Knowledge (XXG)

Integer sequence

Source 📝

783: 20: 1092: 158:
Although some integer sequences have definitions, there is no systematic way to define what it means for an integer sequence to be definable in the universe or in any absolute (model independent) sense.
90:
Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a
974: 247:. However, in any model that does possess such a definability map, some integer sequences in the model will not be definable relative to the model (Hamkins et al. 2013). 964: 617: 1057: 174:. The transitivity of M implies that the integers and integer sequences inside M are actually integers and sequences of integers. An integer sequence is a 898: 522: 101: 76: 908: 903: 69:) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description (sequence 1072: 663: 610: 1052: 954: 944: 1062: 1121: 1067: 969: 603: 458: 1095: 1077: 517: 463: 949: 939: 929: 1116: 959: 544: 489: 453: 296: 278:
if every positive integer can be expressed as a sum of values in the sequence, using each value at most once.
223:; for others, only some integer sequences are (Hamkins et al. 2013). There is no systematic way to define in 65:
by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the
1044: 866: 372: 706: 653: 527: 913: 658: 377: 542:
Hamkins, Joel David; Linetsky, David; Reitz, Jonas (2013), "Pointwise Definable Models of Set Theory",
1024: 861: 630: 336: 306: 1004: 871: 504: 479: 387: 204:, there are definable integer sequences that are not computable, such as sequences that encode the 118: 845: 830: 802: 782: 721: 571: 553: 468: 397: 934: 1034: 835: 807: 761: 751: 731: 716: 484: 311: 275: 1019: 840: 766: 756: 736: 563: 437: 427: 422: 392: 357: 347: 326: 321: 192:) in the language of set theory, with one free variable and no parameters, which is true in 167: 66: 24: 19: 797: 726: 362: 291: 1029: 1014: 1009: 688: 673: 432: 417: 412: 352: 316: 171: 91: 1110: 994: 668: 176: 575: 999: 741: 683: 499: 494: 442: 407: 402: 367: 331: 746: 693: 447: 301: 205: 148: 144: 35: 254:
contains all integer sequences, then the set of integer sequences definable in
235:. Similarly, the map from the set of formulas that define integer sequences in 382: 28: 678: 473: 341: 140: 626: 152: 79:). The sequence 0, 3, 8, 15, ... is formed according to the formula 43: 589: 567: 595: 47: 558: 18: 599: 96: 71: 239:
to the integer sequences they define is not definable in
975:
1/2 + 1/3 + 1/5 + 1/7 + 1/11 + ⋯ (inverses of primes)
965:
1 − 1 + 2 − 6 + 24 − 120 + ⋯ (alternating factorials)
286:
Integer sequences that have their own name include:
155:), and so not all integer sequences are computable. 1043: 987: 922: 891: 884: 854: 823: 816: 790: 702: 646: 637: 139:> 0. The set of computable integer sequences is 227:itself the set of sequences definable relative to 104:), even though we do not have a formula for the 200:for all other integer sequences. In each such 611: 231:and that set may not even exist in some such 8: 1058:Hypergeometric function of a matrix argument 274:A sequence of positive integers is called a 914:1 + 1/2 + 1/3 + ... (Riemann zeta function) 888: 820: 643: 618: 604: 596: 970:1 + 1/2 + 1/3 + 1/4 + ⋯ (harmonic series) 557: 523:On-Line Encyclopedia of Integer Sequences 122:if there exists an algorithm that, given 592:. Articles are freely available online. 196:for that integer sequence and false in 215:of ZFC, every sequence of integers in 143:. The set of all integer sequences is 53:An integer sequence may be specified 7: 935:1 − 1 + 1 − 1 + ⋯ (Grandi's series) 262:and be countable and countable in 112:Computable and definable sequences 14: 1053:Generalized hypergeometric series 87:th term: an explicit definition. 1091: 1090: 1063:Lauricella hypergeometric series 781: 1073:Riemann's differential equation 1: 1068:Modular hypergeometric series 909:1/4 + 1/16 + 1/64 + 1/256 + ⋯ 459:Regular paperfolding sequence 184:if there exists some formula 83: − 1 for the 16:Ordered list of whole numbers 590:Journal of Integer Sequences 57:by giving a formula for its 1078:Theta hypergeometric series 518:Constant-recursive sequence 211:For some transitive models 46:(i.e., an ordered list) of 1140: 960:Infinite arithmetic series 904:1/2 + 1/4 + 1/8 + 1/16 + ⋯ 899:1/2 − 1/4 + 1/8 − 1/16 + ⋯ 1086: 779: 545:Journal of Symbolic Logic 219:is definable relative to 373:Highly composite numbers 791:Properties of sequences 116:An integer sequence is 654:Arithmetic progression 528:List of OEIS sequences 464:Rudin–Shapiro sequence 378:Highly totient numbers 31: 1045:Hypergeometric series 659:Geometric progression 307:Binomial coefficients 243:and may not exist in 179:sequence relative to 153:that of the continuum 22: 1122:Arithmetic functions 1025:Trigonometric series 817:Properties of series 664:Harmonic progression 480:Superperfect numbers 388:Hyperperfect numbers 337:Even and odd numbers 208:of computable sets. 1005:Formal power series 568:10.2178/jsl.7801090 505:Wolstenholme number 490:Thue–Morse sequence 469:Semiperfect numbers 297:Baum–Sweet sequence 108:th perfect number. 803:Monotonic function 722:Fibonacci sequence 485:Triangular numbers 454:Recamán's sequence 398:Kolakoski sequence 312:Carmichael numbers 270:Complete sequences 67:Fibonacci sequence 32: 25:Fibonacci sequence 1117:Integer sequences 1104: 1103: 1035:Generating series 983: 982: 955:1 − 2 + 4 − 8 + ⋯ 950:1 + 2 + 4 + 8 + ⋯ 945:1 − 2 + 3 − 4 + ⋯ 940:1 + 2 + 3 + 4 + ⋯ 930:1 + 1 + 1 + 1 + ⋯ 880: 879: 808:Periodic sequence 777: 776: 762:Triangular number 752:Pentagonal number 732:Heptagonal number 717:Complete sequence 639:Integer sequences 438:Practical numbers 428:Partition numbers 348:Fibonacci numbers 327:Deficient numbers 322:Composite numbers 276:complete sequence 27:on a building in 23:Beginning of the 1129: 1094: 1093: 1020:Dirichlet series 889: 821: 785: 757:Polygonal number 737:Hexagonal number 710: 644: 620: 613: 606: 597: 578: 561: 393:Juggler sequence 358:Figurate numbers 292:Abundant numbers 168:transitive model 162:Suppose the set 99: 74: 40:integer sequence 1139: 1138: 1132: 1131: 1130: 1128: 1127: 1126: 1107: 1106: 1105: 1100: 1082: 1039: 988:Kinds of series 979: 918: 885:Explicit series 876: 850: 812: 798:Cauchy sequence 786: 773: 727:Figurate number 704: 698: 689:Powers of three 633: 624: 586: 541: 538: 514: 509: 433:Perfect numbers 423:Padovan numbers 418:Natural numbers 413:Motzkin numbers 363:Golomb sequence 317:Catalan numbers 284: 272: 134: 114: 95: 70: 17: 12: 11: 5: 1137: 1136: 1133: 1125: 1124: 1119: 1109: 1108: 1102: 1101: 1099: 1098: 1087: 1084: 1083: 1081: 1080: 1075: 1070: 1065: 1060: 1055: 1049: 1047: 1041: 1040: 1038: 1037: 1032: 1030:Fourier series 1027: 1022: 1017: 1015:Puiseux series 1012: 1010:Laurent series 1007: 1002: 997: 991: 989: 985: 984: 981: 980: 978: 977: 972: 967: 962: 957: 952: 947: 942: 937: 932: 926: 924: 920: 919: 917: 916: 911: 906: 901: 895: 893: 886: 882: 881: 878: 877: 875: 874: 869: 864: 858: 856: 852: 851: 849: 848: 843: 838: 833: 827: 825: 818: 814: 813: 811: 810: 805: 800: 794: 792: 788: 787: 780: 778: 775: 774: 772: 771: 770: 769: 759: 754: 749: 744: 739: 734: 729: 724: 719: 713: 711: 700: 699: 697: 696: 691: 686: 681: 676: 671: 666: 661: 656: 650: 648: 641: 635: 634: 625: 623: 622: 615: 608: 600: 594: 593: 585: 584:External links 582: 581: 580: 552:(1): 139–156, 537: 534: 533: 532: 531: 530: 520: 513: 510: 508: 507: 502: 497: 492: 487: 482: 477: 471: 466: 461: 456: 451: 445: 440: 435: 430: 425: 420: 415: 410: 405: 400: 395: 390: 385: 380: 375: 370: 365: 360: 355: 353:Fibonacci word 350: 345: 339: 334: 329: 324: 319: 314: 309: 304: 299: 294: 288: 283: 280: 271: 268: 258:will exist in 172:ZFC set theory 130: 113: 110: 92:perfect number 15: 13: 10: 9: 6: 4: 3: 2: 1135: 1134: 1123: 1120: 1118: 1115: 1114: 1112: 1097: 1089: 1088: 1085: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1050: 1048: 1046: 1042: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1011: 1008: 1006: 1003: 1001: 998: 996: 995:Taylor series 993: 992: 990: 986: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 933: 931: 928: 927: 925: 921: 915: 912: 910: 907: 905: 902: 900: 897: 896: 894: 890: 887: 883: 873: 870: 868: 865: 863: 860: 859: 857: 853: 847: 844: 842: 839: 837: 834: 832: 829: 828: 826: 822: 819: 815: 809: 806: 804: 801: 799: 796: 795: 793: 789: 784: 768: 765: 764: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 714: 712: 708: 701: 695: 692: 690: 687: 685: 684:Powers of two 682: 680: 677: 675: 672: 670: 669:Square number 667: 665: 662: 660: 657: 655: 652: 651: 649: 645: 642: 640: 636: 632: 628: 621: 616: 614: 609: 607: 602: 601: 598: 591: 588: 587: 583: 577: 573: 569: 565: 560: 555: 551: 547: 546: 540: 539: 535: 529: 526: 525: 524: 521: 519: 516: 515: 511: 506: 503: 501: 500:Weird numbers 498: 496: 493: 491: 488: 486: 483: 481: 478: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 449: 446: 444: 443:Prime numbers 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 408:Lucas numbers 406: 404: 403:Lucky numbers 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 368:Happy numbers 366: 364: 361: 359: 356: 354: 351: 349: 346: 343: 340: 338: 335: 333: 332:Euler numbers 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 289: 287: 281: 279: 277: 269: 267: 265: 261: 257: 253: 248: 246: 242: 238: 234: 230: 226: 222: 218: 214: 209: 207: 203: 199: 195: 191: 187: 183: 182: 178: 173: 169: 165: 160: 156: 154: 150: 146: 142: 138: 133: 129: 126:, calculates 125: 121: 120: 111: 109: 107: 103: 98: 93: 88: 86: 82: 78: 73: 68: 64: 60: 56: 51: 49: 45: 41: 37: 30: 26: 21: 1000:Power series 742:Lucas number 694:Powers of 10 674:Cubic number 638: 549: 543: 495:Ulam numbers 302:Bell numbers 285: 273: 263: 259: 255: 251: 249: 244: 240: 236: 232: 228: 224: 220: 216: 212: 210: 206:Turing jumps 201: 197: 193: 189: 185: 180: 175: 163: 161: 157: 136: 131: 127: 123: 117: 115: 105: 94:, (sequence 89: 84: 80: 62: 61:th term, or 58: 54: 52: 39: 33: 867:Conditional 855:Convergence 846:Telescoping 831:Alternating 747:Pell number 448:Pseudoprime 383:Home primes 149:cardinality 145:uncountable 36:mathematics 1111:Categories 892:Convergent 836:Convergent 536:References 135:, for all 119:computable 63:implicitly 55:explicitly 29:Gothenburg 923:Divergent 841:Divergent 703:Advanced 679:Factorial 627:Sequences 559:1105.4597 474:Semiprime 342:Factorial 177:definable 151:equal to 141:countable 1096:Category 862:Absolute 576:43689192 512:See also 282:Examples 48:integers 44:sequence 872:Uniform 476:numbers 450:numbers 344:numbers 100:in the 97:A000396 75:in the 72:A000045 824:Series 631:series 574:  147:(with 767:array 647:Basic 572:S2CID 554:arXiv 166:is a 42:is a 38:, an 707:list 629:and 102:OEIS 77:OEIS 564:doi 250:If 170:of 34:In 1113:: 570:, 562:, 550:78 548:, 266:. 50:. 709:) 705:( 619:e 612:t 605:v 579:. 566:: 556:: 264:M 260:M 256:M 252:M 245:M 241:M 237:M 233:M 229:M 225:M 221:M 217:M 213:M 202:M 198:M 194:M 190:x 188:( 186:P 181:M 164:M 137:n 132:n 128:a 124:n 106:n 85:n 81:n 59:n

Index


Fibonacci sequence
Gothenburg
mathematics
sequence
integers
Fibonacci sequence
A000045
OEIS
perfect number
A000396
OEIS
computable
countable
uncountable
cardinality
that of the continuum
transitive model
ZFC set theory
definable
Turing jumps
complete sequence
Abundant numbers
Baum–Sweet sequence
Bell numbers
Binomial coefficients
Carmichael numbers
Catalan numbers
Composite numbers
Deficient numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.