranotal theory of insect wing origin".
5369: 5155: 5139: 4775: 3891: 3581: 3577: 3535: 3409: 3368: 3352: 3306: 3298: 3288: 936:{\displaystyle C_{\text{L}}=2\pi \sin \alpha \quad {\text{and}}\quad C_{\text{D}}=0.} 857: 394: 132: 55: 6217: 5809: 5583: 5530: 5124: 4656: 4551: 4209:
Himmelskamp, H. (1945) "Profile investigations on a rotating airscrew". PhD thesis,
4096: 6405: 6072: 5906: 5758: 4679:"Wing-kinematics measurement and aerodynamics in a small insect in hovering flight" 4605: 3996: 3510: 3498: 3468: 3440: 3430: 1171: 602: 543: 411: 351: 337: 233: 120: 43: 6023: 2293:{\displaystyle {\text{Work}}=2\times 0.1\times 980\times 0.57=112{\text{erg}}\,\!} 6260: 4953: 4267: 2703:
During each stroke the center of the wings moves with an average linear velocity
6261:"Recordings of high wing-stroke and thoracic vibration frequency in some midges" 3661: 3651: 3549: 3417: 3335: 3331: 2307:
required to raise the mass of the insect 0.1 mm during each downstroke is:
1728: 1166: 951: 419: 321: 296: 252: 241: 165: 161: 97: 47: 4482:
Bennett, L. (1977). "Clap and fling aerodynamics- an experimental evaluation".
3925: 524:
Clap and fling, or the Weis-Fogh mechanism, discovered by the Danish zoologist
6163: 5975: 5948: 5352: 5327: 3937: 3622: 3360: 3339: 3140:
is the Young's modulus for resilin, which has been measured to be 1.8×10 
3046: 2812: 1569: 415: 407: 358: 313: 93: 6111:"The novel aerodynamics of insect flight: Applications to micro-air vehicles" 5984: 5915: 5856: 5793: 5742: 5567: 5514: 5294: 5192: 5108: 4401:"Clap and fling mechanism with interacting porous wing in tiny insect flight" 4324: 4315: 4298: 4140: 3875: 3802: 852:
are constants only if the flow is steady. A special class of objects such as
259:) to bow upward, making the wings flip down. Another set of muscles from the 6352: 6126: 5559: 5506: 5285: 5100: 4989:(pp. 631-664) in Resh, & Cardé (Eds). "Encyclopedia of Insects". 2003. 3794: 3544: 3453: 1715: 1676: 1650: 1611: 423: 369:
range in insects with synchronous flight muscles typically is 5 to 200 
366: 362: 309: 305:
evolution of asynchronous flight muscles in several separate insect clades.
32: 6431:
The Novel Aerodynamics Of Insect Flight: Applications To Micro-Air Vehicles
6397: 6389: 6360: 6317: 6209: 6134: 6101: 6031: 5992: 5933: 5888:
Tomoyasu, Yoshinori; Ohde, Takahiro; Clark-Hachtel, Courtney (2017-03-14).
5874: 5801: 5699: 5681: 5629: 5575: 5522: 5361: 5312: 5245: 5116: 4922: 4844: 4720: 4648: 4597: 4570:"The aerodynamic effects of wing-wing interaction in flapping insect wings" 4543: 4426: 4088: 3955: 3883: 3810: 3765: 3396:
in controlling flight posture, wingbeat amplitude, and wingbeat frequency.
5750: 5036: 4299:"Investigation into Reynolds number effects on a biomimetic flapping wing" 3404: 680:), and the force component in the opposite direction of the flow is drag ( 4497: 4382: 3926:"Machine learning reveals the control mechanics of the insect wing hinge" 3634: 3615: 3605: 3472: 3464: 3389: 3381: 2633: 1702: 1689: 1663: 292: 237: 66: 6242: 5848: 5417: 3580:, appendages on the respective inner and outer aspects of the primitive 3530:
The paranotal lobe or tergal (dorsal body wall) hypothesis, proposed by
1352:{\displaystyle r_{g}={\sqrt {{\frac {1}{s}}\int _{0}^{R}{r^{2}c(R)dr}}}} 6284: 5949:"Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins" 5226: 4835: 4816: 4534: 4517: 4417: 4400: 3866: 3849: 3637:
in addition to palaeontological evidence. This suggests that wings are
3553: 3363: 3050: 2562: 2227:{\displaystyle {\text{Work}}=F_{av}\times d={\text{2W}}_{\text{d}}\,\!} 1170:
corresponding Reynolds number about 103. At the smaller end, a typical
853: 560: 317: 194: 153: 105: 62: 6298:
Philosophical Transactions of the Royal Society B: Biological Sciences
6201: 6082:
Philosophical Transactions of the Royal Society B: Biological Sciences
4767: 4702: 4639: 4620: 4588: 4569: 4079: 3905:
Heide, G.G. (1983). "Neural mechanisms of flight control in Diptera".
2693:{\displaystyle \omega _{\text{max}}={\frac {v_{\text{max}}}{\ell /2}}} 617:
Clap 3: trailing edges close, vortices shed, wings close giving thrust
406:
that is typical of insect flight. The Reynolds number is a measure of
6064: 5734: 4114: 3601: 3557: 3539: 3490: 3356: 3045:
Insects gain kinetic energy, provided by the muscles, when the wings
1754: 1624: 488: 374: 260: 198: 157: 149: 81: 74: 51: 39: 6276: 197:(dragonflies and damselflies) have direct flight musculature, as do 6039:
Ellington, Charles P.; Van Den Berg, Coen; Willmott, Alexander P.;
5890:"What serial homologs can tell us about the origin of insect wings" 4750: 3126:{\displaystyle U={\frac {1}{2}}{\frac {EA\Delta \ell ^{2}}{\ell }}} 2303:
The energy is used to raise the insect against gravity. The energy
6250:
Smyth, T. Jr. (1985). "Muscle systems". In Blum, M.S. Blum (ed.).
5212: 4444: 3825:"Definition of Asynchronous muscle in the Entomologists' glossary" 3576:
In 1990, J. W. H. Trueman proposed that the wing was adapted from
3567: 3485: 3475: 3403: 3310: 3037: 3030:. This is about as much energy as is consumed in hovering itself. 1768: 958:
being subject to the no-slip boundary condition, the equation is:
568:, a sea butterfly. Some insects, such as the vegetable leaf miner 370: 267:
pulls the notum downward again, causing the wings to flip upward.
256: 109: 70: 4998:
Gorb, S. (2001) Ch 4.1.5 "Inter-locking of body parts". pp 46–50.
4297:
Hope, Daniel K; DeLuca, Anthony M.; O'Hara, Ryan P (2018-01-03).
3359:
as the energy source for flight, many beetles and flies use the
4115:"Über die Entstehung des dynamischen Auftriebes von TragflĂŒgeln" 3456: 3448:, but it is uncertain if it had wings, or indeed was an insect. 3393: 3141: 646:
Fling 2: leading edge moves away, air rushes in, increasing lift
247:
What all Neoptera share, however, is the way the muscles in the
128: 4443:
Kolomenskiy, D; Moffatt, H.; Farge, M.; Schneider, K. (2011).
3848:
Deora, Tanvi; Gundiah, Namrata; Sane, Sanjay P. (2017-04-15).
3027: 279:
Indirect flight: muscles make thorax oscillate in most insects
101: 5664:"Gliding hexapods and the origins of insect aerial behaviour" 6337:"Rotational lift: something difference or more of the same?" 5208:"The presumed oldest flying insect: more likely a myriapod?" 5017:
Joos, B. (1987). "Carbohydrate use in the flight muscles of
4911:
The Biomechanics of Insect Flight: Form, Function, Evolution
4178:"The Behaviour and Performance of Leading-Edge Vortex Flaps" 559:
The clap and fling mechanism is also employed by the marine
181:
Direct flight: muscles attached to wings. Large insects only
5144:
Neues Jahrbuch fĂŒr Geologie und PalĂ€ontologie - Monatshefte
2861:{\displaystyle \omega _{\text{max}}={\frac {254}{\ell /2}}} 2139:{\displaystyle f={\frac {1}{T}}\approx 110{\text{ s}}^{-1}} 491:
are unsuitable for leading edge vortex flight, but support
5721:(6617). Springer Science and Business Media LLC: 627–630. 2547:{\displaystyle KE={\frac {1}{2}}I\omega _{\text{max}}^{2}} 688:
the wing speed. The dimensionless forces are called lift (
6421:
An Insect's Role In The Development Of Micro Air Vehicles
6188:
Sane, S. P. (2003). "The aerodynamics of insect flight".
5172:
Transactions of the Royal Entomological Society of London
4191:. International Council of Aeronautical Sciences: 758–765 4117:[On the origin of the dynamic lift of airfoils]. 634:
Fling 1: wings rotate around trailing edge to fling apart
4791:"Swim Like a Butterfly? Sea Snail 'Flies' Through Water" 2079:{\displaystyle T=2\,\Delta t=9\times 10^{-3}{\text{ s}}} 1538:). The ratios of them form two dimensionless variables, 308:
Insects that beat their wings more rapidly, such as the
299:
and most other insects, have indirect flight musculature
4942:
in Capinera (Ed) (2008) "Encyc. Entom.", Vol 4. p. 4266
4815:
Murphy, D.; Adhikari, D.; Webster, D.; Yen, J. (2016).
6453:
Flow visualization of butterfly aerodynamic mechanisms
5662:
Yanoviak, Stephen P.; Kaspari, M.; Dudley, R. (2009).
3924:
Melis, Johan M.; Dickinson, Michael H. (2023-06-30).
3153: 3078: 2880: 2824: 2723: 2649: 2586: 2506: 2399: 2316: 2247: 2179: 2098: 2032: 1869: 1808: 1506: 1486: 1459: 1439: 1419: 1399: 1367: 1276: 1234: 1183: 1165:=uL/Μ . There are two obvious differences between an 967: 946:
The flows around birds and insects can be considered
881: 711: 119:
Some very small insects make use not of steady-state
3695:
Numbers of living species in Australia and the World
1795:
of the upward wingbeat, the insect drops a distance
350:
Most insects use a method that creates a spiralling
5259:Wipfler, Benjamin; et al. (19 February 2019). 4817:"Underwater flight by the planktonic sea butterfly" 80:Not all insects are capable of flight. A number of 6225:Savage, S. B.; Newman, B.G.; Wong, D.T.M. (1979). 6043:(1996). "Leading-edge vortices in insect flight". 5326:Yanoviak, Stephen P.; Dudley, Robert (July 2018). 4120:Zeitschrift fĂŒr Angewandte Mathematik und Mechanik 3267: 3125: 3015: 2860: 2799: 2692: 2617: 2546: 2480: 2373: 2292: 2226: 2138: 2078: 2008: 1848: 1512: 1492: 1472: 1445: 1425: 1405: 1385: 1351: 1262: 1219: 1138: 935: 828: 35:has flight muscles attached directly to its wings. 4672: 4670: 4668: 4666: 3734:Smith, D.S. (1965). "Flight muscles of insects". 3625:, a wingless sister taxon to the winged insects. 2370: 2289: 2223: 601:Clap 2: leading edges touch, wing rotates around 6294:"The vortex wake of a 'hovering' model hawkmoth" 5399: 5397: 4568:Lehmann, F.-O.; Sane, S.; Dickinson, M. (2005). 5265:Proceedings of the National Academy of Sciences 4518:"Flexible clap and fling in tiny insect flight" 1520:is the length of wing, including the wing tip. 578:Clap and fling flight mechanism after Sane 2003 5138:Brauckmann, Carsten; Schneider, Joerg (1996). 4051: 4049: 4047: 4045: 4043: 4041: 4039: 1849:{\displaystyle h={\frac {g(\Delta t^{2})}{2}}} 148:Unlike other insects, the wing muscles of the 135:to the hindwings so these can work in unison. 86:secondarily lost their wings through evolution 5406:Journal of the New York Entomological Society 4955:The Lepidoptera: Form, Function and Diversity 4885:"Butterflies in the Pieridae family (whites)" 3600:'s 1973 suggestion that wings developed from 112:reproductive castes develop wings during the 8: 6426:Insect-like Flapping-Wing Micro Air Vehicles 4904: 4902: 2632:, can be calculated from the maximum linear 6292:Van Den Berg, C.; Ellington, C. P. (1997). 5823:Elias-Neto, MoysĂ©s; Belles, Xavier (2016). 5436:Grimaldi, David; Engel, Michael S. (2005). 5431: 5429: 5427: 4981: 4979: 4303:International Journal of Micro Air Vehicles 4261: 4259: 4257: 4255: 4253: 4251: 4249: 4247: 4245: 4243: 4241: 4239: 1567:If an insect wing is rigid, for example, a 1220:{\displaystyle Re={\frac {{\bar {c}}U}{v}}} 5381: 5379: 4237: 4235: 4233: 4231: 4229: 4227: 4225: 4223: 4221: 4219: 3991: 3467:. Phylogenomic analysis suggests that the 3372:use carbohydrates for pre-flight warm-up. 3324:, that folds under the hindwing in flight. 1596: 402:this effect is negligible for flow with a 6325: 5974: 5923: 5905: 5864: 5689: 5351: 5302: 5284: 5235: 5225: 4934: 4932: 4834: 4749: 4710: 4638: 4587: 4533: 4416: 4314: 4078: 3989: 3987: 3985: 3983: 3981: 3979: 3977: 3975: 3973: 3971: 3945: 3865: 3687: 3685: 3683: 3681: 3260: 3239: 3218: 3202: 3183: 3170: 3160: 3152: 3111: 3095: 3085: 3077: 3008: 2996: 2981: 2972: 2951: 2945: 2936: 2918: 2907: 2890: 2879: 2847: 2838: 2829: 2823: 2792: 2774: 2758: 2740: 2728: 2722: 2679: 2669: 2663: 2654: 2648: 2618:{\displaystyle I={\frac {m\ell ^{2}}{3}}} 2603: 2593: 2585: 2538: 2533: 2516: 2505: 2473: 2464: 2446: 2440: 2422: 2411: 2400: 2398: 2369: 2364: 2349: 2325: 2317: 2315: 2288: 2283: 2248: 2246: 2222: 2216: 2211: 2192: 2180: 2178: 2127: 2122: 2105: 2097: 2071: 2062: 2042: 2031: 2001: 1992: 1969: 1964: 1958: 1953: 1943: 1934: 1920: 1907: 1903: 1884: 1868: 1831: 1815: 1807: 1505: 1485: 1464: 1458: 1438: 1418: 1398: 1369: 1368: 1366: 1322: 1317: 1311: 1306: 1292: 1290: 1281: 1275: 1254: 1233: 1197: 1196: 1193: 1182: 1123: 1118: 1104: 1099: 1079: 1064: 1058: 1033: 1018: 1002: 978: 972: 968: 966: 921: 911: 886: 880: 811: 793: 775: 765: 752: 734: 716: 710: 16:Mechanisms and evolution of insect flight 6254:. John Wiley and Sons. pp. 227–286. 5206:Carolin Haug & Joachim Haug (2017). 3930:BioRxiv: The Preprint Server for Biology 3292: 365:) and another downstroke can occur. The 20: 6183:. Oxford Biology Readers. Vol. 52. 3677: 621: 576: 269: 171: 5457: 5447: 4789:Weisberger, Mindy (19 February 2016). 4176:Ellis, D. G.; Stollery, J. L. (1988). 4030:10.1146/annurev.fluid.36.050802.121940 2573:during the wing stroke. To obtain the 672:A wing moving in fluids experiences a 5332:Arthropod Structure & Development 4563: 4561: 4511: 4509: 4507: 4438: 4436: 4394: 4392: 3700:Australian Biological Resources Study 2871:And the kinetic energy therefore is: 1527:), the forward velocity of the body ( 7: 3482:Epicoxal (abdominal gill) hypothesis 6341:The Journal of Experimental Biology 6231:The Journal of Experimental Biology 6190:The Journal of Experimental Biology 6115:The Journal of Experimental Biology 4677:Cheng, Xin; Sun, Mao (2016-05-11). 4522:The Journal of Experimental Biology 4469:10.1016/j.jfluidstructs.2011.05.002 4058:"The aerodynamics of insect flight" 1157:the velocity at the boundary, and u 124: 5185:10.1111/j.1365-2311.1928.tb01188.x 3850:"Mechanics of the thorax in flies" 3104: 2746: 2043: 1870: 1824: 1779:) has indirect flight musculature. 1420: 1244: 1073: 1055: 1036: 1010: 985: 975: 125:Weis-Fogh clap and fling mechanism 14: 6436:The aerodynamics of insect flight 6252:Fundamentals of insect physiology 5602:Trends in Ecology & Evolution 5479:Jena. Zeitung Naturwissenschaften 4619:Lehmann, F.-O.; Pick, S. (2007). 3758:10.1038/scientificamerican0665-76 3564:Endite-exite (pleural) hypothesis 3493:nymph with paired abdominal gills 6335:Walker, J. A. (September 2002). 5835:(8). The Royal Society: 160347. 5786:10.1111/j.1525-142x.2010.00402.x 4449:Journal of Fluids and Structures 4009:Annual Review of Fluid Mechanics 1799:under the influence of gravity. 1263:{\displaystyle U=2\Theta fr_{g}} 1119: 1100: 1080: 1065: 1019: 1003: 979: 651: 639: 627: 610: 594: 582: 500: 480: 453: 441: 284: 272: 206: 186: 174: 5024:Journal of Experimental Biology 4822:Journal of Experimental Biology 4626:Journal of Experimental Biology 4575:Journal of Experimental Biology 4516:Miller, L.; Peskin, S. (2009). 4485:Journal of Experimental Biology 4405:Journal of Experimental Biology 4370:Journal of Experimental Biology 4269:Physics in Biology and Medicine 4066:Journal of Experimental Biology 3854:Journal of Experimental Biology 3829:North Carolina State University 3782:Journal of Experimental Biology 1534:), and the pitching velocity (Ω 916: 910: 770: 764: 221:Slow motion flight of dragonfly 169:hunted other airborne insects. 5907:10.12688/f1000research.10285.1 3438:from the Lower Carboniferous; 1837: 1821: 1413:is the speed of the wing tip, 1374: 1337: 1331: 1202: 787: 781: 728: 722: 1: 6024:10.1126/science.284.5422.1954 3526:Paranotal (tergal) hypothesis 2640:, at the center of the wing: 1393:is the average chord length, 589:Clap 1: wings close over back 96:never evolved wings. In some 5622:10.1016/0169-5347(96)30022-0 5021:during pre-flight warm-up". 3827:. Department of Entomology, 2497:during each wing stroke is: 1386:{\displaystyle {\bar {c}}\ } 387:computational fluid dynamics 54:. Insects first flew in the 6458:The Flight Of The Bumblebee 5774:Evolution & Development 5645:Acta Zoologica Cracoviensia 5388:Canadian Journal of Zoology 4952:Scoble, Malcolm J. (1995). 4155:"Transition and Turbulence" 1480:is the radius of gyration, 517:to "fly" through the water. 6499: 6179:Pringle, J. W. S. (1975). 6144:Journal of Fluid Mechanics 5829:Royal Society Open Science 5442:Cambridge University Press 5156:10.1127/njgpm/1996/1996/17 4915:Princeton University Press 4865:. Cislunar Aerospace. 1997 4001:"Dissecting Insect Flight" 3657:Flying and gliding animals 3286: 507:Clap and fling is used in 335: 6164:10.1017/S0022112003005743 6109:Ellington, C. P. (1999). 5976:10.1016/j.cub.2016.11.021 5438:Insects take to the skies 5353:10.1016/j.asd.2017.06.005 4938:Stocks, Ian. (2008). Sec. 4913:. Princeton, New Jersey: 4859:"Insect Wings in General" 4266:Davidovits, Paul (2008). 3938:10.1101/2023.06.29.547116 3596:Other hypotheses include 1753: 1740: 1727: 1714: 1701: 1688: 1675: 1662: 1649: 1636: 1623: 1610: 1605: 1602: 1599: 1433:is the stroke amplitude, 702:) coefficients, that is: 4316:10.1177/1756829317745319 4141:10.1002/zamm.19250050103 4056:Sane, Sanjay P. (2003). 3400:Evolution and adaptation 3301:in male and female moths 487:The feathery wings of a 150:Ephemeroptera (mayflies) 6353:10.1242/jeb.205.24.3783 6127:10.1242/jeb.202.23.3439 5560:10.1002/jmor.1051680309 5507:10.1002/jmor.1051560104 5286:10.1073/pnas.1817794116 5101:10.1126/science.1257570 4909:Dudley, Robert (2000). 4863:Aerodynamics of Insects 4211:University of Göttingen 3795:10.1242/jeb.204.23.4125 3692:Chapman, A. D. (2006). 3586:Drosophila melanogaster 1577:, (Θ(t),Ί(t)), and the 1500:is the wing area, and 1453:is the beat frequency, 1426:{\displaystyle \Theta } 862:Kutta-Joukowski theorem 61:Two insect groups, the 6390:10.1098/rsta.2001.0930 6318:10.1098/rstb.1997.0023 6265:Biol. Bull. Woods Hole 6259:Sotavalta, O. (1953). 6102:10.1098/rstb.1984.0049 5682:10.1098/rsbl.2009.0029 4960:Natural History Museum 4157:. Princeton University 3573: 3494: 3459:, as found on aquatic 3421: 3302: 3269: 3127: 3042: 3017: 2862: 2801: 2710:given by the distance 2694: 2619: 2548: 2482: 2375: 2294: 2228: 2140: 2080: 2010: 1850: 1780: 1776:Philhelius pedissequum 1514: 1494: 1474: 1447: 1427: 1407: 1387: 1353: 1264: 1221: 1140: 956:Navier-Stokes equation 937: 830: 42:are the only group of 36: 5547:Journal of Morphology 5494:Journal of Morphology 5037:10.1242/jeb.133.1.317 4985:Powell, Jerry A. Ch. 3571: 3489: 3407: 3296: 3270: 3128: 3041: 3018: 2863: 2802: 2695: 2620: 2549: 2483: 2376: 2295: 2229: 2141: 2081: 2011: 1851: 1772: 1742:Large white butterfly 1575:spherical coordinates 1515: 1495: 1475: 1473:{\displaystyle r_{g}} 1448: 1428: 1408: 1388: 1354: 1265: 1222: 1141: 938: 866:Bernoulli's principle 831: 538:aerodynamic benefit. 336:Further information: 236:) for the infraclass 24: 6347:(Pt 24): 3783–3792. 6121:(Pt 23): 3439–3448. 6041:Thomas, Adrian L. R. 5598:Thomas, Adrian L. R. 5501:(1). Wiley: 53–125. 4582:(Pt 16): 3075–3092. 4498:10.1242/jeb.69.1.261 4411:(Pt 21): 3898–4709. 4383:10.1242/jeb.59.1.169 3604:protrusions used as 3598:Vincent Wigglesworth 3426:Carboniferous Period 3408:Reconstruction of a 3297:Frenulo-retinacular 3151: 3076: 2878: 2822: 2721: 2647: 2584: 2504: 2397: 2314: 2245: 2177: 2096: 2030: 1867: 1806: 1638:Hummingbird hawkmoth 1504: 1484: 1457: 1437: 1417: 1397: 1365: 1274: 1232: 1181: 965: 879: 709: 428:sculling draw stroke 6382:2002RSPTA.360..273Z 6310:1997RSPTB.352..317V 6243:10.1242/jeb.83.1.59 6196:(Pt 23): 4191–208. 6156:2003JFM...492..339L 6094:1984RSPTB.305....1E 6057:1996Natur.384..626E 5967:2017CBio...27..263P 5849:10.1098/rsos.160347 5841:2016RSOS....360347E 5727:1997Natur.385..627A 5614:1996TEcoE..11..187T 5444:. pp. 155–159. 5344:2018ArtSD..47..370Y 5277:2019PNAS..116.3024W 5093:2014Sci...346..763M 4795:Scientific American 4760:2021PhFl...33c1901K 4695:2016NatSR...625706C 4633:(Pt 8): 1362–1377. 4461:2011JFS....27..784K 4343:Scientific American 4339:"Catching the Wake" 4185:ICAS 1988 Jerusalem 4133:1925ZaMM....5...17W 4022:2005AnRFM..37..183W 3750:1965SciAm.212f..76S 3737:Scientific American 3639:serially homologous 3556:and finally active 3444:is older, from the 2923: 2543: 1316: 668:Governing equations 346:Leading edge vortex 131:have the forewings 88:, while other more 6446:2004-08-22 at the 5227:10.7717/peerj.3402 4962:. pp. 56–60. 4836:10.1242/jeb.129205 4683:Scientific Reports 4535:10.1242/jeb.028662 4418:10.1242/jeb.084897 4276:. pp. 78–79. 3867:10.1242/jeb.128363 3578:endites and exites 3574: 3495: 3436:Palaeodictyopteran 3422: 3414:palaeodictyopteran 3309:mechanisms in the 3303: 3265: 3123: 3043: 3013: 2903: 2858: 2797: 2690: 2615: 2544: 2529: 2478: 2371: 2290: 2224: 2136: 2076: 2006: 1846: 1781: 1600:Flight parameters 1510: 1490: 1470: 1443: 1423: 1403: 1383: 1349: 1302: 1260: 1217: 1136: 1134: 933: 826: 46:that have evolved 37: 6478:Insect physiology 6376:(1791): 273–290. 6304:(1351): 317–328. 6202:10.1242/jeb.00663 6051:(6610): 626–630. 6018:(5422): 1954–60. 5087:(6210): 763–767. 4969:978-0-19-854952-9 4768:10.1063/5.0036018 4737:Physics of Fluids 4703:10.1038/srep25706 4640:10.1242/jeb.02746 4589:10.1242/jeb.01744 4528:(19): 3076–3090. 4365:Weis-Fogh, Torkel 4283:978-0-12-369411-9 4080:10.1242/jeb.00663 4073:(23): 4191–4208. 3789:(23): 4125–4139. 3709:978-0-642-56850-2 3702:. pp. 60pp. 3263: 3259: 3249: 3168: 3121: 3093: 3011: 2990: 2960: 2898: 2856: 2832: 2795: 2784: 2753: 2688: 2672: 2657: 2613: 2575:moment of inertia 2565:of the wing and ω 2561:is the moment of 2536: 2524: 2476: 2449: 2425: 2414: 2403: 2367: 2328: 2320: 2286: 2251: 2219: 2214: 2183: 2125: 2113: 2074: 2004: 1977: 1976: 1967: 1956: 1946: 1897: 1844: 1783:Many insects can 1767: 1766: 1757:(clap and fling) 1612:Aeshnid dragonfly 1513:{\displaystyle R} 1493:{\displaystyle s} 1446:{\displaystyle f} 1406:{\displaystyle U} 1382: 1377: 1347: 1300: 1215: 1205: 1126: 1107: 1046: 992: 924: 914: 889: 821: 778: 768: 762: 719: 571:Liriomyza sativae 565:Limacina helicina 514:Limacina helicina 399:Herbert A. Wagner 397:, as proposed by 216: 160:through the air. 6490: 6409: 6364: 6331: 6329: 6288: 6255: 6246: 6221: 6184: 6175: 6138: 6105: 6076: 6065:10.1038/384626a0 6035: 5997: 5996: 5978: 5944: 5938: 5937: 5927: 5909: 5885: 5879: 5878: 5868: 5820: 5814: 5813: 5769: 5763: 5762: 5735:10.1038/385627a0 5710: 5704: 5703: 5693: 5659: 5653: 5652: 5640: 5634: 5633: 5594: 5588: 5587: 5541: 5535: 5534: 5488: 5482: 5472: 5466: 5465: 5459: 5455: 5453: 5445: 5433: 5422: 5421: 5401: 5392: 5383: 5374: 5373: 5355: 5323: 5317: 5316: 5306: 5288: 5271:(8): 3024–3029. 5256: 5250: 5249: 5239: 5229: 5203: 5197: 5196: 5166: 5160: 5159: 5135: 5129: 5128: 5074: 5068: 5065: 5059: 5056: 5050: 5047: 5041: 5040: 5014: 5008: 5005: 4999: 4996: 4990: 4983: 4974: 4973: 4949: 4943: 4936: 4927: 4926: 4906: 4897: 4896: 4894: 4892: 4881: 4875: 4874: 4872: 4870: 4855: 4849: 4848: 4838: 4812: 4806: 4805: 4803: 4801: 4786: 4780: 4779: 4753: 4731: 4725: 4724: 4714: 4674: 4661: 4660: 4642: 4616: 4610: 4609: 4591: 4565: 4556: 4555: 4537: 4513: 4502: 4501: 4479: 4473: 4472: 4440: 4431: 4430: 4420: 4396: 4387: 4386: 4361: 4355: 4354: 4352: 4350: 4335: 4329: 4328: 4318: 4294: 4288: 4287: 4263: 4214: 4207: 4201: 4200: 4198: 4196: 4182: 4173: 4167: 4166: 4164: 4162: 4151: 4145: 4144: 4107: 4101: 4100: 4082: 4062: 4053: 4034: 4033: 4005: 3993: 3966: 3965: 3963: 3962: 3949: 3921: 3915: 3914: 3902: 3896: 3895: 3869: 3860:(8): 1382–1395. 3845: 3839: 3838: 3836: 3835: 3821: 3815: 3814: 3776: 3770: 3769: 3731: 3725: 3724: 3722: 3721: 3712:. Archived from 3689: 3667:Insect migration 3592:Other hypotheses 3538:found in insect 3424:Sometime in the 3382:sensory feedback 3376:Sensory feedback 3274: 3272: 3271: 3266: 3264: 3261: 3257: 3250: 3248: 3247: 3246: 3227: 3226: 3225: 3210: 3209: 3188: 3187: 3171: 3169: 3161: 3132: 3130: 3129: 3124: 3122: 3117: 3116: 3115: 3096: 3094: 3086: 3055:potential energy 3022: 3020: 3019: 3014: 3012: 3009: 3001: 3000: 2995: 2991: 2989: 2985: 2973: 2966: 2962: 2961: 2956: 2955: 2946: 2944: 2943: 2922: 2917: 2899: 2891: 2867: 2865: 2864: 2859: 2857: 2855: 2851: 2839: 2834: 2833: 2830: 2806: 2804: 2803: 2798: 2796: 2793: 2785: 2783: 2782: 2781: 2759: 2754: 2752: 2741: 2736: 2735: 2699: 2697: 2696: 2691: 2689: 2687: 2683: 2674: 2673: 2670: 2664: 2659: 2658: 2655: 2624: 2622: 2621: 2616: 2614: 2609: 2608: 2607: 2594: 2571:angular velocity 2553: 2551: 2550: 2545: 2542: 2537: 2534: 2525: 2517: 2487: 2485: 2484: 2479: 2477: 2474: 2472: 2471: 2450: 2447: 2445: 2444: 2426: 2423: 2415: 2412: 2404: 2401: 2380: 2378: 2377: 2372: 2368: 2365: 2357: 2356: 2329: 2326: 2321: 2318: 2299: 2297: 2296: 2291: 2287: 2284: 2252: 2249: 2233: 2231: 2230: 2225: 2221: 2220: 2217: 2215: 2212: 2200: 2199: 2184: 2181: 2145: 2143: 2142: 2137: 2135: 2134: 2126: 2123: 2114: 2106: 2085: 2083: 2082: 2077: 2075: 2072: 2070: 2069: 2015: 2013: 2012: 2007: 2005: 2002: 2000: 1999: 1978: 1975: 1974: 1973: 1968: 1965: 1962: 1957: 1954: 1948: 1947: 1944: 1942: 1941: 1922: 1921: 1916: 1915: 1911: 1902: 1898: 1893: 1885: 1855: 1853: 1852: 1847: 1845: 1840: 1836: 1835: 1816: 1597: 1519: 1517: 1516: 1511: 1499: 1497: 1496: 1491: 1479: 1477: 1476: 1471: 1469: 1468: 1452: 1450: 1449: 1444: 1432: 1430: 1429: 1424: 1412: 1410: 1409: 1404: 1392: 1390: 1389: 1384: 1380: 1379: 1378: 1370: 1358: 1356: 1355: 1350: 1348: 1346: 1327: 1326: 1315: 1310: 1301: 1293: 1291: 1286: 1285: 1269: 1267: 1266: 1261: 1259: 1258: 1226: 1224: 1223: 1218: 1216: 1211: 1207: 1206: 1198: 1194: 1145: 1143: 1142: 1137: 1135: 1128: 1127: 1124: 1122: 1109: 1108: 1105: 1103: 1083: 1068: 1063: 1062: 1047: 1042: 1034: 1022: 1017: 1013: 1006: 993: 991: 983: 982: 973: 942: 940: 939: 934: 926: 925: 922: 915: 912: 891: 890: 887: 835: 833: 832: 827: 822: 820: 816: 815: 802: 794: 780: 779: 776: 769: 766: 763: 761: 757: 756: 743: 735: 721: 720: 717: 655: 643: 631: 614: 598: 586: 553:Encarsia formosa 526:Torkel Weis-Fogh 504: 484: 457: 445: 288: 276: 218: 217: 190: 178: 28:Hemicordulia tau 6498: 6497: 6493: 6492: 6491: 6489: 6488: 6487: 6468: 6467: 6448:Wayback Machine 6417: 6412: 6367: 6334: 6291: 6277:10.2307/1538496 6258: 6249: 6224: 6187: 6178: 6141: 6108: 6079: 6038: 6009: 6005: 6003:Further reading 6000: 5954:Current Biology 5946: 5945: 5941: 5887: 5886: 5882: 5822: 5821: 5817: 5771: 5770: 5766: 5712: 5711: 5707: 5669:Biology Letters 5661: 5660: 5656: 5642: 5641: 5637: 5596: 5595: 5591: 5543: 5542: 5538: 5490: 5489: 5485: 5473: 5469: 5456: 5446: 5435: 5434: 5425: 5403: 5402: 5395: 5384: 5377: 5325: 5324: 5320: 5258: 5257: 5253: 5205: 5204: 5200: 5168: 5167: 5163: 5137: 5136: 5132: 5076: 5075: 5071: 5066: 5062: 5057: 5053: 5048: 5044: 5016: 5015: 5011: 5006: 5002: 4997: 4993: 4984: 4977: 4970: 4951: 4950: 4946: 4937: 4930: 4908: 4907: 4900: 4890: 4888: 4887:. Bumblebee.org 4883: 4882: 4878: 4868: 4866: 4857: 4856: 4852: 4814: 4813: 4809: 4799: 4797: 4788: 4787: 4783: 4733: 4732: 4728: 4676: 4675: 4664: 4618: 4617: 4613: 4567: 4566: 4559: 4515: 4514: 4505: 4481: 4480: 4476: 4442: 4441: 4434: 4398: 4397: 4390: 4363: 4362: 4358: 4348: 4346: 4345:. June 28, 1999 4337: 4336: 4332: 4296: 4295: 4291: 4284: 4265: 4264: 4217: 4208: 4204: 4194: 4192: 4180: 4175: 4174: 4170: 4160: 4158: 4153: 4152: 4148: 4111:Wagner, Herbert 4109: 4108: 4104: 4060: 4055: 4054: 4037: 4003: 3995: 3994: 3969: 3960: 3958: 3923: 3922: 3918: 3904: 3903: 3899: 3847: 3846: 3842: 3833: 3831: 3823: 3822: 3818: 3778: 3777: 3773: 3733: 3732: 3728: 3719: 3717: 3710: 3691: 3690: 3679: 3675: 3648: 3631: 3594: 3566: 3528: 3484: 3402: 3378: 3349: 3291: 3285: 3235: 3228: 3214: 3198: 3179: 3172: 3149: 3148: 3107: 3097: 3074: 3073: 3067:Young's modulus 3036: 2977: 2968: 2967: 2947: 2932: 2931: 2927: 2876: 2875: 2843: 2825: 2820: 2819: 2770: 2763: 2745: 2724: 2719: 2718: 2709: 2675: 2665: 2650: 2645: 2644: 2639: 2631: 2599: 2595: 2582: 2581: 2569:is the maximum 2568: 2502: 2501: 2494: 2460: 2436: 2395: 2394: 2345: 2312: 2311: 2243: 2242: 2210: 2188: 2175: 2174: 2165: 2160: 2153: 2121: 2094: 2093: 2058: 2028: 2027: 1988: 1963: 1949: 1930: 1923: 1886: 1880: 1879: 1865: 1864: 1827: 1817: 1804: 1803: 1595: 1583:angle of attack 1563: 1544: 1533: 1502: 1501: 1482: 1481: 1460: 1455: 1454: 1435: 1434: 1415: 1414: 1395: 1394: 1363: 1362: 1318: 1277: 1272: 1271: 1250: 1230: 1229: 1195: 1179: 1178: 1172:chalcidoid wasp 1164: 1160: 1156: 1133: 1132: 1117: 1110: 1098: 1095: 1094: 1084: 1070: 1069: 1054: 1035: 1023: 1001: 997: 984: 974: 963: 962: 917: 882: 877: 876: 870:Blasius theorem 850: 843: 807: 803: 795: 771: 748: 744: 736: 712: 707: 706: 700: 693: 670: 663: 656: 647: 644: 635: 632: 618: 615: 606: 605:, vortices form 599: 590: 587: 522: 521: 520: 519: 518: 509:sea butterflies 505: 497: 496: 485: 474: 465: 464: 463: 462: 461: 458: 450: 449: 446: 412:flow is laminar 404:Reynolds number 348: 340: 334: 300: 289: 280: 277: 229: 227:Indirect flight 222: 219: 207: 202: 191: 182: 179: 146: 141: 25:A tau emerald ( 17: 12: 11: 5: 6496: 6494: 6486: 6485: 6480: 6470: 6469: 6466: 6465: 6460: 6455: 6450: 6441:Flight muscles 6438: 6433: 6428: 6423: 6416: 6415:External links 6413: 6411: 6410: 6365: 6332: 6289: 6271:(3): 439–444. 6256: 6247: 6222: 6185: 6176: 6139: 6106: 6088:(1122): 1–15. 6077: 6036: 6006: 6004: 6001: 5999: 5998: 5961:(2): 263–269. 5939: 5880: 5815: 5780:(2): 168–176. 5764: 5705: 5654: 5635: 5608:(5): 187–188. 5589: 5554:(3): 331–338. 5536: 5483: 5467: 5423: 5393: 5375: 5338:(4): 370–374. 5318: 5251: 5198: 5161: 5130: 5069: 5060: 5051: 5042: 5009: 5000: 4991: 4975: 4968: 4944: 4928: 4917:. p. 69. 4898: 4876: 4850: 4829:(4): 535–543. 4807: 4781: 4726: 4662: 4611: 4557: 4503: 4474: 4432: 4388: 4356: 4330: 4309:(1): 106–122. 4289: 4282: 4274:Academic Press 4215: 4202: 4168: 4146: 4102: 4035: 4016:(1): 183–210. 3967: 3916: 3897: 3840: 3816: 3771: 3726: 3708: 3676: 3674: 3671: 3670: 3669: 3664: 3659: 3654: 3647: 3644: 3630: 3627: 3593: 3590: 3582:arthropod limb 3565: 3562: 3548:starting with 3527: 3524: 3483: 3480: 3446:Early Devonian 3401: 3398: 3377: 3374: 3348: 3345: 3344: 3343: 3330:In almost all 3328: 3325: 3287:Main article: 3284: 3281: 3276: 3275: 3256: 3253: 3245: 3242: 3238: 3234: 3231: 3224: 3221: 3217: 3213: 3208: 3205: 3201: 3197: 3194: 3191: 3186: 3182: 3178: 3175: 3167: 3164: 3159: 3156: 3134: 3133: 3120: 3114: 3110: 3106: 3103: 3100: 3092: 3089: 3084: 3081: 3061:resilin obeys 3035: 3032: 3024: 3023: 3007: 3004: 2999: 2994: 2988: 2984: 2980: 2976: 2971: 2965: 2959: 2954: 2950: 2942: 2939: 2935: 2930: 2926: 2921: 2916: 2913: 2910: 2906: 2902: 2897: 2894: 2889: 2886: 2883: 2869: 2868: 2854: 2850: 2846: 2842: 2837: 2828: 2808: 2807: 2791: 2788: 2780: 2777: 2773: 2769: 2766: 2762: 2757: 2751: 2748: 2744: 2739: 2734: 2731: 2727: 2707: 2701: 2700: 2686: 2682: 2678: 2668: 2662: 2653: 2637: 2629: 2626: 2625: 2612: 2606: 2602: 2598: 2592: 2589: 2566: 2555: 2554: 2541: 2532: 2528: 2523: 2520: 2515: 2512: 2509: 2493: 2490: 2489: 2488: 2470: 2467: 2463: 2459: 2456: 2453: 2443: 2439: 2435: 2432: 2429: 2421: 2418: 2410: 2407: 2387:kinetic energy 2382: 2381: 2363: 2360: 2355: 2352: 2348: 2344: 2341: 2338: 2335: 2332: 2324: 2301: 2300: 2282: 2279: 2276: 2273: 2270: 2267: 2264: 2261: 2258: 2255: 2235: 2234: 2209: 2206: 2203: 2198: 2195: 2191: 2187: 2163: 2159: 2156: 2151: 2147: 2146: 2133: 2130: 2120: 2117: 2112: 2109: 2104: 2101: 2087: 2086: 2068: 2065: 2061: 2057: 2054: 2051: 2048: 2045: 2041: 2038: 2035: 2017: 2016: 1998: 1995: 1991: 1987: 1984: 1981: 1972: 1961: 1952: 1940: 1937: 1933: 1929: 1926: 1919: 1914: 1910: 1906: 1901: 1896: 1892: 1889: 1883: 1878: 1875: 1872: 1857: 1856: 1843: 1839: 1834: 1830: 1826: 1823: 1820: 1814: 1811: 1765: 1764: 1761: 1758: 1751: 1750: 1747: 1744: 1738: 1737: 1734: 1731: 1725: 1724: 1721: 1718: 1712: 1711: 1708: 1705: 1699: 1698: 1695: 1692: 1686: 1685: 1682: 1679: 1673: 1672: 1669: 1666: 1660: 1659: 1656: 1653: 1647: 1646: 1643: 1640: 1634: 1633: 1630: 1627: 1621: 1620: 1617: 1614: 1608: 1607: 1604: 1601: 1594: 1591: 1579:pitching angle 1561: 1542: 1531: 1509: 1489: 1467: 1463: 1442: 1422: 1402: 1376: 1373: 1345: 1342: 1339: 1336: 1333: 1330: 1325: 1321: 1314: 1309: 1305: 1299: 1296: 1289: 1284: 1280: 1257: 1253: 1249: 1246: 1243: 1240: 1237: 1214: 1210: 1204: 1201: 1192: 1189: 1186: 1162: 1158: 1154: 1147: 1146: 1131: 1121: 1116: 1113: 1111: 1102: 1097: 1096: 1093: 1090: 1087: 1085: 1082: 1078: 1075: 1072: 1071: 1067: 1061: 1057: 1053: 1050: 1045: 1041: 1038: 1032: 1029: 1026: 1024: 1021: 1016: 1012: 1009: 1005: 1000: 996: 990: 987: 981: 977: 971: 970: 948:incompressible 944: 943: 932: 929: 920: 909: 906: 903: 900: 897: 894: 885: 848: 841: 837: 836: 825: 819: 814: 810: 806: 801: 798: 792: 789: 786: 783: 774: 760: 755: 751: 747: 742: 739: 733: 730: 727: 724: 715: 698: 691: 669: 666: 665: 664: 657: 650: 648: 645: 638: 636: 633: 626: 624: 620: 619: 616: 609: 607: 600: 593: 591: 588: 581: 579: 530:viscous forces 506: 499: 498: 493:clap and fling 486: 479: 478: 477: 476: 475: 473: 472:Clap and fling 470: 459: 452: 451: 447: 440: 439: 438: 437: 436: 347: 344: 333: 330: 302: 301: 290: 283: 281: 278: 271: 228: 225: 224: 223: 220: 205: 203: 192: 185: 183: 180: 173: 145: 142: 140: 137: 15: 13: 10: 9: 6: 4: 3: 2: 6495: 6484: 6483:Animal flight 6481: 6479: 6476: 6475: 6473: 6464: 6463:Insect Flight 6461: 6459: 6456: 6454: 6451: 6449: 6445: 6442: 6439: 6437: 6434: 6432: 6429: 6427: 6424: 6422: 6419: 6418: 6414: 6407: 6403: 6399: 6395: 6391: 6387: 6383: 6379: 6375: 6371: 6366: 6362: 6358: 6354: 6350: 6346: 6342: 6338: 6333: 6328: 6323: 6319: 6315: 6311: 6307: 6303: 6299: 6295: 6290: 6286: 6282: 6278: 6274: 6270: 6266: 6262: 6257: 6253: 6248: 6244: 6240: 6236: 6232: 6228: 6223: 6219: 6215: 6211: 6207: 6203: 6199: 6195: 6191: 6186: 6182: 6181:Insect flight 6177: 6173: 6169: 6165: 6161: 6157: 6153: 6149: 6145: 6140: 6136: 6132: 6128: 6124: 6120: 6116: 6112: 6107: 6103: 6099: 6095: 6091: 6087: 6083: 6078: 6074: 6070: 6066: 6062: 6058: 6054: 6050: 6046: 6042: 6037: 6033: 6029: 6025: 6021: 6017: 6013: 6008: 6007: 6002: 5994: 5990: 5986: 5982: 5977: 5972: 5968: 5964: 5960: 5956: 5955: 5950: 5943: 5940: 5935: 5931: 5926: 5921: 5917: 5913: 5908: 5903: 5899: 5895: 5894:F1000Research 5891: 5884: 5881: 5876: 5872: 5867: 5862: 5858: 5854: 5850: 5846: 5842: 5838: 5834: 5830: 5826: 5819: 5816: 5811: 5807: 5803: 5799: 5795: 5791: 5787: 5783: 5779: 5775: 5768: 5765: 5760: 5756: 5752: 5748: 5744: 5740: 5736: 5732: 5728: 5724: 5720: 5716: 5709: 5706: 5701: 5697: 5692: 5687: 5683: 5679: 5675: 5671: 5670: 5665: 5658: 5655: 5650: 5646: 5639: 5636: 5631: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5599: 5593: 5590: 5585: 5581: 5577: 5573: 5569: 5565: 5561: 5557: 5553: 5549: 5548: 5540: 5537: 5532: 5528: 5524: 5520: 5516: 5512: 5508: 5504: 5500: 5496: 5495: 5487: 5484: 5480: 5476: 5475:MĂŒller, Fritz 5471: 5468: 5463: 5451: 5443: 5439: 5432: 5430: 5428: 5424: 5419: 5415: 5411: 5407: 5400: 5398: 5394: 5390: 5389: 5382: 5380: 5376: 5371: 5367: 5363: 5359: 5354: 5349: 5345: 5341: 5337: 5333: 5329: 5322: 5319: 5314: 5310: 5305: 5300: 5296: 5292: 5287: 5282: 5278: 5274: 5270: 5266: 5262: 5255: 5252: 5247: 5243: 5238: 5233: 5228: 5223: 5219: 5215: 5214: 5209: 5202: 5199: 5194: 5190: 5186: 5182: 5178: 5174: 5173: 5165: 5162: 5157: 5153: 5149: 5146:(in German). 5145: 5141: 5134: 5131: 5126: 5122: 5118: 5114: 5110: 5106: 5102: 5098: 5094: 5090: 5086: 5082: 5081: 5073: 5070: 5064: 5061: 5055: 5052: 5046: 5043: 5038: 5034: 5030: 5026: 5025: 5020: 5019:Manduca sexta 5013: 5010: 5004: 5001: 4995: 4992: 4988: 4982: 4980: 4976: 4971: 4965: 4961: 4957: 4956: 4948: 4945: 4941: 4940:Wing Coupling 4935: 4933: 4929: 4924: 4920: 4916: 4912: 4905: 4903: 4899: 4886: 4880: 4877: 4864: 4860: 4854: 4851: 4846: 4842: 4837: 4832: 4828: 4824: 4823: 4818: 4811: 4808: 4796: 4792: 4785: 4782: 4777: 4773: 4769: 4765: 4761: 4757: 4752: 4747: 4744:(3): 031901. 4743: 4739: 4738: 4730: 4727: 4722: 4718: 4713: 4708: 4704: 4700: 4696: 4692: 4688: 4684: 4680: 4673: 4671: 4669: 4667: 4663: 4658: 4654: 4650: 4646: 4641: 4636: 4632: 4628: 4627: 4622: 4615: 4612: 4607: 4603: 4599: 4595: 4590: 4585: 4581: 4577: 4576: 4571: 4564: 4562: 4558: 4553: 4549: 4545: 4541: 4536: 4531: 4527: 4523: 4519: 4512: 4510: 4508: 4504: 4499: 4495: 4491: 4487: 4486: 4478: 4475: 4470: 4466: 4462: 4458: 4454: 4450: 4446: 4439: 4437: 4433: 4428: 4424: 4419: 4414: 4410: 4406: 4402: 4395: 4393: 4389: 4384: 4380: 4376: 4372: 4371: 4366: 4360: 4357: 4344: 4340: 4334: 4331: 4326: 4322: 4317: 4312: 4308: 4304: 4300: 4293: 4290: 4285: 4279: 4275: 4271: 4270: 4262: 4260: 4258: 4256: 4254: 4252: 4250: 4248: 4246: 4244: 4242: 4240: 4238: 4236: 4234: 4232: 4230: 4228: 4226: 4224: 4222: 4220: 4216: 4212: 4206: 4203: 4190: 4186: 4179: 4172: 4169: 4156: 4150: 4147: 4142: 4138: 4134: 4130: 4126: 4123:(in German). 4122: 4121: 4116: 4112: 4106: 4103: 4098: 4094: 4090: 4086: 4081: 4076: 4072: 4068: 4067: 4059: 4052: 4050: 4048: 4046: 4044: 4042: 4040: 4036: 4031: 4027: 4023: 4019: 4015: 4011: 4010: 4002: 3998: 3997:Wang, Z. Jane 3992: 3990: 3988: 3986: 3984: 3982: 3980: 3978: 3976: 3974: 3972: 3968: 3957: 3953: 3948: 3943: 3939: 3935: 3931: 3927: 3920: 3917: 3912: 3908: 3901: 3898: 3893: 3889: 3885: 3881: 3877: 3873: 3868: 3863: 3859: 3855: 3851: 3844: 3841: 3830: 3826: 3820: 3817: 3812: 3808: 3804: 3800: 3796: 3792: 3788: 3784: 3783: 3775: 3772: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3738: 3730: 3727: 3716:on 2009-05-19 3715: 3711: 3705: 3701: 3697: 3696: 3688: 3686: 3684: 3682: 3678: 3672: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3649: 3645: 3643: 3640: 3636: 3628: 3626: 3624: 3619: 3617: 3613: 3612:Adrian Thomas 3609: 3607: 3603: 3599: 3591: 3589: 3587: 3583: 3579: 3570: 3563: 3561: 3559: 3555: 3551: 3546: 3541: 3537: 3536:preadaptation 3533: 3525: 3523: 3520: 3516: 3513:in 1877, and 3512: 3508: 3504: 3500: 3499:entomologists 3492: 3488: 3481: 3479: 3477: 3474: 3470: 3466: 3462: 3458: 3455: 3449: 3447: 3443: 3442: 3437: 3433: 3432: 3427: 3420: 3419: 3415: 3411: 3410:Carboniferous 3406: 3399: 3397: 3395: 3391: 3387: 3383: 3375: 3373: 3371: 3370: 3369:Manduca sexta 3365: 3362: 3358: 3354: 3353:carbohydrates 3346: 3341: 3337: 3333: 3329: 3326: 3323: 3319: 3318: 3317: 3314: 3312: 3308: 3307:wing coupling 3300: 3299:wing coupling 3295: 3290: 3289:Wing coupling 3283:Wing coupling 3282: 3280: 3254: 3251: 3243: 3240: 3236: 3232: 3229: 3222: 3219: 3215: 3211: 3206: 3203: 3199: 3195: 3192: 3189: 3184: 3180: 3176: 3173: 3165: 3162: 3157: 3154: 3147: 3146: 3145: 3143: 3139: 3118: 3112: 3108: 3101: 3098: 3090: 3087: 3082: 3079: 3072: 3071: 3070: 3068: 3064: 3058: 3056: 3052: 3048: 3040: 3033: 3031: 3029: 3005: 3002: 2997: 2992: 2986: 2982: 2978: 2974: 2969: 2963: 2957: 2952: 2948: 2940: 2937: 2933: 2928: 2924: 2919: 2914: 2911: 2908: 2904: 2900: 2895: 2892: 2887: 2884: 2881: 2874: 2873: 2872: 2852: 2848: 2844: 2840: 2835: 2826: 2818: 2817: 2816: 2814: 2789: 2786: 2778: 2775: 2771: 2767: 2764: 2760: 2755: 2749: 2742: 2737: 2732: 2729: 2725: 2717: 2716: 2715: 2713: 2706: 2684: 2680: 2676: 2666: 2660: 2651: 2643: 2642: 2641: 2635: 2610: 2604: 2600: 2596: 2590: 2587: 2580: 2579: 2578: 2576: 2572: 2564: 2560: 2539: 2530: 2526: 2521: 2518: 2513: 2510: 2507: 2500: 2499: 2498: 2491: 2468: 2465: 2461: 2457: 2454: 2451: 2441: 2437: 2433: 2430: 2427: 2419: 2416: 2408: 2405: 2393: 2392: 2391: 2388: 2361: 2358: 2353: 2350: 2346: 2342: 2339: 2336: 2333: 2330: 2322: 2310: 2309: 2308: 2306: 2280: 2277: 2274: 2271: 2268: 2265: 2262: 2259: 2256: 2253: 2241: 2240: 2239: 2207: 2204: 2201: 2196: 2193: 2189: 2185: 2173: 2172: 2171: 2169: 2157: 2155: 2131: 2128: 2118: 2115: 2110: 2107: 2102: 2099: 2092: 2091: 2090: 2066: 2063: 2059: 2055: 2052: 2049: 2046: 2039: 2036: 2033: 2026: 2025: 2024: 2022: 1996: 1993: 1989: 1985: 1982: 1979: 1970: 1959: 1950: 1938: 1935: 1931: 1927: 1924: 1917: 1912: 1908: 1904: 1899: 1894: 1890: 1887: 1881: 1876: 1873: 1863: 1862: 1861: 1841: 1832: 1828: 1818: 1812: 1809: 1802: 1801: 1800: 1798: 1794: 1788: 1786: 1778: 1777: 1771: 1762: 1759: 1756: 1752: 1748: 1745: 1743: 1739: 1735: 1732: 1730: 1726: 1722: 1719: 1717: 1713: 1709: 1706: 1704: 1700: 1696: 1693: 1691: 1687: 1683: 1680: 1678: 1674: 1670: 1667: 1665: 1661: 1657: 1654: 1652: 1648: 1644: 1641: 1639: 1635: 1631: 1628: 1626: 1622: 1618: 1615: 1613: 1609: 1598: 1592: 1590: 1586: 1584: 1580: 1576: 1572: 1571: 1565: 1560: 1556: 1552: 1548: 1541: 1537: 1530: 1526: 1521: 1507: 1487: 1465: 1461: 1440: 1400: 1371: 1359: 1343: 1340: 1334: 1328: 1323: 1319: 1312: 1307: 1303: 1297: 1294: 1287: 1282: 1278: 1255: 1251: 1247: 1241: 1238: 1235: 1227: 1212: 1208: 1199: 1190: 1187: 1184: 1176: 1173: 1168: 1152: 1129: 1114: 1112: 1091: 1088: 1086: 1076: 1059: 1051: 1048: 1043: 1039: 1030: 1027: 1025: 1014: 1007: 998: 994: 988: 961: 960: 959: 957: 953: 949: 930: 927: 918: 907: 904: 901: 898: 895: 892: 883: 875: 874: 873: 871: 867: 863: 859: 858:inviscid flow 855: 851: 844: 823: 817: 812: 808: 804: 799: 796: 790: 784: 772: 758: 753: 749: 745: 740: 737: 731: 725: 713: 705: 704: 703: 701: 694: 687: 683: 679: 675: 667: 661: 654: 649: 642: 637: 630: 625: 622: 613: 608: 604: 597: 592: 585: 580: 577: 575: 573: 572: 567: 566: 562: 557: 555: 554: 547: 545: 539: 536: 531: 527: 516: 515: 510: 503: 494: 490: 483: 471: 469: 456: 444: 435: 431: 429: 425: 421: 417: 413: 409: 405: 400: 396: 395:Wagner effect 390: 388: 384: 378: 376: 372: 368: 364: 360: 356: 353: 345: 343: 339: 331: 329: 325: 323: 319: 315: 311: 306: 298: 294: 287: 282: 275: 270: 268: 266: 262: 258: 254: 250: 245: 243: 239: 235: 226: 204: 200: 196: 189: 184: 177: 172: 170: 167: 163: 159: 155: 151: 144:Direct flight 143: 138: 136: 134: 130: 126: 123:, but of the 122: 117: 115: 114:mating season 111: 107: 103: 100:insects like 99: 95: 92:insects like 91: 87: 84:insects have 83: 78: 76: 72: 68: 64: 59: 57: 56:Carboniferous 53: 49: 45: 44:invertebrates 41: 34: 30: 29: 23: 19: 6373: 6369: 6344: 6340: 6301: 6297: 6268: 6264: 6251: 6237:(1): 59–77. 6234: 6230: 6193: 6189: 6180: 6147: 6143: 6118: 6114: 6085: 6081: 6048: 6044: 6015: 6011: 5958: 5952: 5942: 5897: 5893: 5883: 5832: 5828: 5818: 5777: 5773: 5767: 5718: 5714: 5708: 5676:(4): 510–2. 5673: 5667: 5657: 5648: 5644: 5638: 5605: 5601: 5592: 5551: 5545: 5539: 5498: 5492: 5486: 5478: 5470: 5440:. New York: 5437: 5409: 5405: 5386: 5335: 5331: 5321: 5268: 5264: 5254: 5217: 5211: 5201: 5179:(1): 65–71. 5176: 5170: 5164: 5150:(1): 17–30. 5147: 5143: 5133: 5084: 5078: 5072: 5063: 5054: 5045: 5028: 5022: 5018: 5012: 5003: 4994: 4986: 4954: 4947: 4939: 4910: 4889:. Retrieved 4879: 4867:. Retrieved 4862: 4853: 4826: 4820: 4810: 4798:. Retrieved 4784: 4741: 4735: 4729: 4689:(1): 25706. 4686: 4682: 4630: 4624: 4614: 4579: 4573: 4525: 4521: 4489: 4483: 4477: 4452: 4448: 4408: 4404: 4374: 4368: 4359: 4347:. Retrieved 4333: 4306: 4302: 4292: 4268: 4205: 4193:. Retrieved 4188: 4184: 4171: 4159:. Retrieved 4149: 4127:(1): 17–35. 4124: 4118: 4105: 4070: 4064: 4013: 4007: 3959:. Retrieved 3929: 3919: 3910: 3907:BIONA Report 3906: 3900: 3857: 3853: 3843: 3832:. Retrieved 3819: 3786: 3780: 3774: 3744:(6): 76–88. 3741: 3735: 3729: 3718:. Retrieved 3714:the original 3698:. Canberra: 3694: 3632: 3620: 3610: 3595: 3585: 3575: 3532:Fritz MĂŒller 3529: 3496: 3469:Polyneoptera 3450: 3441:Rhyniognatha 3439: 3431:Delitzschala 3429: 3423: 3416: 3412:insect, the 3380:Insects use 3379: 3367: 3350: 3347:Biochemistry 3338:(except the 3321: 3315: 3304: 3277: 3137: 3135: 3059: 3044: 3025: 2870: 2813:sinusoidally 2809: 2711: 2704: 2702: 2627: 2558: 2556: 2495: 2492:Power output 2383: 2304: 2302: 2236: 2167: 2161: 2148: 2088: 2020: 2018: 1858: 1796: 1792: 1789: 1782: 1774: 1603:Speed (m/s) 1587: 1568: 1566: 1558: 1554: 1550: 1546: 1539: 1535: 1528: 1524: 1522: 1360: 1228: 1177: 1150: 1148: 945: 846: 839: 838: 696: 695:) and drag ( 689: 685: 681: 677: 671: 603:leading edge 569: 563: 558: 551: 548: 544:laminar flow 540: 523: 512: 466: 432: 391: 379: 352:leading edge 349: 341: 338:Aerodynamics 332:Aerodynamics 326: 307: 303: 295:, including 246: 234:synapomorphy 230: 147: 121:aerodynamics 118: 79: 60: 38: 26: 18: 6150:: 339–362. 5458:|work= 5412:(1): 1–39. 5031:: 317–327. 4987:Lepidoptera 4923:j.ctv301g2x 4800:20 February 4492:: 261–272. 4377:: 169–230. 3662:Gliding ant 3652:Bird flight 3629:Dual origin 3550:parachuting 3418:Mazothairos 3336:Bombycoidea 3334:and in the 3332:butterflies 3063:Hooke's law 2158:Power input 2023:, that is, 1729:Scorpionfly 1167:insect wing 952:Mach number 674:fluid force 420:stall delay 416:delta wings 322:Hymenoptera 297:butterflies 253:exoskeleton 242:butterflies 166:damselflies 162:Dragonflies 108:, only the 63:dragonflies 6472:Categories 4751:2011.00939 4455:(5): 784. 3961:2023-08-23 3834:2011-03-21 3720:2015-09-15 3673:References 3623:apterygota 3616:stoneflies 3545:parachutes 3501:including 3361:amino acid 3340:Sphingidae 3047:accelerate 3034:Elasticity 1773:Hoverfly ( 1570:Drosophila 448:downstroke 408:turbulence 359:supination 314:Coleoptera 139:Mechanisms 94:silverfish 6172:122077834 5985:0960-9822 5916:2046-1402 5857:2054-5703 5794:1520-541X 5743:0028-0836 5568:0362-2525 5515:0362-2525 5481:, 9, 241. 5460:ignored ( 5450:cite book 5370:205697025 5295:0027-8424 5220:: e3402. 5193:0035-8894 5109:0036-8075 4869:March 28, 4776:226227261 4349:March 31, 4325:1756-8293 3892:207172023 3876:1477-9145 3803:0022-0949 3606:radiators 3509:in 1873, 3505:in 1871, 3497:Numerous 3454:abdominal 3241:− 3233:× 3220:− 3212:× 3204:− 3196:× 3190:× 3177:× 3119:ℓ 3109:ℓ 3105:Δ 3010: erg 2979:ℓ 2949:ℓ 2938:− 2905:ω 2845:ℓ 2827:ω 2776:− 2768:× 2747:Δ 2677:ℓ 2652:ω 2601:ℓ 2531:ω 2466:− 2458:× 2434:× 2417:× 2351:− 2343:× 2337:× 2272:× 2266:× 2260:× 2202:× 2129:− 2116:≈ 2064:− 2056:× 2044:Δ 1994:− 1986:× 1980:≈ 1936:− 1928:× 1871:Δ 1825:Δ 1716:Damselfly 1677:Bumblebee 1421:Θ 1375:¯ 1304:∫ 1245:Θ 1203:¯ 1077:⋅ 1074:∇ 1056:∇ 1044:ρ 1037:∇ 1031:− 1011:∇ 1008:⋅ 986:∂ 976:∂ 908:α 905:⁡ 899:π 805:ρ 785:α 746:ρ 726:α 660:Weis-Fogh 424:canoeists 383:fruit fly 367:frequency 363:pronation 310:bumblebee 73:and some 33:dragonfly 6444:Archived 6398:16210181 6361:12432002 6218:17453426 6210:14581590 6135:10562527 6032:10373107 5993:28089512 5934:28357056 5875:27853616 5810:15838166 5802:20433457 5700:19324632 5651:: 73–84. 5630:21237803 5584:52010764 5576:30110990 5531:52301138 5523:30231597 5418:25003692 5362:28684306 5313:30642969 5246:28584727 5125:36008925 5117:25378627 4891:18 March 4845:26889002 4721:27168523 4657:23330782 4649:17401119 4598:16081606 4552:29711043 4544:19749100 4427:25189374 4113:(1925). 4097:17453426 4089:14581590 3999:(2005). 3956:37425804 3947:10327165 3913:: 33–52. 3884:28424311 3811:11809787 3766:14327957 3646:See also 3635:evo-devo 3602:thoracic 3519:tracheal 3473:thoracic 3465:mayflies 3452:movable 3390:halteres 3386:antennae 2634:velocity 1955: cm 1945: cm 1703:Housefly 1690:Honeybee 1664:Hoverfly 1651:horsefly 1606:Beats/s 1593:Hovering 854:airfoils 460:upstroke 293:Neoptera 238:Neoptera 199:mayflies 106:termites 98:eusocial 82:apterous 67:mayflies 65:and the 6406:2430367 6378:Bibcode 6327:1691928 6306:Bibcode 6285:1538496 6152:Bibcode 6090:Bibcode 6073:4358428 6053:Bibcode 6012:Science 5963:Bibcode 5925:5357031 5900:: 268. 5866:5108966 5837:Bibcode 5759:4257270 5751:9024659 5723:Bibcode 5691:2781901 5610:Bibcode 5477:(1875) 5340:Bibcode 5304:6386694 5273:Bibcode 5237:5452959 5089:Bibcode 5080:Science 4756:Bibcode 4712:4863373 4691:Bibcode 4606:7750411 4457:Bibcode 4129:Bibcode 4018:Bibcode 3746:Bibcode 3554:gliding 3552:, then 3540:fossils 3507:Lubbock 3503:Landois 3364:proline 3051:resilin 2563:inertia 2124: s 2073: s 2003: s 1549:and Ωc/ 561:mollusc 535:pronate 318:Diptera 265:sternum 263:to the 195:Odonata 154:Odonata 133:coupled 75:beetles 40:Insects 6404:  6396:  6359:  6324:  6283:  6216:  6208:  6170:  6133:  6071:  6045:Nature 6030:  5991:  5983:  5932:  5922:  5914:  5873:  5863:  5855:  5808:  5800:  5792:  5757:  5749:  5741:  5715:Nature 5698:  5688:  5628:  5582:  5574:  5566:  5529:  5521:  5513:  5416:  5368:  5360:  5311:  5301:  5293:  5244:  5234:  5191:  5123:  5115:  5107:  4966:  4921:  4843:  4774:  4719:  4709:  4655:  4647:  4604:  4596:  4550:  4542:  4425:  4323:  4280:  4195:8 July 4161:8 July 4095:  4087:  3954:  3944:  3890:  3882:  3874:  3809:  3801:  3764:  3706:  3558:flight 3515:Osborn 3511:Graber 3491:Mayfly 3461:naiads 3357:lipids 3258:  1755:Thrips 1625:Hornet 1381:  1361:Where 1149:Where 950:: The 489:thrips 375:thrust 355:vortex 320:, and 261:tergum 249:thorax 158:rowing 52:flight 6402:S2CID 6281:JSTOR 6214:S2CID 6168:S2CID 6069:S2CID 5806:S2CID 5755:S2CID 5580:S2CID 5527:S2CID 5414:JSTOR 5366:S2CID 5213:PeerJ 5121:S2CID 4919:JSTOR 4772:S2CID 4746:arXiv 4653:S2CID 4602:S2CID 4548:S2CID 4181:(PDF) 4093:S2CID 4061:(PDF) 4004:(PDF) 3888:S2CID 3476:terga 3457:gills 3394:wings 3322:jugum 3311:imago 3136:Here 2557:Here 2448:erg/s 1785:hover 1733:0.49 662:1973) 511:like 426:in a 371:hertz 257:notum 129:moths 110:alate 90:basal 71:flies 48:wings 6394:PMID 6357:PMID 6206:PMID 6131:PMID 6028:PMID 5989:PMID 5981:ISSN 5930:PMID 5912:ISSN 5871:PMID 5853:ISSN 5798:PMID 5790:ISSN 5747:PMID 5739:ISSN 5696:PMID 5626:PMID 5572:PMID 5564:ISSN 5519:PMID 5511:ISSN 5462:help 5358:PMID 5309:PMID 5291:ISSN 5242:PMID 5189:ISSN 5148:1996 5113:PMID 5105:ISSN 4964:ISBN 4893:2018 4871:2011 4841:PMID 4802:2016 4717:PMID 4645:PMID 4594:PMID 4540:PMID 4423:PMID 4351:2011 4321:ISSN 4278:ISBN 4197:2021 4189:1988 4163:2021 4085:PMID 3952:PMID 3880:PMID 3872:ISSN 3807:PMID 3799:ISSN 3762:PMID 3704:ISBN 3434:, a 3392:and 3355:and 2794:cm/s 2761:0.57 2455:1.23 2431:1.23 2362:0.98 2275:0.57 2250:Work 2182:Work 1763:254 1760:0.3 1746:2.5 1720:1.5 1710:190 1707:2.0 1697:250 1694:2.5 1684:130 1681:2.9 1671:120 1668:3.5 1655:3.9 1642:5.0 1632:100 1629:5.7 1616:7.0 1270:and 845:and 291:The 193:The 164:and 152:and 104:and 102:ants 50:and 6386:doi 6374:360 6349:doi 6345:205 6322:PMC 6314:doi 6302:352 6273:doi 6269:104 6239:doi 6198:doi 6194:206 6160:doi 6148:492 6123:doi 6119:202 6098:doi 6086:305 6061:doi 6049:384 6020:doi 6016:284 5971:doi 5920:PMC 5902:doi 5861:PMC 5845:doi 5782:doi 5731:doi 5719:385 5686:PMC 5678:doi 5618:doi 5556:doi 5552:168 5503:doi 5499:156 5348:doi 5299:PMC 5281:doi 5269:116 5232:PMC 5222:doi 5181:doi 5152:doi 5097:doi 5085:346 5033:doi 5029:133 4831:doi 4827:219 4764:doi 4707:PMC 4699:doi 4635:doi 4631:210 4584:doi 4580:208 4530:doi 4526:212 4494:doi 4465:doi 4413:doi 4409:217 4379:doi 4311:doi 4137:doi 4075:doi 4071:206 4026:doi 3942:PMC 3934:doi 3862:doi 3858:220 3791:doi 3787:204 3754:doi 3742:212 3463:of 3262:erg 3174:1.8 3142:dyn 3028:erg 2975:254 2841:254 2831:max 2790:127 2765:4.5 2671:max 2656:max 2638:max 2636:, Îœ 2630:max 2567:max 2535:max 2420:110 2413:erg 2409:112 2366:erg 2340:980 2334:0.1 2327:mgh 2285:erg 2281:112 2269:980 2263:0.1 2119:110 1983:4.5 1951:980 1749:12 1736:28 1723:16 1658:96 1645:85 1619:38 913:and 902:sin 872:): 767:and 244:). 6474:: 6400:. 6392:. 6384:. 6372:. 6355:. 6343:. 6339:. 6320:. 6312:. 6300:. 6296:. 6279:. 6267:. 6263:. 6235:83 6233:. 6229:. 6212:. 6204:. 6192:. 6166:. 6158:. 6146:. 6129:. 6117:. 6113:. 6096:. 6084:. 6067:. 6059:. 6047:. 6026:. 6014:. 5987:. 5979:. 5969:. 5959:27 5957:. 5951:. 5928:. 5918:. 5910:. 5896:. 5892:. 5869:. 5859:. 5851:. 5843:. 5831:. 5827:. 5804:. 5796:. 5788:. 5778:12 5776:. 5753:. 5745:. 5737:. 5729:. 5717:. 5694:. 5684:. 5672:. 5666:. 5649:46 5647:. 5624:. 5616:. 5606:11 5604:. 5578:. 5570:. 5562:. 5550:. 5525:. 5517:. 5509:. 5497:. 5454:: 5452:}} 5448:{{ 5426:^ 5410:24 5408:. 5396:^ 5378:^ 5364:. 5356:. 5346:. 5336:47 5334:. 5330:. 5307:. 5297:. 5289:. 5279:. 5267:. 5263:. 5240:. 5230:. 5216:. 5210:. 5187:. 5177:76 5175:. 5119:. 5111:. 5103:. 5095:. 5083:. 5027:. 4978:^ 4958:. 4931:^ 4901:^ 4861:. 4839:. 4825:. 4819:. 4793:. 4770:. 4762:. 4754:. 4742:33 4740:. 4715:. 4705:. 4697:. 4685:. 4681:. 4665:^ 4651:. 4643:. 4629:. 4623:. 4600:. 4592:. 4578:. 4572:. 4560:^ 4546:. 4538:. 4524:. 4520:. 4506:^ 4490:69 4488:. 4463:. 4453:27 4451:. 4447:. 4435:^ 4421:. 4407:. 4403:. 4391:^ 4375:59 4373:. 4341:. 4319:. 4307:10 4305:. 4301:. 4272:. 4218:^ 4187:. 4183:. 4135:. 4091:. 4083:. 4069:. 4063:. 4038:^ 4024:. 4014:37 4012:. 4006:. 3970:^ 3950:. 3940:. 3932:. 3928:. 3909:. 3886:. 3878:. 3870:. 3856:. 3852:. 3805:. 3797:. 3785:. 3760:. 3752:. 3740:. 3680:^ 3618:. 3608:. 3388:, 3255:18 3237:10 3216:10 3200:10 3181:10 3006:43 2934:10 2772:10 2708:av 2462:10 2438:10 2424:/s 2347:10 2213:2W 2164:av 2152:av 2060:10 1990:10 1932:10 1564:. 1555:fc 1155:bd 1106:bd 931:0. 430:. 410:; 377:. 316:, 31:) 6408:. 6388:: 6380:: 6363:. 6351:: 6330:. 6316:: 6308:: 6287:. 6275:: 6245:. 6241:: 6220:. 6200:: 6174:. 6162:: 6154:: 6137:. 6125:: 6104:. 6100:: 6092:: 6075:. 6063:: 6055:: 6034:. 6022:: 5995:. 5973:: 5965:: 5936:. 5904:: 5898:6 5877:. 5847:: 5839:: 5833:3 5812:. 5784:: 5761:. 5733:: 5725:: 5702:. 5680:: 5674:5 5632:. 5620:: 5612:: 5586:. 5558:: 5533:. 5505:: 5464:) 5420:. 5391:. 5372:. 5350:: 5342:: 5315:. 5283:: 5275:: 5248:. 5224:: 5218:5 5195:. 5183:: 5158:. 5154:: 5127:. 5099:: 5091:: 5039:. 5035:: 4972:. 4925:. 4895:. 4873:. 4847:. 4833:: 4804:. 4778:. 4766:: 4758:: 4748:: 4723:. 4701:: 4693:: 4687:6 4659:. 4637:: 4608:. 4586:: 4554:. 4532:: 4500:. 4496:: 4471:. 4467:: 4459:: 4429:. 4415:: 4385:. 4381:: 4353:. 4327:. 4313:: 4286:. 4213:. 4199:. 4165:. 4143:. 4139:: 4131:: 4125:5 4099:. 4077:: 4032:. 4028:: 4020:: 3964:. 3936:: 3911:2 3894:. 3864:: 3837:. 3813:. 3793:: 3768:. 3756:: 3748:: 3723:. 3252:= 3244:2 3230:2 3223:4 3207:4 3193:4 3185:7 3166:2 3163:1 3158:= 3155:U 3138:E 3113:2 3102:A 3099:E 3091:2 3088:1 3083:= 3080:U 3003:= 2998:2 2993:) 2987:2 2983:/ 2970:( 2964:) 2958:3 2953:2 2941:3 2929:( 2925:= 2920:2 2915:x 2912:a 2909:m 2901:I 2896:2 2893:1 2888:= 2885:E 2882:K 2853:2 2849:/ 2836:= 2811:( 2787:= 2779:3 2756:= 2750:t 2743:d 2738:= 2733:v 2730:a 2726:v 2712:d 2705:Îœ 2685:2 2681:/ 2667:v 2661:= 2611:3 2605:2 2597:m 2591:= 2588:I 2559:I 2540:2 2527:I 2522:2 2519:1 2514:= 2511:E 2508:K 2475:W 2469:3 2452:= 2442:4 2428:= 2406:= 2402:P 2359:= 2354:2 2331:= 2323:= 2319:E 2305:E 2278:= 2257:2 2254:= 2218:d 2208:= 2205:d 2197:v 2194:a 2190:F 2186:= 2168:d 2132:1 2111:T 2108:1 2103:= 2100:f 2067:3 2053:9 2050:= 2047:t 2040:2 2037:= 2034:T 2021:r 1997:3 1971:2 1966:s 1960:/ 1939:2 1925:2 1918:= 1913:2 1909:/ 1905:1 1900:) 1895:g 1891:h 1888:2 1882:( 1877:= 1874:t 1842:2 1838:) 1833:2 1829:t 1822:( 1819:g 1813:= 1810:h 1797:h 1793:t 1562:0 1559:U 1557:/ 1551:u 1547:u 1545:/ 1543:0 1540:U 1536:c 1532:0 1529:U 1525:u 1508:R 1488:s 1466:g 1462:r 1441:f 1401:U 1372:c 1344:r 1341:d 1338:) 1335:R 1332:( 1329:c 1324:2 1320:r 1313:R 1308:0 1298:s 1295:1 1288:= 1283:g 1279:r 1256:g 1252:r 1248:f 1242:2 1239:= 1236:U 1213:v 1209:U 1200:c 1191:= 1188:e 1185:R 1163:e 1159:s 1151:u 1130:. 1125:s 1120:u 1115:= 1101:u 1092:0 1089:= 1081:u 1066:u 1060:2 1052:v 1049:+ 1040:p 1028:= 1020:u 1015:) 1004:u 999:( 995:+ 989:t 980:u 928:= 923:D 919:C 896:2 893:= 888:L 884:C 868:( 849:D 847:C 842:L 840:C 824:. 818:S 813:2 809:U 800:D 797:2 791:= 788:) 782:( 777:D 773:C 759:S 754:2 750:U 741:L 738:2 732:= 729:) 723:( 718:L 714:C 699:D 697:C 692:L 690:C 686:U 682:D 678:L 495:. 232:( 201:.

Index


Hemicordulia tau
dragonfly
Insects
invertebrates
wings
flight
Carboniferous
dragonflies
mayflies
flies
beetles
apterous
secondarily lost their wings through evolution
basal
silverfish
eusocial
ants
termites
alate
mating season
aerodynamics
Weis-Fogh clap and fling mechanism
moths
coupled
Ephemeroptera (mayflies)
Odonata
rowing
Dragonflies
damselflies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑