Knowledge

Semiconductor device fabrication

Source đź“ť

478:. FOUPs in many fabs contain an internal nitrogen atmosphere which helps prevent copper from oxidizing on the wafers. Copper is used in modern semiconductors for wiring. The insides of the processing equipment and FOUPs is kept cleaner than the surrounding air in the cleanroom. This internal atmosphere is known as a mini-environment and helps improve yield which is the amount of working devices on a wafer. This mini environment is within an EFEM (equipment front end module) which allows a machine to receive FOUPs, and introduces wafers from the FOUPs into the machine. Additionally many machines also handle wafers in clean nitrogen or vacuum environments to reduce contamination and improve process control. Fabrication plants need large amounts of liquid nitrogen to maintain the atmosphere inside production machinery and FOUPs, which are constantly purged with nitrogen. There can also be an air curtain or a mesh between the FOUP and the EFEM which helps reduce the amount of humidity that enters the FOUP and improves yield. 940:. During this shortage caused by the COVID-19 pandemic, many semiconductor manufacturers banned employees from leaving company grounds. Many countries granted subsidies to semiconductor companies for building new fabrication plants or fabs. Many companies were affected by counterfeit chips. Semiconductors have become vital to the world economy and the national security of some countries. The US has asked TSMC to not produce semiconductors for Huawei, a Chinese company. CFET transistors were explored, which stacks NMOS and PMOS transistors on top of each other. Two approaches were evaluated for constructing these transistors: a monolithic approach which built both types of transistors in one process, and a sequential approach which built the two types of transistors separately and then stacked them. 755:
once, were developed to carry several wafers between process steps, but wafers had to be individually removed from the carrier, processed and returned to the carrier, so acid-resistant carriers were developed to eliminate this time consuming process, so the entire cassette with wafers was dipped into wet etching and wet cleaning tanks. When wafer sizes increased to 100 mm, the entire cassette would often not be dipped as uniformly, and the quality of the results across the wafer became hard to control. By the time 150 mm wafers arrived, the cassettes were not dipped and were only used as wafer carriers and holders to store wafers, and robotics became prevalent for handling wafers. With 200 mm wafers manual handling of wafer cassettes becomes risky as they are heavier.
2076:
defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as iron, copper, nickel, zinc, chromium, gold, mercury and silver, alkali metals such as sodium, potassium and lithium, and elements such as aluminum, magnesium, calcium, chlorine, sulfur, carbon, and fluorine. It is important for these elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove these elements from the silicon; different mixtures are effective against different elements.
2072:
dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.
859:, thus the conventional notion of a process node has become blurred. Additionally, TSMC and Samsung's 10 nm processes are only slightly denser than Intel's 14 nm in transistor density. They are actually much closer to Intel's 14 nm process than they are to Intel's 10 nm process (e.g. Samsung's 10 nm processes' fin pitch is the exact same as that of Intel's 14 nm process: 42 nm). Intel has changed the name of its 10 nm process to position it as a 7 nm process. As transistors become smaller, new effects start to influence design decisions such as self-heating of the transistors, and other effects such as electromigration have become more evident since the 16nm node. 619: 1762:, creating dummy gates, manufacturing sources and drains by ion deposition and dopant annealing, depositing an "interlevel dielectric (ILD)" and then polishing, and removing the dummy gates to replace them with a metal whose workfunction depended on whether the transistor was NMOS or PMOS, thus creating the metal gate. A third process, full silicidation (FUSI) was not pursued due to manufacturing problems. Gate-first became dominant at the 22nm/20nm node. HKMG has been extended from planar transistors for use in FinFET and nanosheet transistors. Hafnium silicon oxynitride can also be used instead of Hafnium oxide. 2026:
according to predetermined test limits such as maximum operating frequencies/clocks, number of working (fully functional) cores per chip, etc. The resulting binning data can be graphed, or logged, on a wafer map to trace manufacturing defects and mark bad chips. This map can also be used during wafer assembly and packaging. Binning allows chips that would otherwise be rejected to be reused in lower-tier products, as is the case with GPUs and CPUs, increasing device yield, especially since very few chips are fully functional (have all cores functioning correctly, for example).
881:: horizontal and vertical nanowires, horizontal nanosheet transistors (Samsung MBCFET, Intel Nanoribbon), vertical FET (VFET) and other vertical transistors, complementary FET (CFET), stacked FET, vertical TFETs, FinFETs with III-V semiconductor materials (III-V FinFET), several kinds of horizontal gate-all-around transistors such as nano-ring, hexagonal wire, square wire, and round wire gate-all-around transistors and negative-capacitance FET (NC-FET) which uses drastically different materials. FD-SOI was seen as a potential low cost alternative to FinFETs. 1511:. These ingots are then sliced into wafers about 0.75 mm thick and polished to obtain a very regular and flat surface. During the production process wafers are often grouped into lots, which are represented by a FOUP, SMIF or a wafer cassette, which are wafer carriers. FOUPs and SMIFs can be transported in the fab between machines and equipment with an automated OHT (Overhead Hoist Transport) AMHS (Automated Material Handling System). Besides SMIFs and FOUPs, wafer cassettes can be placed in a wafer box or a wafer carrying box. 1414: 870:(FinFETs), where the gate surrounds the channel on three sides, allowing for increased energy efficiency and lower gate delay—and thus greater performance—over planar transistors at the 22nm node, because planar transistors which only have one surface acting as a channel, started to suffer from short channel effects. A startup called SuVolta created a technology called Deeply Depleted Channel (DDC) to compete with FinFET transistors, which uses planar transistors at the 65 nm node which are very lightly doped. 1448:(FFUs) at regular intervals to constantly replace and filter the air in the cleanroom; semiconductor capital equipment may also have their own FFUs to clean air in the equipment's EFEM which allows the equipment to receive wafers in FOUPs. The FFUs, combined with raised floors with grills, help ensure a laminar air flow, to ensure that particles are immediately brought down to the floor and do not stay suspended in the air due to turbulence. The workers in a semiconductor fabrication facility are required to wear 2165:
finished, packaged chips, are called the back end, post-fab, ATMP (Assembly, Test, Marking, and Packaging) or ATP (Assembly, Test and Packaging) of semiconductor manufacturing, and may be carried out by OSAT (OutSourced Assembly and Test) companies which are separate from semiconductor foundries. A foundry is a company or fab performing manufacturing processes such as photolithography and etching that are part of the front end of semiconductor manufacturing.
1871: 57: 784:
wafers. The semiconductor industry has adopted larger wafers to cope with the increased demand for chips as larger wafers provide more surface area per wafer. Over time, the industry shifted to 300 mm wafers which brought along the adoption of FOUPs, but many products that are not advanced are still produced in 200 mm wafers such as analog ICs, RF chips, power ICs,
840:'s 130 nm, 90 nm, 65 nm, 45 nm and 32 nm single, dual, quad, six and eight core processors made since 2001. During the transition from 200 mm to 300 mm wafers in 2001, many bridge tools were used which could process both 200 mm and 300 mm wafers. At the time, 18 companies could manufacture chips in the leading edge 130nm process. 508:
is used as a measurement of area for different parts of a semiconductor device, based on the feature size of a semiconductor manufacturing process. Many semiconductor devices are designed in sections called cells, and each cell represents a small part of the device such as a memory cell to store data. Thus F is used to measure the area taken up by these cells or sections.
2084:
achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.
1738:. Semiconductor equipment may have several chambers which process wafers in processes such as deposition and etching. Many pieces of equipment handle wafers between these chambers in an internal nitrogen or vacuum environment to improve process control. Wet benches with tanks containing chemical solutions were historically used for cleaning and etching wafers. 1856:
transistors, and an upper layer which is a tungsten plug that connects the transistors to the interconnect. Intel at the 10nm node introduced contact-over-active-gate (COAG) which, instead of placing the contact for connecting the transistor close to the gate of the transistor, places it directly over the gate of the transistor to improve transistor density.
1613:/resist ashing or by "wet" resist stripper chemistry. Wet etching was widely used in the 1960s and 1970s, but it was replaced by dry etching/plasma etching starting at the 10 micron to 3 micron nodes. This is because wet etching makes undercuts (etching under mask layers or resist layers with patterns). Dry etching has become the dominant etching technique. 31: 789:
Materials introduced the Producer, a cluster tool that had chambers grouped in pairs for processing wafers, which shared common vacuum and supply lines but were otherwise isolated, which was revolutionary at the time as it offered higher productivity than other cluster tools without sacrificing quality, due to the isolated chamber design.
6781:
Tateshita, Y.; Wang, J.; Nagano, K.; Hirano, T.; Miyanami, Y.; Ikuta, T.; Kataoka, T.; Kikuchi, Y.; Yamaguchi, S.; Ando, T.; Tai, K.; Matsumoto, R.; Fujita, S.; Yamane, C.; Yamamoto, R.; Kanda, S.; Kugimiya, K.; Kimura, T.; Ohchi, T.; Yamamoto, Y.; Nagahama, Y.; Hagimoto, Y.; Wakabayashi, H.; Tagawa,
2164:
The packaged chips are retested to ensure that they were not damaged during packaging and that the die-to-pin interconnect operation was performed correctly. A laser then etches the chip's name and numbers on the package. The steps involving testing and packaging of dies, followed by final testing of
2079:
Several models are used to estimate yield. They are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips). For example, Murphy's model assumes that
2071:
Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by
1636:
as it still required a separate furnace but ion implantation ultimately prevailed in the 1970s as it offers better reproducibility of results. Ion implantation is practical because of the high sensitivity of semiconductor devices to foreign atoms, as ion implantation does not deposit large numbers of
1464:
pods isolate the wafers from the air in the cleanroom, increasing yield because they reduce the number of defects caused by dust particles. Also, fabs have as few people as possible in the cleanroom to make maintaining the cleanroom environment easier, since people, even when wearing cleanroom suits,
779:
Until the 1980s, physical vapor deposition was the primary technique used for depositing materials onto wafers, until the advent of chemical vapor deposition. Equipment with diffusion pumps was replaced with those using turbomolecular pumps as the latter do not use oil which often contaminated wafers
507:
Feature size is determined by the width of the smallest lines that can be patterned in a semiconductor fabrication process, this measurement is known as the linewidth. Patterning often refers to photolithography which allows a device design or pattern to be defined on the device during fabrication. F
3013: 2241:
It is vital that workers not be directly exposed to these dangerous substances. The high degree of automation common in the IC fabrication industry helps to reduce the risks of exposure. Most fabrication facilities employ exhaust management systems, such as wet scrubbers, combustors, heated absorber
2083:
Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect, due to their lower surface area on the wafer. However, smaller dies require smaller features to
754:
In the era of 2 inch wafers, these were handled manually using tweezers and held manually for the time required for a given process. Tweezers were replaced by vacuum wands as they generate fewer particles which can contaminate the wafers. Wafer carriers or cassettes, which can hold several wafers at
630:
and Lincoln Derick accidentally grew a layer of silicon dioxide over the silicon wafer, for which they observed surface passivation effects. By 1957 Frosch and Derick, using masking and predeposition, were able to manufacture silicon dioxide transistors; the first planar field effect transistors, in
1933:
processing, which eliminates processing steps. As the number of interconnect levels increases, planarization of the previous layers is required to ensure a flat surface prior to subsequent lithography. Without it, the levels would become increasingly crooked, extending outside the depth of focus of
1765:
Since the 16nm/14nm node, Atomic layer etching (ALE) is increasingly used for etching as it offers higher precision than other etching methods. In production, plasma ALE is commonly used, which removes materials unidirectionally, creating structures with vertical walls. Thermal ALE can also be used
948:
This is a list of processing techniques that are employed numerous times throughout the construction of a modern electronic device; this list does not necessarily imply a specific order, nor that all techniques are taken during manufacture as, in practice the order and which techniques are applied,
783:
200 mm diameter wafers were first used in 1990 for making chips. These became the standard until the introduction of 300 mm diameter wafers in 2000. Bridge tools were used in the transition from 150 mm wafers to 200 mm wafers and in the transition from 200 mm to 300 mm
2038:
Usually, the fab charges for testing time, with prices in the order of cents per second. Testing times vary from a few milliseconds to a couple of seconds, and the test software is optimized for reduced testing time. Multiple chip (multi-site) testing is also possible because many testers have the
1631:
and polysilicon. Doping consists of introducing impurities into the atomic structure of a semiconductor material, in order to modify its electrical properties. Initially thermal diffusion with furnaces at 900-1200°C with gases containing dopants were used for doping wafers and there was resistance
829:
semiconductor companies, outsourcing their production to companies like TSMC. They also have facilities spread in different countries. As the average utilization of semiconductor devices increased, durability became an issue and manufacturers started to design their devices to ensure they last for
2075:
Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless
1942:
is still sometimes employed when the number of interconnect levels is no more than three. Copper interconnects use an electrically conductive barrier layer to prevent the copper from diffusing into ("poisoning") its surroundings, often made of tantalum nitride. In 1997, IBM was the first to adopt
2025:
with an electronic tester that presses tiny probes against the chip. The machine marks each bad chip with a drop of dye. Currently, electronic dye marking is possible if wafer test data (results) are logged into a central computer database and chips are "binned" (i.e. sorted into virtual bins)
1608:
image on the wafer using short-wavelength light; the exposed regions (for "positive" resist) are washed away by a developer solution. The wafer then undergoes etching where materials not protected by the mask are removed. After removal or other processing, the remaining photoresist is removed by
2030:
may be used to disconnect parts of chips such as cores, either because they did not work as intended during binning, or as part of market segmentation (using the same chip for low, mid and high-end tiers). Chips may have spare parts to allow the chip to fully pass testing even if it has several
1855:
Since the 22nm node, some manufacturers have added a new process called middle-of-line (MOL) which connects the transistors to the rest of the interconnect made in the BEoL process. The MOL is often based on tungsten and has upper and lower layers: the lower layer connects the junctions of the
1754:
is not compatible with polysilicon gates which requires the use of a metal gate. Two approaches were used in production: gate-first and gate-last. Gate-first consists of depositing the high-k dielectric and then the gate metal such as Tantalum nitride whose workfunction depends on whether the
788:
and MEMS devices. Some processes such as cleaning, ion implantation, etching, annealing and oxidation started to adopt single wafer processing instead of batch wafer processing in order to improve the reproducibility of results. A similar trend existed in MEMS manufacturing. In 1998, Applied
1680:
A recipe in semiconductor manufacturing is a list of conditions under which a wafer will be processed by a particular machine in a processing step during manufacturing. Process variability is a challenge in semiconductor processing, in which wafers are not processed evenly or the quality or
1766:
to remove materials isotropically, in all directions at the same time but without the capability to create vertical walls. Plasma ALE was initially adopted for etching contacts in transistors, and since the 7nm node it is also used to create transistor structures by etching them.
2080:
yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.
631:
which drain and source were adjacent at the same surface. At Bell Labs, the importance of Frosch and Derick technique and transistors was immediately realized. Results of their work circulated around Bell Labs in the form of BTL memos before being published in 1957. At
459:
nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated, with automated material handling systems taking care of the transport of wafers from machine to machine.
1946:
In 2014, Applied Materials proposed the use of cobalt in interconnects at the 22nm node, used for encapsulating copper interconnects in cobalt to prevent electromigration, replacing tantalum nitride since it needs to be thicker than cobalt in this application.
3230: 566:
Initially transistor gate length was smaller than that suggested by the process node name (e.g. 350 nm node); however this trend reversed in 2009. Feature sizes can have no connection to the nanometers (nm) used in marketing. For example, Intel's former
3009: 7373: 1994:
Once the front-end process has been completed, the semiconductor devices or chips are subjected to a variety of electrical tests to determine if they function properly. The percent of devices on the wafer found to perform properly is referred to as the
1851:
BEoL has been used since 1995 at the 350nm and 250nm nodes (0.35 and 0.25 micron nodes), at the same time chemical mechanical polishing began to be employed. At the time, 2 metal layers for interconnect, also called metallization was state-of-the-art.
932:
nodes. GlobalFoundries has decided to stop the development of new nodes beyond 12 nanometers in order to save resources, as it has determined that setting up a new fab to handle sub-12 nm orders would be beyond the company's financial abilities.
1741:
At the 90nm node, transistor channels made with strain engineering were introduced to improve drive current in PMOS transistors by introducing regions with Silicon-Germanium in the transistor. The same was done in NMOS transistors at the 20nm node.
1755:
transistor is NMOS or PMOS, polysilicon deposition, gate line patterning, source and drain ion implantation, dopant anneal, and silicidation of the polysilicon and the source and drain. In DRAM memories this technology was first adopted in 2015.
515:
has specific rules on the minimum size (width or CD/Critical Dimension) and spacing for features on each layer of the chip. Normally a new semiconductor process has smaller minimum sizes and tighter spacing. In some cases, this allows a simple
2050:" to speed testing and reduce testing costs. In certain designs that use specialized analog fab processes, wafers are also laser-trimmed during testing, in order to achieve tightly distributed resistance values as specified by the design. 1745:
In 2007, HKMG (high-k/metal gate) transistors were introduced by Intel at the 45nm node, which replaced polysilicon gates which in turn replaced metal gate (aluminum gate) technology in the 1970s. High-k dielectric such as hafnium oxide
1892:), blanket films of aluminum are deposited first, patterned, and then etched, leaving isolated wires. Dielectric material is then deposited over the exposed wires. The various metal layers are interconnected by etching holes (called " 1831:
of chip fabrication, which refers to the packaging and testing stages). BEOL processing involves creating metal interconnecting wires that are isolated by dielectric layers. The insulating material has traditionally been a form of
2102:
Once tested, a wafer is typically reduced in thickness in a process also known as "backlap", "backfinish", "wafer backgrind" or "wafer thinning" before the wafer is scored and then broken into individual dies, a process known as
1645:(RTA) to activate the dopants. Annealing was initially done at 500 to 700°C, but this was later increased to 900 to 1100°C. Implanters can either process a single wafer at a time or several, up to 17, mounted on a rotating disk. 1912:(DRAM), because the number of interconnect levels can be small (no more than four). The aluminum was sometimes alloyed with copper for preventing recrystallization. Gold was also used in interconnects in early chips. 2121:
After the dies are tested for functionality and binned, they are packaged. Plastic or ceramic packaging involves mounting the die, connecting the die/bond pads to the pins on the package, and sealing the die. Tiny
7362: 2126:
are used to connect the pads to the pins. In the 'old days' (1970s), wires were attached by hand, but now specialized machines perform the task. Traditionally, these wires have been composed of gold, leading to a
2034:
Chips are also tested again after packaging, as the bond wires may be missing, or analog performance may be altered by the package. This is referred to as the "final test". Chips may also be imaged using x-rays.
1170:(for complete photoresist removal/photoresist stripping, also known as dry strip, historically done with a chemical solvent called a resist stripper, to allow wafers to undergo another round of photolithography) 4549: 1971:
of photoresist and other coatings. Wafer metrology equipment/tools, or wafer inspection tools are used to verify that the wafers haven't been damaged by previous processing steps up until testing; if too many
846:
Since 2009, "node" has become a commercial name for marketing purposes that indicates new generations of process technologies, without any relation to gate length, metal pitch or gate pitch. For example,
1436:, semiconductor purity was not as big of an issue as it is today in device manufacturing. In the 1960s, workers could work on semiconductor devices in street clothing. As devices become more integrated, 6651:
Frank, M. M. (2011). High-k / metal gate innovations enabling continued CMOS scaling. 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC). doi:10.1109/essderc.2011.6044239
2014:
size of 17.92 mm. The yield went down to 32.0% with an increase in die size to 100 mm. The number of killer defects on a wafer, regardless of die size, can be noted as the defect density (or D
1733:
technology involves the insertion of an insulating layer between the raw silicon wafer and the thin layer of subsequent silicon epitaxy. This method results in the creation of transistors with reduced
368: 2006:
The yield is often but not necessarily related to device (die or chip) size. As an example, in December 2019, TSMC announced an average yield of ~80%, with a peak yield per wafer of >90% for their
761:
In 1984, KLA developed the first automatic reticle and photomask inspection tool. In 1985, KLA developed an automatic inspection tool for silicon wafers, which replaced manual microscope inspection.
5882: 758:
In the 1970s, several companies migrated their semiconductor manufacturing technology from bipolar to CMOS technology. Semiconductor manufacturing equipment has been considered costly since 1978.
7586: 1750:) replaced silicon oxynitride (SiON), in order to prevent large amounts of leakage current in the transistor while allowing for continued scaling or shrinking of the transistors. However HfO 2174: 6642:
Robertson, J., & Wallace, R. M. (2015). High-K materials and metal gates for CMOS applications. Materials Science and Engineering: R: Reports, 88, 1–41. doi:10.1016/j.mser.2014.11.001
1456:
by humans. To increase yield, FOUPs and semiconductor capital equipment may have a mini environment with ISO class 1 level of dust, and FOUPs can have an even cleaner micro environment.
1792:), patterning of the gate, patterning of the source and drain regions, and subsequent implantation or diffusion of dopants to obtain the desired complementary electrical properties. In 776:
devices. It can also be made with Bipolar, CMOS and DMOS devices. Applied Materials developed the first practical multi chamber, or cluster wafer processing tool, the Precision 5000.
4687: 520:
of a currently produced chip design to reduce costs, improve performance, and increase transistor density (number of transistors per unit area) without the expense of a new design.
1827:, they must be interconnected to form the desired electrical circuits. This occurs in a series of wafer processing steps collectively referred to as BEOL (not to be confused with 1525:
In semiconductor device fabrication, the various processing steps fall into four general categories: deposition, removal, patterning, and modification of electrical properties.
1043:
Development (removal of parts of the resist by application of a liquid developer, leaving only parts of the wafer exposed for ion implantation, layer deposition, etching, etc)
7285: 3469: 7194:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
5031: 3108: 2323: 560: 361: 5932: 4329: 7310: 6368: 3133: 4964: 1915:
More recently, as the number of interconnect levels for logic has substantially increased due to the large number of transistors that are now interconnected in a modern
1444:
with filtered air to remove even the smallest particles, which could come to rest on the wafers and contribute to defects. The ceilings of semiconductor cleanrooms have
650:
In 1948, Bardeen patented an insulated-gate transistor (IGFET) with an inversion layer, Bardeen's concept, forms the basis of CMOS technology today. An improved type of
4517: 563:) has become more of a marketing term that has no standardized relation with functional feature sizes or with transistor density (number of transistors per unit area). 2272: 751:
Wafer size has grown over time, from 25 mm in 1960, to 50 mm in 1969, 100 mm in 1976, 125 mm in 1981, 150 mm in 1983 and 200 mm in 1992.
4539: 2157:, like most packages, is many times larger than the actual die hidden inside, whereas CSP chips are nearly the size of the die; a CSP can be constructed for each die 4011:
Huff, Howard R.; Goodall, Randal K.; Bullis, W. Murray; Moreland, James A.; Kirscht, Fritz G.; Wilson, Syd R.; The NTRS Starting Materials Team (24 November 1998).
1844:
materials, also called low-Îş dielectrics, are being used (such as silicon oxycarbide), typically providing dielectric constants around 2.7 (compared to 3.82 for SiO
6784:"High-Performance and Low-Power CMOS Device Technologies Featuring Metal/High-k Gate Stacks with Uniaxial Strained Silicon Channels on (100) and (110) Substrates" 354: 4803: 2316: 2140: 954: 7425: 5343: 1417:
Progress of miniaturization, and comparison of sizes of semiconductor manufacturing process nodes with some microscopic objects and visible light wavelengths
5123: 5874: 1999:. Manufacturers are typically secretive about their yields, but it can be as low as 30%, meaning that only 30% of the chips on the wafer work as intended. 5091: 2598:
450mm FOUP/LPU system in advanced semiconductor manufacturing processes: A study on the minimization of oxygen content inside FOUP when the door is opened
2405:
Hendrik Purwins; Bernd Barak; Ahmed Nagi; Reiner Engel; Uwe Höckele; Andreas Kyek; Srikanth Cherla; Benjamin Lenz; Günter Pfeifer; Kurt Weinzierl (2014).
4381: 5220: 5640:"Characterization of thin carbonized photoresist layer and investigation of dry strip process through real-time monitored variable temperature control" 7606: 5145: 4908: 3416: 3397: 2451: 2344: 2339: 4607: 1735: 1123: 2003:
is one among many reasons for low yield. Testing is carried out to prevent faulty chips from being assembled into relatively expensive packages.
912:
process chips in mass production by TSMC and Samsung, although their 7 nanometer node definition is similar to Intel's 10 nanometer process. The
3888: 2601:. 2015 Joint e-Manufacturing and Design Collaboration Symposium (eMDC) & 2015 International Symposium on Semiconductor Manufacturing (ISSM). 1715:
to the silicon epitaxy step, tricks are performed to improve the performance of the transistors to be built. One method involves introducing a
5398: 4578: 3228:, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13 3075: 2969: 953:(IDM) for their own products, and a semiconductor device might not need all techniques. Equipment for carrying out these processes is made by 7531: 7091: 7038: 7012: 6948: 6913: 6848: 6746: 6595: 6568: 6542: 6515: 6436: 6323: 6282: 6236: 6209: 6182: 6155: 6128: 6101: 6074: 6018: 5717: 5686: 5659: 5496: 5470: 5369: 5310: 4279: 4191: 4052: 3898: 3760: 3744: 3718: 3678: 3348: 3317: 3290: 2928: 2901: 2874: 2847: 2731: 2569: 5845: 5777: 937: 7331: 5163: 2277: 2251: 1283: 1252: 686:
over the next several years. Many early semiconductor device manufacturers developed and built their own equipment such as ion implanters.
592: 69: 3528: 3369: 5277: 3542: 4665: 4636: 893: 7242: 618: 6938: 6505: 4012: 2976: 1865: 7480: 7451: 7196:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 3459: 7262: 6803: 5486: 5021: 3536: 3377: 2837: 2506:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
2000: 1935: 1579: 632: 7002: 5827: 5806: 5616: 5441: 5178: 3098: 2757:"A Numerical Study on the Effects of Purge and Air Curtain Flow Rates on Humidity Invasion Into a Front Opening Unified Pod (FOUP)" 2688: 6532: 3668: 5924: 5300: 5199: 4333: 3997: 2891: 830:
enough time, and this depends on the market the device is designed for. This especially became a problem at the 10 nm node.
7300: 7028: 5748: 4269: 3573: 6391: 5961: 4854:
The next major transistor innovation was the introduction of FinFET (tri-gate) transistors on Intel's 22-nm technology in 2011.
3129: 675: 440: 6585: 6340: 6313: 6272: 2864: 7437: 6558: 6298: 6145: 4509: 4088: 2991: 2799:"Performance of Different Front-Opening Unified Pod (FOUP) Moisture Removal Techniques With Local Exhaust Ventilation System" 950: 6199: 4922: 4745: 1878:
through four layers of planarized copper interconnect, down to the polysilicon (pink), wells (greyish) and substrate (green)
6064: 1980:
has been used to predict wafer properties based on statistical methods without performing the physical measurement itself.
1389:
Trim and form (separates the lead frames from each other, and bends the lead frame's pins so that they can be mounted on a
7611: 7426:
https://www.st.com/resource/en/application_note/cd00003986-introduction-to-semiconductor-technology-stmicroelectronics.pdf
5703: 5344:
https://www.st.com/resource/en/application_note/cd00003986-introduction-to-semiconductor-technology-stmicroelectronics.pdf
4181: 3588: 2797:
Lin, Tee; Ali Zargar, Omid; Juina, Oscar; Lee, Tzu-Chieh; Sabusap, Dexter Lyndon; Hu, Shih-Cheng; Leggett, Graham (2020).
1221: 843:
In 2006, 450 mm wafers were expected to be adopted in 2012, and 675 mm wafers were expected to be used by 2021.
5676: 5514:"An Investigation of Edge Bead Removal Width Variability, Effects and Process Control in Photolithographic Manufacturing" 5359: 3965: 3840: 5460: 4355: 3734: 2116: 1909: 1793: 6042: 6008: 5255: 4042: 3708: 2755:
Benalcazar, David; Lin, Tee; Hu, Ming-Hsuan; Ali Zargar, Omid; Lin, Shao-Yu; Shih, Yang-Cheng; Leggett, Graham (2022).
1276:
or wafer bonding and stacking, this can also occur during wafer dicing, in a process known as Dice Before Grind or DBG)
957:. All equipment needs to be tested before a semiconductor fabrication plant is started. These processes are done after 467:
as they are pieces diced from a single wafer. Individual dies are separated from a finished wafer in a process called
3340: 2328: 1919:, the timing delay in the wiring has become so significant as to prompt a change in wiring material (from aluminum to 867: 765: 1358:
Molding (using special plastic molding compound that may contain glass powder as filler to control thermal expansion)
4965:"7nm, 5nm, 3nm: The new materials and transistors that will take us to the limits of Moore's law | Extremetech" 1532:
is any process that grows, coats, or otherwise transfers a material onto the wafer. Available technologies include
559:". However, this has not been the case since 1994, and the number of nanometers used to name process nodes (see the 6736: 3774: 3604: 1800:
are also fabricated at this time, typically stacked above the access transistor (the now defunct DRAM manufacturer
1575: 1571: 1103: 1058: 6253: 4774: 801:
is a global business today. The leading semiconductor manufacturers typically have facilities all over the world.
5113: 2918: 1901: 1537: 1533: 1400: 1137: 1117: 1079: 958: 2614:"Moisture Prevention in a Pre-Purged Front-Opening Unified Pod (FOUP) During Door Opening in a Mini-Environment" 1677:. Modern chips have up to eleven or more metal levels produced in over 300 or more sequenced processing steps. 7521: 7166: 6369:"History of Some Early Developments in Ion-Implantation Technology Leading to Silicon Transistor Manufacturing" 6118: 5578: 5083: 3038: 2011: 1973: 1478: 1231: 961:. A semiconductor fab operates 24/7 and many fabs use large amounts of water, primarily for rinsing the chips. 464: 7405: 6144:
Li, Jinmin; Wang, Junxi; Yi, Xiaoyan; Liu, Zhiqiang; Wei, Tongbo; Yan, Jianchang; Xue, Bin (August 31, 2020).
5741:"Laser Lift-Off(LLO) Ideal for high brightness vertical LED manufacturing - Press Release - DISCO Corporation" 4950: 4373: 3919:
Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)
4466: 7494: 6299:"1954: Diffusion Process Developed for Transistors | the Silicon Engine | Computer History Museum" 5709: 3788: 3641: 3464: 2948: 2371: 1549: 1496: 1413: 1131: 702: 667: 644: 635:, Shockley had circulated the preprint of their article in December 1956 to all his senior staff, including 5983: 5593: 4209:"Understanding the Impact of Batch vs. Single Wafer in Thermal Processing Using Cost of Ownership Analysis" 3979: 3874: 4936: 4894: 4866: 2670: 2306: 1884: 1779: 1665:, which can be carried out to create semiconductor-insulator junctions, such as in the local oxidation of 1545: 1346: 1156: 798: 764:
In 1985, STmicroelectronics invented BCD, also called BCDMOS, a semiconductor manufacturing process using
604: 600: 433: 336: 4148:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
1703:. The raw wafer is engineered by the growth of an ultrapure, virtually defect-free silicon layer through 2211: 2060: 1905: 1695:
Wafer processing is separated into FEOL and BEOL stages. FEOL processing refers to the formation of the
1484: 1390: 1297: 385: 7180: 4880: 4599: 3860: 6964: 3412: 3393: 7338: 7120: 5407: 5183: 4155: 3613: 3282: 2513: 2154: 1925:
layer) alongside a change in dielectric material in the interconnect (from silicon dioxides to newer
1759: 1729: 1642: 1620: 1293: 1177: 1085: 1073: 833: 575:
fins) with a width of 7 nm, so the Intel 10 nm process is similar in transistor density to
481:
Companies that manufacture machines used in the industrial semiconductor fabrication process include
311: 7581: 6708: 6484: 6226: 6172: 4570: 3761:"The Inside Story of Texas Instruments' Biggest Blunder: The TMS9900 Microprocessor - IEEE Spectrum" 3067: 2675: 6694: 5204: 5200:"Countries lavish subsidies and perks on semiconductor manufacturers as a global chip war heats up" 4571:"Exclusive: Is Intel Really Starting To Lose Its Process Lead? 7nm Node Slated For Release in 2022" 1930: 1926: 1921: 1841: 1654: 1650: 1508: 1474: 1338: 1248: 1182:
Millisecond thermal processing, millisecond anneal, millisecond processing, flash lamp anneal (FLA)
1108: 1018: 802: 694: 690: 421: 417: 5903: 5238: 2556:. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014). pp. 120–124. 7279: 6919: 6854: 6809: 6676: 6625: 6466: 6416: 5853: 5769: 5533: 5146:"Taiwan chipmakers keep workers 'imprisoned' in factories to keep up with global pandemic demand" 5053: 4845: 4708: 4403: 4311: 4124: 3930: 2818: 2776: 2737: 2680: 2633: 2575: 2426: 2255: 2150: 2093: 2063:
combined with the extremes of fab processing steps). Most designs cope with at least 64 corners.
2047: 1976:
on one wafer have failed, the entire wafer is scrapped to avoid the costs of further processing.
1908:; this approach can still be (and often is) used in the fabrication of many memory chips such as 1824: 1265: 1008: 917: 608: 474:
Within fabrication plants, the wafers are transported inside special sealed plastic boxes called
393: 389: 7073: 5557: 4441: 2890:
Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (13 September 2018).
928:
million transistors per square millimeter. In 2019, Samsung and TSMC announced plans to produce
873:
By 2018, a number of transistor architectures had been proposed for the eventual replacement of
805:, the world's largest manufacturer of semiconductors, has facilities in South Korea and the US. 17: 7072:
Materials: Recent Advances". In Baklanov, Mikhail R.; Ho, Paul S.; Zschech, Ehrenfried (eds.).
6035:"Wafer Cleaning Procedures; Photoresist or Resist Stripping; Removal of Films and Particulates" 3639:
Mueller, C. W.; Robinson, P. H. (December 1964). "Grown-film silicon transistors on sapphire".
2718:. 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). pp. 6–11. 1727:
becomes stretched somewhat, resulting in improved electronic mobility. Another method, called
583:. As another example, GlobalFoundries' 12 and 14 nm processes have similar feature sizes. 7527: 7258: 7215: 7148: 7087: 7034: 7008: 6944: 6909: 6844: 6799: 6742: 6591: 6564: 6538: 6511: 6432: 6319: 6278: 6232: 6205: 6178: 6151: 6124: 6097: 6070: 6014: 5713: 5682: 5655: 5492: 5466: 5365: 5306: 5269: 4727: 4275: 4187: 4048: 3894: 3740: 3714: 3674: 3532: 3522: 3373: 3344: 3313: 3286: 3276: 3207: 2924: 2897: 2870: 2843: 2727: 2565: 2529: 2234: 2222: 1977: 1870: 1775: 1720: 1658: 1557: 1520: 1193: 976: 897: 552: 486: 413: 119: 4992: 4657: 4628: 4540:"14nm, 7nm, 5nm: How low can CMOS go? It depends if you ask the engineers or the economists…" 4494: 3334: 3307: 1570:
is any process that removes material from the wafer; examples include etch processes (either
721:(metal–oxide–semiconductor field-effect transistor) using the silicon-on-sapphire process at 7616: 7249: 7207: 7138: 7128: 7079: 6901: 6836: 6791: 6668: 6617: 6458: 6424: 6383: 6349: 5647: 5525: 5415: 4837: 4303: 4251: 4220: 4163: 4116: 4020: 3922: 3822: 3821:. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD). 3650: 3621: 3503: 3436: 3257: 3199: 3168: 2810: 2768: 2719: 2625: 2557: 2521: 2418: 2381: 2366: 2349: 2294: 1968: 1633: 1589: 1461: 1352: 1048: 1023: 986: 722: 683: 409: 326: 315: 301: 92: 83: 5393: 3602:
Manasevit, H. M.; Simpson, W. J. (1964). "Single-Crystal Silicon on a Sapphire Substrate".
4759: 2407:"Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition" 2097: 2055: 1789: 1785: 1724: 1504: 1445: 1308: 1243: 980: 848: 468: 397: 341: 6722: 5798: 5326: 4208: 1681:
effectiveness of processes carried out on a wafer are not even across the wafer surface.
1592:. For example, in conventional lithography, the wafer is coated with a chemical called a 128: 110: 101: 7124: 6664:
Gate-first high-k/metal gate DRAM technology for low power and high performance products
5411: 4159: 3617: 3498:(February 1963). "Nanowatt logic using field-effect metal-oxide semiconductor triodes". 3187: 2655: 2517: 2039:
resources to perform most or all of the tests in parallel and on several chips at once.
1649:
Modification of electrical properties now also extends to the reduction of a material's
809:, the second-largest manufacturer, has facilities in Europe and Asia as well as the US. 7143: 7108: 6695:"Integrating high-k /metal gates: gate-first or gate-last? | Semiconductor Digest" 6315:
Semiconductor Microchips and Fabrication: A Practical Guide to Theory and Manufacturing
3245: 3156: 2376: 1916: 1837: 1638: 1541: 1492: 1449: 1441: 1364: 1327: 1235: 1215: 1188: 1067: 916:
process began being produced by Samsung in 2018. As of 2019, the node with the highest
905: 640: 596: 490: 425: 321: 164: 158: 152: 146: 140: 134: 7481:"Mapping the Semiconductor Supply Chain: The Critical Role of the Indo-Pacific Region" 5740: 5256:"VLSI Symposium - TSMC and Imec on Advanced Process and Devices Technology Toward 2nm" 4422: 3802: 471:, also called wafer dicing. The dies can then undergo further assembly and packaging. 7600: 7054: 5537: 5462:
Cleaning and Surface Conditioning Technology in Semiconductor Device Manufacturing 11
4315: 3934: 3670:
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
3495: 3491: 3402: Hoerni, J. A.: "Method of Manufacturing Semiconductor Devices” filed May 1, 1959 2893:
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
2822: 2780: 2311: 2230: 2022: 1989: 1964: 1875: 1848:), although materials with constants as low as 2.2 are being offered to chipmakers. 1610: 1453: 1279: 1227: 1167: 856: 814: 663: 659: 568: 556: 331: 236: 227: 218: 209: 200: 191: 182: 173: 6858: 6813: 6680: 6629: 5953: 4128: 2684: 2637: 2430: 1959:
in between the various processing steps. For example, thin film metrology based on
6923: 6763: 6470: 5114:"GlobalFoundries Stops All 7nm Development: Opts To Focus on Specialized Processes" 4978: 4849: 3500:
1963 IEEE International Solid-State Circuits Conference. Digest of Technical Papers
2741: 2579: 2123: 2104: 1960: 1708: 1588:
is the shaping or altering of deposited materials, and is generally referred to as
1334: 1322: 1315: 889: 885: 580: 494: 482: 452: 448: 281: 263: 254: 245: 7055:"Introduction to Copper / Low-K Interconnects & Electromigration Fundamentals" 5006: 4480: 1967:
is used to tightly control the thickness of gate oxide, as well as the thickness,
1804:
implemented these capacitors with trenches etched deep into the silicon surface).
1055:
are embedded in the wafer creating regions of increased or decreased conductivity)
6428: 6091: 5512:
Reiter, Tamas; McCann, Michael; Connolly, James; Haughey, Sean (February 2022).
4544: 4069: 2226: 1594: 1407: 1273: 1259: 1063: 929: 913: 909: 745: 636: 627: 456: 6984: 6893: 6872: 6840: 6828: 6783: 6782:
Y.; Tsukamoto, M.; Iwamoto, H.; Saito, M.; Kadomura, S.; Nagashima, N. (2006).
6662: 6611: 6452: 5639: 5513: 4239: 4167: 4013:"Model-based silicon wafer criteria for optimal integrated circuit performance" 3841:"Three Chips in One: The History of the BCD Integrated Circuit - IEEE Spectrum" 3826: 3816: 3507: 3225: 2798: 2756: 2713: 2613: 2596: 2551: 2422: 2406: 2147:
packaging can be used to place bond pads across the entire surface of the die.
1938:) is the primary processing method to achieve such planarization, although dry 1330:(The die is attached to a leadframe using conductive paste or die attach film.) 7591: 7553:
Digital Integrated Circuit Design, from VLSI Architectures to CMOS Fabrication
7083: 6905: 6672: 6621: 6462: 6457:. The 2006 IEEE International Joint Conference on Neural Network Proceedings. 5651: 4307: 4295: 4108: 3914: 2866:
Fundamental Principles of Optical Lithography: The Science of Microfabrication
2723: 2561: 2196: 2128: 2043: 1955:
The highly serialized nature of wafer processing has increased the demand for
1934:
available lithography, and thus interfering with the ability to pattern. CMP (
1797: 1696: 1507:) up to 300 mm (slightly less than 12 inches) in diameter using the 1433: 1372: 733: 698: 548: 544: 517: 444: 401: 296: 56: 35: 6795: 6709:"IEDM 2009: HKMG gate-first vs gate-last options | Semiconductor Digest" 6353: 5529: 4909:"Intel's Stacked Nanosheet Transistors Could be the Next Step in Moore's Law" 4600:"Life at 10nm. (Or is it 7nm?) And 3nm - Views on Advanced Silicon Platforms" 4238:
Weimer, R.A.; Eppich, D.M.; Beaman, K.L.; Powell, D.C.; Gonzalez, F. (2003).
4143: 3926: 3278:
Advanced Materials Innovation: Managing Global Technology in the 21st century
3211: 2814: 2772: 2629: 2533: 7465: 7305: 6034: 5644:
2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
5118: 5026: 4841: 4692: 4255: 4120: 3948: 3103: 2360: 2267: 2207: 2144: 2143:. Tradidionally the bond pads are located on the edges of the die, however, 1956: 1662: 1605: 1437: 1427: 1380: 1342: 1304: 1269: 991: 709:). In 1964, he published his findings with colleague William Simpson in the 622:
One of the semiconductor oxide transistors made by Frosch and Derick in 1957
7219: 7152: 6348:. 2018 22nd International Conference on Ion Implantation Technology (IIT). 5221:"China import concerns spur US to launch semiconductor supply chain review" 4113:
Proceedings of 11th International Conference on Ion Implantation Technology
3654: 1929:
insulators). This performance enhancement also comes at a reduced cost via
5799:"Product Information | DBG / Package Singulation - DISCO Corporation" 4442:"Chip Architect: Intel and Motorola/AMD's 130 nm processes to be revealed" 1268:
and polishing (reduces the thickness of the wafer for thin devices like a
4224: 4093: 3998:"Novellus offers 300-mm CVD tool that's smaller than 200-mm, lower costs" 3567: 3565: 3563: 3561: 3559: 3309:
Makers of the Microchip: A Documentary History of Fairchild Semiconductor
2242:
cartridges, etc., to control the risk to workers and to the environment.
2192: 2179:
Many toxic materials are used in the fabrication process. These include:
1897: 901: 822: 818: 523:
Early semiconductor processes had arbitrary names for generations (viz.,
5179:"What are semiconductors, and why are they vital to the global economy?" 4109:"Manufacturing advantages of single wafer high current ion implantation" 3336:
ULSI Process Integration III: Proceedings of the International Symposium
2502:"Die singulation technologies for advanced packaging: A critical review" 949:
are often specific to process offerings by foundries, or specific to an
7133: 4951:"Transistors will stop shrinking in 2021, but Moore's law will live on" 4828:
Bohr, Mark T.; Young, Ian A. (2017). "CMOS Scaling Trends and Beyond".
3203: 2654:
Kure, Tokuo; Hanaoka, Hideo; Sugiura, Takumi; Nakagawa, Shinya (2007).
2188: 2184: 1801: 1704: 1700: 1666: 1600: 1488: 1151: 972: 826: 429: 30: 7211: 5419: 3625: 3441: 3261: 3246:"Surface Protection and Selective Masking during Diffusion in Silicon" 3172: 3157:"Surface Protection and Selective Masking during Diffusion in Silicon" 2525: 2214:, used in CVD deposition of tungsten in transistor interconnects, and 6387: 5442:"Wafer Cleaning Becomes Key Challenge In Manufacturing 3D Structures" 4374:"Top 10 Worldwide Semiconductor Sales Leaders - Q1 2017 - AnySilicon" 2299: 2282: 2215: 2203: 2132: 1674: 1368: 1052: 1040:
Post Exposure Baking (PEB) improves the durability of the photoresist
878: 874: 785: 741: 718: 706: 651: 572: 531:
III/III-E/IV/V). Later each new generation process became known as a
64: 7195: 5846:"Electro Conductive Die Attach Film(Under Development) | Nitto" 5394:"A Theoretical Analysis of Wafer Cleaning Using a Cryogenic Aerosol" 4024: 2501: 443:, also called foundries or "fabs", with the central part being the " 7560: 7397: 4089:"The future of batch and single-wafer processing in wafer cleaning" 3915:"The world's first 300 mm fab at Infineon - challenges and success" 3068:"Intel 10nm isn't bigger than AMD 7nm, you're just measuring wrong" 1723:(SiGe) is deposited. Once the epitaxial silicon is deposited, the 5954:"The ASYST SMIF system - Integrated with the Tencor Surfscan 7200" 4240:"Contrasting single-wafer and batch processing for memory devices" 3803:"KLA 2020 - the tool that sparked the yield management revolution" 2333: 2027: 1869: 1670: 1561: 1553: 1500: 1412: 1198: 863: 806: 773: 729: 528: 29: 7167:"Ibm's Development of Copper Interconnect for Integrated Circuit" 3694: 2553:
Advanced FOUP purge using diffusers for FOUP door-off application
1037:
Exposure (in a photolithography stepper, scanner or mask aligner)
6877: 6489: 5061: 4867:"Start-up Seeks New Life for Planar Transistors - IEEE Spectrum" 3845: 2354: 2287: 2136: 1813: 1690: 1457: 1287: 852: 810: 769: 737: 655: 576: 524: 475: 416:, thin-film deposition, ion-implantation, etching) during which 405: 306: 7592:
Designing a Heated Chuck for Semiconductor Processing Equipment
6833:
2007 International Workshop on Physics of Semiconductor Devices
6147:
III-Nitrides Light Emitting Diodes: Technology and Applications
4688:"Intel's Process Roadmap to 2025: With 4nm, 3nm, 20A and 18A?!" 3818:
0.18um BCD technology with best-in-class LDMOS from 6 V to 45 V
1661:
in UV processing (UVP). Modification is frequently achieved by
463:
A wafer often has several integrated circuits which are called
4330:"Single Wafer vs Batch Wafer Processing in MEMS Manufacturing" 3431:
Howard R. Duff (2001). "John Bardeen and transistor physics".
2007: 1637:
atoms. Doping processes with ion implantation are followed by
1376: 1208: 837: 671: 6616:. 2012 SEMI Advanced Semiconductor Manufacturing Conference. 6584:
Nathan, Arokia; Saha, Samar K.; Todi, Ravi M. (August 2023).
5022:"Samsung Completes Development of 5nm EUV Process Technology" 3421: Hoerni, J. A.: "Semiconductor device" filed May 15, 1960 3099:"Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review" 2500:
Lei, Wei-Sheng; Kumar, Ajay; Yalamanchili, Rao (2012-04-06).
2139:
is poisonous, so lead-free "lead frames" are now mandated by
2042:
Chips are often designed with "testability features" such as
7301:"Early TSMC 5nm Test Chip Yields 80%, HVM Coming in H1 2020" 7004:
Chemical-Mechanical Planarization of Semiconductor Materials
4300:
1992 Symposium on VLSI Technology Digest of Technical Papers
2715:
FOUP purge performance improvement using EFEM flow converter
2612:
Lin, Tee; Fu, Ben-Ran; Hu, Shih-Cheng; Tang, Yi-Han (2018).
1552:(ALD) among others. Deposition can be understood to include 1028:
Photoresist coating (often as a liquid, on the entire wafer)
6667:. 2015 IEEE International Electron Devices Meeting (IEDM). 6454:
Virtual Metrology Technique for Semiconductor Manufacturing
5164:"Chip shortages lead to more counterfeit chips and devices" 4804:"Intel's Tri-Gate transistors: everything you need to know" 3460:"1963: Complementary MOS Circuit Configuration is Invented" 3130:"VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP" 2452:"8 Things You Should Know About Water & Semiconductors" 2400: 2398: 1784:
Front-end surface engineering is followed by growth of the
439:
The fabrication process is performed in highly specialized
7438:"The post-fab process debate for 3D ICs: Foundry or OSATS" 7068:
Dubois, Geraud; Volksen, Willi (February 24, 2012). "Low-
5770:"Product Information | Polishers - DISCO Corporation" 5270:"Power outage partially halts Toshiba Memory's chip plant" 4356:"Applied Materials Producer - a new revolution is upon us" 4144:"Approaches to single wafer high current ion implantation" 1465:
shed large amounts of particles, especially when walking.
1258:
Wafer mounting (wafer is mounted onto a metal frame using
817:, has facilities in Taiwan, China, Singapore, and the US. 447:". In more advanced semiconductor devices, such as modern 6485:"The Threat of Semiconductor Variability - IEEE Spectrum" 6417:"Ion implantation in CMOS Technology: Machine Challenges" 5919: 5917: 5904:"From a Slice of Crystal to an IC Wafer - CHM Revolution" 5675:
Einspruch, Norman G.; Brown, Dale M. (December 1, 2014).
4467:"'Bridge tools' appear to be taking over 300-mm movement" 2175:
Health hazards in semiconductor manufacturing occupations
1440:
must become even cleaner. Today, fabrication plants are
728:
Semiconductor device manufacturing has since spread from
7452:"ATMPs: The Founding Stone of India's Semiconductor Era" 6010:
Microlithography: Science and Technology, Second Edition
5638:
Ryu, Je Hyeok; Kim, Byoung Hoon; Yoon, Sung Jin (2017).
3043:
IEEE Spectrum: Technology, Engineering, and Science News
27:
Manufacturing process used to create integrated circuits
7109:"Recent Advances in Barrier Layer of Cu Interconnects" 6937:
Widmann, D.; Mader, H.; Friedrich, H. (9 March 2013).
5617:"Ion beam deposition goes 300mm with Aviza's new tool" 3454: 3452: 2949:"Die shrink: How Intel scaled-down the 8086 processor" 2942: 2940: 2656:"Clean-room Technologies for the Mini-environment Age" 674:
in the late 1960s. RCA commercially used CMOS for its
6563:. World Scientific Publishing Company. 3 March 2008. 6201:
Fundamentals of Layout Design for Electronic Circuits
4044:
Wafer Fabrication: Automatic Material Handling System
3306:
Christophe LĂ©cuyer; David C. Brook; Jay Last (2010).
7257:. Integrated Circuit Engineering Corporation. 1997. 6504:
Nishi, Yoshio; Doering, Robert (December 19, 2017).
6254:"Highly Selective Etch Rolls Out For Next-Gen Chips" 3039:"A Better Way To Measure Progress in Semiconductors" 1230:(where the electrical performance is verified using 7237: 7235: 5828:"Plasma Dicing (Dice Before Grind) | Orbotech" 5594:"Unlocking the Potential of Molecular Beam Epitaxy" 4923:"Nanowire Transistors Could Keep Moore's Law Alive" 4775:"Intel's Revolutionary 22 nm Transistor Technology" 3736:
Wafer Fabrication: Factory Performance and Analysis
2836:Nishi, Yoshio; Doering, Robert (19 December 2017). 2357:(SEMI)—the semiconductor industry trade association 2355:
Semiconductor Equipment and Materials International
2324:
International Technology Roadmap for Semiconductors
1432:When feature widths were far greater than about 10 561:
International Technology Roadmap for Semiconductors
7568:Handbook of Semiconductor Manufacturing Technology 6613:High-k/metal gates in leading edge silicon devices 6507:Handbook of Semiconductor Manufacturing Technology 6198:Lienig, Jens; Scheible, Juergen (March 19, 2020). 5702:Verhaverbeke, S.; Beaudry, C.; Boelen, P. (2004). 4404:"Transistor Aging Intensifies At 10/7nm And Below" 2839:Handbook of Semiconductor Manufacturing Technology 2487:Handbook of Semiconductor Manufacturing Technology 2053:Good designs try to test and statistically manage 7479:Thadani, Akhil; Allen, Gregory C. (30 May 2023). 5358:Reinhardt, Karen; Kern, Werner (March 16, 2018). 3188:"Frosch and Derick: Fifty Years Later (Foreword)" 2153:(CSP) is another packaging technology. A plastic 1882:Historically, the metal wires have been composed 1823:Once the various semiconductor devices have been 736:in the 1960s to the rest of the world, including 412:and physico-chemical process (with steps such as 7284:: CS1 maint: bot: original URL status unknown ( 5984:"How a Chip Gets Made: Visiting GlobalFoundries" 5705:Aqueous Single Pass Single Wafer AI/Via Cleaning 5518:IEEE Transactions on Semiconductor Manufacturing 4760:"Foundries Rush 3-D Transistors - IEEE Spectrum" 4244:IEEE Transactions on Semiconductor Manufacturing 2803:IEEE Transactions on Semiconductor Manufacturing 2761:IEEE Transactions on Semiconductor Manufacturing 2618:IEEE Transactions on Semiconductor Manufacturing 2273:Glossary of microelectronics manufacturing terms 7251:Cost Effective Integrated Circuit Manufacturing 6898:2007 IEEE Custom Integrated Circuits Conference 6342:Review of Major Innovations in Beam Line Design 5327:"Water Scarcity and the Semiconductor Industry" 5239:"US urges Taiwan to curb chip exports to China" 2059:(extremes of silicon behavior caused by a high 1896:in the insulating material and then depositing 1355:or integrated heat spreader (IHS) installation 6829:"High-k/Metal Gates- from research to reality" 3572:Rubin, Leonard; Poate, John (June–July 2003). 2107:. Only the good, unmarked chips are packaged. 1031:Photoresist baking (solidification in an oven) 693:was the first to document epitaxial growth of 7181:"Cobalt Encapsulation Extends Copper to 10nm" 6894:"High-K/Metal Gate Technology: A New Horizon" 6120:Plasma Etching: Fundamentals and Applications 6066:Plasma Etching: Fundamentals and Applications 5361:Handbook of Silicon Wafer Cleaning Technology 4937:"Nanowires give vertical transistors a boost" 4895:"What's Different About Next-Gen Transistors" 3875:"Series 900 In-Line Sputtering System by MRC" 3861:"Applied Materials Precision 5000 CVD System" 3775:"Wafer fab costs skyrocketing out of control" 3186:Huff, Howard; Riordan, Michael (2007-09-01). 2317:Semiconductor equipment sales leaders by year 877:, most of which were based on the concept of 362: 8: 7107:Li, Z.; Tian, Y.; Teng, C.; Cao, H. (2020). 3890:Vacuum Deposition onto Webs, Films and Foils 3710:How Transistor Area Shrank by 1 Million Fold 3695:"Evolution of the Silicon Wafer Infographic" 2970:"Overall Roadmap Technology Characteristics" 1969:refractive index, and extinction coefficient 1888:. In this approach to wiring (often called 1758:Gate-last consisted of first depositing the 6788:2006 International Electron Devices Meeting 6421:Ion Implantation and Synthesis of Materials 4510:"A Brief History of Process Node Evolution" 3980:"300mm Semiconductor Wafers get a reprieve" 2992:"A Brief History of Process Node Evolution" 7363:"Introduction to Semiconductor Technology" 7267:. Archived from the original on 2023-01-22 5299:Labor, U. S. Dept of (February 19, 2000). 5250: 5248: 4274:. John Wiley & Sons. 28 January 2005. 2018:) of the wafer per unit area, usually cm. 924:nanometer N5 node, with a density of 171.3 713:. In 1965, C.W. Mueller and P.H. Robinson 369: 355: 40: 7200:The Journal of Physical Chemistry Letters 7142: 7132: 6978: 6976: 6974: 6093:Dry Etching Technology for Semiconductors 5573: 5571: 5551: 5549: 5547: 5353: 5351: 5084:"TSMC Starts 5-Nanometer Risk Production" 4881:"The Increasingly Uneven Race to 3nm/2nm" 4036: 4034: 3960: 3958: 3440: 3061: 3059: 2920:Semiconductor Memory Devices and Circuits 2674: 2550:Wang, H. P.; Kim, S. C.; Liu, B. (2014). 965:Wafer processing (also called front end) 682:ÎĽm process before gradually scaling to a 5982:Miller, Michael J. (February 15, 2018). 4726:Derbyshire, Katherine (April 20, 2017). 3574:"Ion Implantation in Silicon Technology" 3032: 3030: 2792: 2790: 2712:Kim, Seong Chan; Schelske, Greg (2016). 2345:List of semiconductor fabrication plants 2340:List of integrated circuit manufacturers 617: 424:, typically made of pure single-crystal 6738:Complementary Metal Oxide Semiconductor 5488:Handbook of Integrated Circuit Industry 5459:Hattori, Takeshi (September 30, 2009). 5219:Shepardson, David (December 21, 2023). 4773:Bohr, Mark; Mistry, Kaizad (May 2011). 2649: 2647: 2591: 2589: 2480: 2478: 2476: 2474: 2472: 2394: 1598:; then, a machine called an aligner or 1422:Prevention of contamination and defects 1214:Electrochemical deposition (ECD). See 1124:Metal organic chemical vapor deposition 892:chips are in mass production by Intel, 436:are used for specialized applications. 43: 7277: 6741:. BoD – Books on Demand. August 2018. 6560:Semiconductor Manufacturing Technology 6531:Grovenor, C. R. M. (October 5, 2017). 5399:Journal of the Electrochemical Society 5280:from the original on December 16, 2019 5144:Smith, Nicola; Liu, John (July 2021). 4658:"14 nm lithography process - WikiChip" 4629:"10 nm lithography process - WikiChip" 4047:. Walter de Gruyter GmbH & Co KG. 3250:Journal of the Electrochemical Society 3161:Journal of the Electrochemical Society 2545: 2543: 2411:IEEE/ASME Transactions on Mechatronics 6873:"The High-k Solution - IEEE Spectrum" 3529:Springer Science & Business Media 3370:Springer Science & Business Media 3192:The Electrochemical Society Interface 3078:from the original on October 28, 2020 1617:Modification of electrical properties 1284:three-dimensional integrated circuits 1253:three-dimensional integrated circuits 1238:may also be carried out at this step) 7: 7332:"Advanced MOSFETs and Novel Devices" 6965:"BEOL Wiring Process for CMOS Logic" 6423:. Springer. 2006. pp. 213–238. 5925:"Study into human particle shedding" 5558:"What's Next For Atomic Layer Etch?" 4207:Hossain-Pas, S.; Pas, M. F. (1997). 3524:History of Semiconductor Engineering 3366:History of Semiconductor Engineering 2278:List of semiconductor scale examples 2252:List of semiconductor scale examples 1675:metal oxide field effect transistors 1386:Laser marking or silkscreen printing 670:in 1963. CMOS was commercialised by 593:List of semiconductor scale examples 7495:"Why tech pollution's going global" 6271:Franssila, Sami (28 January 2005). 5556:LaPedus, Mark (November 16, 2017). 4709:"Chip Aging Becomes Design Problem" 4495:"Get ready for 675-mm fabs in 2021" 4296:"Trends in single-wafer processing" 2246:Timeline of commercial MOSFET nodes 1685:Front-end-of-line (FEOL) processing 571:actually has features (the tips of 432:is almost always used, but various 384:is the process used to manufacture 7466:"U.S. Semiconductor Ecosystem Map" 6587:75th Anniversary of the Transistor 6171:Powell, R. A. (December 2, 2012). 6090:Nojiri, Kazuo (October 25, 2014). 4421:Sperling, Ed (February 14, 2018). 4019:. Vol. 449. pp. 97–112. 2977:Semiconductor Industry Association 1866:interconnect (integrated circuits) 1808:Back-end-of-line (BEOL) processing 1719:wherein a silicon variant such as 983:sometimes while spinning the wafer 836:(SOI) technology has been used in 25: 7075:Low- k Materials: Recent Advances 6940:Technology of Integrated Circuits 6367:Fair, Richard B. (January 1998). 6339:Glavish, Hilton; Farley, Marvin. 6312:Lian, Yaguang (10 October 2022). 6228:Etching in Microsystem Technology 6225:Köhler, Michael (July 11, 2008). 5052:Cheng, Godfrey (14 August 2019). 3472:from the original on 23 July 2019 3244:Frosch, C. J.; Derick, L (1957). 3155:Frosch, C. J.; Derick, L (1957). 3136:from the original on 7 April 2019 3037:Moore, Samuel K. (21 July 2020). 2221:highly reactive liquids, such as 1936:chemical-mechanical planarization 1580:chemical-mechanical planarization 7607:Semiconductor device fabrication 6723:"Tracing Samsung's Road to 14nm" 6274:Introduction to Microfabrication 6252:LaPedus, Mark (March 21, 2022). 6174:Dry Etching for Microelectronics 5440:Hars, Adele (October 20, 2022). 5198:Whalen, Jeanne (June 14, 2021). 4728:"Will Self-Heating Stop FinFETs" 4707:Bailey, Brian (August 9, 2018). 4402:Mutschler, Ann (July 13, 2017). 4271:Introduction to Microfabrication 4041:Zhang, Jie (24 September 2018). 3893:. William Andrew. 21 June 2011. 3673:. CRC Press. 13 September 2018. 3502:. Vol. VI. pp. 32–33. 3435:. Vol. 550. pp. 3–32. 3066:Ridley, Jacob (April 29, 2020). 2218:used for depositing polysilicon. 1176:Rapid thermal processing (RTP), 441:semiconductor fabrication plants 382:Semiconductor device fabrication 55: 18:Integrated circuit manufacturing 7582:Semiconductor industry glossery 7561:Wiki related to Chip Technology 7520:Baliga, B. (December 2, 2012). 7408:from the original on 2021-01-22 7379:from the original on 2018-04-03 7313:from the original on 2020-05-25 6762:LaPedus, Mark (July 24, 2017). 6045:from the original on 2020-10-15 5964:from the original on 2020-10-16 5935:from the original on 2020-10-15 5885:from the original on 2019-05-26 5809:from the original on 2019-05-16 5780:from the original on 2019-05-26 5751:from the original on 2019-06-14 5615:Vogler, D. (19 November 2008). 5465:. The Electrochemical Society. 5364:. William Andrew. p. 223. 5126:from the original on 2019-10-12 5094:from the original on 2020-05-05 5034:from the original on 2019-04-20 4993:"Transistor Options Beyond 3nm" 4668:from the original on 2019-07-01 4639:from the original on 2019-07-01 4610:from the original on 2019-07-09 4581:from the original on 2019-07-09 4552:from the original on 2019-07-09 4520:from the original on 2019-07-09 4384:from the original on 2017-11-06 4332:. 2 August 2016. Archived from 4087:Becker, Scott (24 March 2003). 3545:from the original on 2020-08-06 3111:from the original on 2020-11-12 3016:from the original on 2020-11-12 2694:from the original on 2021-11-01 2237:, used in etching and cleaning. 936:From 2020 to 2022, there was a 855:process was similar to Intel's 676:4000-series integrated circuits 7030:Copper Interconnect Technology 6983:LaPedus, Mark (May 22, 2017). 5491:. Springer. 27 November 2023. 4068:LaPedus, Mark (May 21, 2018). 3739:. Springer. 30 November 1995. 3275:Moskowitz, Sanford L. (2016). 951:integrated device manufacturer 1: 7555:. Cambridge University Press. 7033:. Springer. 22 January 2010. 7007:. Springer. 26 January 2004. 6117:Sugawara, M. (May 28, 1998). 6063:Sugawara, M. (May 28, 1998). 6013:. CRC Press. 3 October 2018. 5302:Occupational Outlook Handbook 5112:Shilov, Anton; Cutress, Ian. 4538:Hruska, Joel (23 June 2014). 3589:American Institute of Physics 3312:. MIT Press. pp. 62–63. 2917:Yu, Shimeng (19 April 2022). 2863:Mack, Chris (11 March 2008). 2202:poisonous compounds, such as 2131:(pronounced "leed frame") of 1222:Chemical-mechanical polishing 971:Cleaning by solvents such as 780:during processing in vacuum. 639:, who would later invent the 539:, designated by the process' 34:NASA's Glenn Research Center 7523:Epitaxial Silicon Technology 7243:"Yield and Yield Management" 6429:10.1007/978-3-540-45298-0_15 5592:PelĂ©, A-F. (29 March 2022). 5392:Natraj Narayanswami (1999). 5288:– via www.reuters.com. 4802:Grabham, Dan (May 6, 2011). 3966:"Applied Materials Producer" 3010:"Technology Node - WikiChip" 2210:in ion implantation doping, 2117:Integrated circuit packaging 2023:tests the chips on the wafer 1910:dynamic random-access memory 1794:dynamic random-access memory 1641:or, in advanced devices, by 1452:to protect the devices from 868:Fin field-effect transistors 400:, and memory chips (such as 5929:www.cleanroomtechnology.com 5875:"Die Attach Film Adhesives" 5082:Schor, David (2019-04-06). 3341:The Electrochemical Society 2947:Shirriff, Ken (June 2020). 2329:Semiconductor consolidation 1406:Additionally steps such as 678:in 1968, starting with a 20 420:are gradually created on a 7633: 6841:10.1109/IWPSD.2007.4472451 5678:Plasma Processing for VLSI 4186:. Springer. 29 June 2013. 4168:10.1016/j.nimb.2005.05.016 4017:AIP Conference Proceedings 3827:10.1109/ISPSD.2014.6856005 3713:. Springer. 15 July 2020. 3605:Journal of Applied Physics 3508:10.1109/ISSCC.1963.1157450 3433:AIP Conference Proceedings 2423:10.1109/TMECH.2013.2273435 2334:Local oxidation of silicon 2249: 2172: 2114: 2091: 1987: 1863: 1811: 1773: 1688: 1619:has historically entailed 1548:(MBE), and more recently, 1542:electrochemical deposition 1518: 1472: 1425: 1059:Etching (microfabrication) 908:and GlobalFoundries, with 711:Journal of Applied Physics 590: 7536:– via Google Books. 7084:10.1002/9781119963677.ch1 6989:Semiconductor Engineering 6906:10.1109/CICC.2007.4405765 6768:Semiconductor Engineering 6673:10.1109/IEDM.2015.7409775 6622:10.1109/ASMC.2012.6212925 6590:. John Wiley & Sons. 6547:– via Google Books. 6534:Microelectronic Materials 6520:– via Google Books. 6463:10.1109/IJCNN.2006.247284 6318:. John Wiley & Sons. 6277:. John Wiley & Sons. 6258:Semiconductor Engineering 6241:– via Google Books. 6231:. John Wiley & Sons. 6214:– via Google Books. 6187:– via Google Books. 6160:– via Google Books. 6133:– via Google Books. 6106:– via Google Books. 6079:– via Google Books. 5691:– via Google Books. 5652:10.1109/ASMC.2017.7969207 5562:Semiconductor Engineering 5475:– via Google Books. 5446:Semiconductor Engineering 5315:– via Google Books. 5054:"Moore's Law is not Dead" 5007:"Samsung, GF Ramp FD-SOI" 4732:Semiconductor Engineering 4713:Semiconductor Engineering 4427:Semiconductor Engineering 4408:Semiconductor Engineering 4308:10.1109/VLSIT.1992.200629 4074:Semiconductor Engineering 2869:. John Wiley & Sons. 2724:10.1109/ASMC.2016.7491075 2562:10.1109/ASMC.2014.6846999 1538:chemical vapor deposition 1534:physical vapor deposition 1487:is made out of extremely 1138:Physical vapor deposition 1118:Chemical vapor deposition 1080:Deep reactive-ion etching 959:integrated circuit design 408:). It is a multiple-step 7551:Kaeslin, Hubert (2008). 7078:. Wiley. pp. 1–33. 6796:10.1109/IEDM.2006.346959 6354:10.1109/IIT.2018.8807986 5879:www.henkel-adhesives.com 5530:10.1109/TSM.2021.3129770 4423:"Chip Aging Accelerates" 3927:10.1109/ISSM.2000.993612 3581:The Industrial Physicist 2815:10.1109/TSM.2020.2977122 2773:10.1109/TSM.2022.3209221 2630:10.1109/TSM.2018.2791985 1796:(DRAM) devices, storage 1707:. In the most advanced 1479:mono-crystalline silicon 1232:automatic test equipment 1013:Immersion batch cleaning 6764:"What's After FinFETs?" 6376:Proceedings of the IEEE 5908:www.computerhistory.org 5710:Electrochemical Society 4979:"What's After FinFETs?" 4842:10.1109/MM.2017.4241347 4256:10.1109/TSM.2003.810939 4121:10.1109/IIT.1996.586424 3642:Proceedings of the IEEE 3465:Computer History Museum 3333:Claeys, Cor L. (2003). 1842:low dielectric constant 1770:Gate oxide and implants 1643:rapid thermal annealing 1560:or, more specifically, 1550:atomic layer deposition 1132:Atomic layer deposition 703:North American Aviation 668:Fairchild Semiconductor 645:Fairchild Semiconductor 434:compound semiconductors 7566:Yoshio, Nishi (2017). 6892:Khare, Mukesh (2007). 6827:Narayanan, V. (2007). 3949:"The 300mm Era Begins" 3655:10.1109/PROC.1964.3436 2485:Yoshio, Nishi (2017). 2307:Semiconductor industry 1943:copper interconnects. 1879: 1874:Synthetic detail of a 1780:doping (semiconductor) 1546:molecular beam epitaxy 1418: 1347:tape automated bonding 1311:), and WLCSP packages) 1157:Molecular beam epitaxy 955:a handful of companies 825:are among the biggest 813:, the world's largest 799:semiconductor industry 633:Shockley Semiconductor 623: 605:Semiconductor industry 601:MOS integrated circuit 38: 7096:– via CrossRef. 3283:John Wiley & Sons 2212:tungsten hexafluoride 2061:operating temperature 1906:tungsten hexafluoride 1873: 1416: 1391:printed circuit board 1126:(MOCVD), used in LEDs 697:while working at the 621: 555:length, such as the " 513:semiconductor process 386:semiconductor devices 33: 7612:Cleanroom technology 6985:"The Race To 10/7nm" 6900:. pp. 417–420. 5646:. pp. 102–106. 5184:World Economic Forum 4481:"Foundry Wars Begin" 4225:10.1557/PROC-470-201 4183:Dry Etching for VLSI 2363:for labels on wafers 2183:poisonous elemental 2161:the wafer is diced. 2155:dual in-line package 1890:subtractive aluminum 1730:silicon on insulator 1556:layer formation, by 1410:may be carried out. 1294:Redistribution layer 1207:Laser lift-off (for 1178:rapid thermal anneal 1086:Atomic layer etching 1074:Reactive-ion etching 938:global chip shortage 834:Silicon on insulator 541:minimum feature size 7125:2020Mate...13.5049L 6397:on 2 September 2007 6204:. Springer Nature. 6150:. Springer Nature. 5412:1999JElS..146..767N 5305:. JIST Publishing. 5258:. 25 February 2024. 5205:The Washington Post 4995:. 15 February 2018. 4497:. 14 November 2006. 4336:on 18 February 2024 4160:2005NIMPB.237..284R 3618:1964JAP....35.1349M 2518:2012JVSTB..30d0801L 2169:Hazardous materials 2031:non-working parts. 1922:copper interconnect 1840:, but recently new 1651:dielectric constant 1509:Czochralski process 1475:Wafer (electronics) 1339:thermosonic bonding 1303:Wafer bumping (for 1249:Through-silicon via 1173:Thermal treatments 1164:Ion beam deposition 1109:Buffered oxide etch 1019:Surface passivation 803:Samsung Electronics 695:silicon on sapphire 691:Harold M. Manasevit 658:, was developed by 551:) of the process's 418:electronic circuits 394:computer processors 390:integrated circuits 7454:. 19 January 2022. 7370:STMicroelectronics 7134:10.3390/ma13215049 6835:. pp. 42–45. 5712:. pp. 23–26. 5681:. Academic Press. 5331:large.stanford.edu 4897:. 20 October 2022. 4446:chip-architect.com 4142:Renau, A. (2005). 4070:"200mm Fab Crunch" 3521:Lojek, Bo (2007). 3364:Lojek, Bo (2007). 3343:. pp. 27–30. 3204:10.1149/2.F02073IF 2256:Transistor density 2151:Chip scale package 2094:Wafer backgrinding 2048:built-in self-test 2010:test chips with a 1880: 1419: 1282:and stacking (for 1266:Wafer backgrinding 1002:Jet spray cleaning 918:transistor density 684:10 ÎĽm process 624: 609:Transistor density 39: 7533:978-0-323-15545-8 7398:"Wafer Backgrind" 7299:Cutress, Dr Ian. 7212:10.1021/jz502471h 7093:978-0-470-66254-0 7040:978-1-4419-0076-0 7014:978-3-540-43181-7 6950:978-3-662-04160-4 6915:978-1-4244-0786-6 6850:978-1-4244-1727-8 6748:978-1-78923-496-1 6597:978-1-394-20244-7 6570:978-981-310-671-0 6544:978-1-351-43154-5 6517:978-1-4200-1766-3 6438:978-3-540-23674-0 6325:978-1-119-86780-7 6284:978-0-470-02056-2 6238:978-3-527-61379-3 6211:978-3-030-39284-0 6184:978-0-08-098358-5 6157:978-981-15-7949-3 6130:978-0-19-159029-0 6103:978-3-319-10295-5 6076:978-0-19-159029-0 6020:978-1-4200-5153-7 5719:978-1-56677-411-6 5688:978-1-4832-1775-8 5661:978-1-5090-5448-0 5619:. Gold Flag Media 5498:978-981-99-2836-1 5472:978-1-56677-742-1 5420:10.1149/1.1391679 5371:978-0-323-51085-1 5312:978-1-56370-677-6 5276:. June 21, 2019. 4508:Shukla, Priyank. 4281:978-0-470-02056-2 4193:978-1-4899-2566-4 4054:978-3-11-048723-7 3900:978-1-4377-7868-7 3746:978-0-7923-9619-2 3720:978-3-030-40021-7 3680:978-1-351-24866-2 3626:10.1063/1.1713618 3442:10.1063/1.1354371 3350:978-1-56677-376-8 3319:978-0-262-01424-3 3292:978-0-470-50892-3 3262:10.1149/1.2428650 3173:10.1149/1.2428650 2990:Shukla, Priyank. 2930:978-1-000-56761-8 2903:978-1-351-24866-2 2876:978-0-470-72386-9 2849:978-1-4200-1766-3 2733:978-1-5090-0270-2 2571:978-1-4799-3944-2 2526:10.1116/1.3700230 2235:hydrofluoric acid 2223:hydrogen peroxide 2001:Process variation 1978:Virtual metrology 1776:self-aligned gate 1760:High-Îş dielectric 1736:parasitic effects 1721:silicon-germanium 1659:ultraviolet light 1639:furnace annealing 1558:thermal oxidation 1521:Wafer fabrication 1296:manufacture (for 1251:manufacture (for 1234:, binning and/or 1194:Thermal oxidation 1034:Edge bead removal 1005:Cryogenic aerosol 977:trichloroethylene 896:, TSMC, Samsung, 815:pure play foundry 643:in 1959 while at 547:(or historically 487:Applied Materials 414:thermal oxidation 410:photolithographic 379: 378: 16:(Redirected from 7624: 7571: 7556: 7538: 7537: 7517: 7511: 7510: 7508: 7506: 7501:. April 25, 2002 7491: 7485: 7484: 7476: 7470: 7469: 7468:. 20 March 2023. 7462: 7456: 7455: 7448: 7442: 7441: 7440:. 30 April 2009. 7434: 7428: 7423: 7417: 7416: 7414: 7413: 7394: 7388: 7387: 7385: 7384: 7378: 7367: 7359: 7353: 7352: 7350: 7349: 7343: 7337:. Archived from 7336: 7328: 7322: 7321: 7319: 7318: 7296: 7290: 7289: 7283: 7275: 7273: 7272: 7256: 7247: 7239: 7230: 7229: 7227: 7226: 7191: 7185: 7184: 7177: 7171: 7170: 7163: 7157: 7156: 7146: 7136: 7104: 7098: 7097: 7065: 7059: 7058: 7051: 7045: 7044: 7025: 7019: 7018: 6999: 6993: 6992: 6980: 6969: 6968: 6961: 6955: 6954: 6934: 6928: 6927: 6889: 6883: 6882: 6869: 6863: 6862: 6824: 6818: 6817: 6790:. pp. 1–4. 6778: 6772: 6771: 6759: 6753: 6752: 6733: 6727: 6726: 6719: 6713: 6712: 6705: 6699: 6698: 6691: 6685: 6684: 6659: 6653: 6649: 6643: 6640: 6634: 6633: 6608: 6602: 6601: 6581: 6575: 6574: 6555: 6549: 6548: 6528: 6522: 6521: 6501: 6495: 6494: 6481: 6475: 6474: 6449: 6443: 6442: 6413: 6407: 6406: 6404: 6402: 6396: 6390:. Archived from 6388:10.1109/5.658764 6373: 6364: 6358: 6357: 6347: 6336: 6330: 6329: 6309: 6303: 6302: 6295: 6289: 6288: 6268: 6262: 6261: 6249: 6243: 6242: 6222: 6216: 6215: 6195: 6189: 6188: 6168: 6162: 6161: 6141: 6135: 6134: 6114: 6108: 6107: 6087: 6081: 6080: 6060: 6054: 6053: 6051: 6050: 6031: 6025: 6024: 6005: 5999: 5998: 5996: 5994: 5979: 5973: 5972: 5970: 5969: 5950: 5944: 5943: 5941: 5940: 5921: 5912: 5911: 5900: 5894: 5893: 5891: 5890: 5871: 5865: 5864: 5862: 5861: 5852:. Archived from 5842: 5836: 5835: 5832:www.orbotech.com 5824: 5818: 5817: 5815: 5814: 5795: 5789: 5788: 5786: 5785: 5766: 5760: 5759: 5757: 5756: 5737: 5731: 5730: 5728: 5726: 5699: 5693: 5692: 5672: 5666: 5665: 5635: 5629: 5628: 5626: 5624: 5612: 5606: 5605: 5603: 5601: 5589: 5583: 5582: 5575: 5566: 5565: 5553: 5542: 5541: 5509: 5503: 5502: 5483: 5477: 5476: 5456: 5450: 5449: 5437: 5431: 5430: 5428: 5426: 5389: 5383: 5382: 5380: 5378: 5355: 5346: 5341: 5335: 5334: 5323: 5317: 5316: 5296: 5290: 5289: 5287: 5285: 5266: 5260: 5259: 5252: 5243: 5242: 5235: 5229: 5228: 5216: 5210: 5209: 5195: 5189: 5188: 5174: 5168: 5167: 5160: 5154: 5153: 5141: 5135: 5134: 5132: 5131: 5109: 5103: 5102: 5100: 5099: 5079: 5073: 5072: 5070: 5068: 5049: 5043: 5042: 5040: 5039: 5017: 5011: 5010: 5009:. 27 April 2018. 5003: 4997: 4996: 4989: 4983: 4982: 4975: 4969: 4968: 4961: 4955: 4954: 4947: 4941: 4940: 4939:. 2 August 2012. 4933: 4927: 4926: 4919: 4913: 4912: 4905: 4899: 4898: 4891: 4885: 4884: 4877: 4871: 4870: 4863: 4857: 4856: 4825: 4819: 4818: 4816: 4814: 4799: 4793: 4792: 4790: 4788: 4779: 4770: 4764: 4763: 4756: 4750: 4749: 4742: 4736: 4735: 4723: 4717: 4716: 4704: 4698: 4697: 4683: 4677: 4676: 4674: 4673: 4654: 4648: 4647: 4645: 4644: 4625: 4619: 4618: 4616: 4615: 4596: 4590: 4589: 4587: 4586: 4567: 4561: 4560: 4558: 4557: 4535: 4529: 4528: 4526: 4525: 4514:design-reuse.com 4505: 4499: 4498: 4491: 4485: 4484: 4483:. 19 April 2021. 4477: 4471: 4470: 4469:. 26 April 2001. 4463: 4457: 4456: 4454: 4452: 4440:de Vries, Hans. 4437: 4431: 4430: 4418: 4412: 4411: 4399: 4393: 4392: 4390: 4389: 4370: 4364: 4363: 4352: 4346: 4345: 4343: 4341: 4326: 4320: 4319: 4292: 4286: 4285: 4266: 4260: 4259: 4235: 4229: 4228: 4204: 4198: 4197: 4178: 4172: 4171: 4154:(1–2): 284–289. 4139: 4133: 4132: 4105: 4099: 4098: 4084: 4078: 4077: 4065: 4059: 4058: 4038: 4029: 4028: 4008: 4002: 4001: 3994: 3988: 3987: 3976: 3970: 3969: 3962: 3953: 3952: 3945: 3939: 3938: 3911: 3905: 3904: 3885: 3879: 3878: 3871: 3865: 3864: 3857: 3851: 3850: 3837: 3831: 3830: 3813: 3807: 3806: 3799: 3793: 3792: 3789:"Kla 200 Series" 3785: 3779: 3778: 3771: 3765: 3764: 3757: 3751: 3750: 3731: 3725: 3724: 3705: 3699: 3698: 3691: 3685: 3684: 3665: 3659: 3658: 3636: 3630: 3629: 3599: 3593: 3592: 3578: 3569: 3554: 3553: 3551: 3550: 3518: 3512: 3511: 3488: 3482: 3481: 3479: 3477: 3456: 3447: 3446: 3444: 3428: 3422: 3420: 3419: 3415: 3409: 3403: 3401: 3400: 3396: 3390: 3384: 3383: 3361: 3355: 3354: 3330: 3324: 3323: 3303: 3297: 3296: 3272: 3266: 3265: 3241: 3235: 3234: 3233: 3229: 3222: 3216: 3215: 3183: 3177: 3176: 3152: 3146: 3145: 3143: 3141: 3132:. 22 July 2018. 3126: 3120: 3119: 3117: 3116: 3094: 3088: 3087: 3085: 3083: 3063: 3054: 3053: 3051: 3049: 3034: 3025: 3024: 3022: 3021: 3006: 3000: 2999: 2996:Design And Reuse 2987: 2981: 2980: 2974: 2966: 2960: 2959: 2957: 2955: 2944: 2935: 2934: 2914: 2908: 2907: 2887: 2881: 2880: 2860: 2854: 2853: 2833: 2827: 2826: 2794: 2785: 2784: 2752: 2746: 2745: 2709: 2703: 2702: 2700: 2699: 2693: 2678: 2660: 2651: 2642: 2641: 2609: 2603: 2602: 2593: 2584: 2583: 2547: 2538: 2537: 2497: 2491: 2490: 2482: 2467: 2466: 2464: 2463: 2456:China Water Risk 2448: 2442: 2441: 2439: 2437: 2402: 2382:Transistor count 2367:Etch pit density 2350:Microfabrication 2295:Multigate device 2135:-plated copper; 1904:technique using 1699:directly in the 1657:via exposure to 1655:low-Îş insulators 1634:ion implantation 1609:"dry" stripping/ 1497:mono-crystalline 1446:fan filter units 1353:IC encapsulation 1049:Ion implantation 1024:Photolithography 987:Piranha solution 927: 923: 723:RCA Laboratories 681: 527:I/II/III/IV and 398:microcontrollers 371: 364: 357: 327:Transistor count 280: 262: 253: 244: 235: 226: 217: 208: 199: 190: 181: 172: 127: 118: 109: 100: 91: 82: 59: 41: 21: 7632: 7631: 7627: 7626: 7625: 7623: 7622: 7621: 7597: 7596: 7578: 7565: 7557:, section 14.2. 7550: 7547: 7545:Further reading 7542: 7541: 7534: 7519: 7518: 7514: 7504: 7502: 7493: 7492: 7488: 7478: 7477: 7473: 7464: 7463: 7459: 7450: 7449: 7445: 7436: 7435: 7431: 7424: 7420: 7411: 7409: 7396: 7395: 7391: 7382: 7380: 7376: 7365: 7361: 7360: 7356: 7347: 7345: 7341: 7334: 7330: 7329: 7325: 7316: 7314: 7298: 7297: 7293: 7276: 7270: 7268: 7265: 7254: 7245: 7241: 7240: 7233: 7224: 7222: 7193: 7192: 7188: 7179: 7178: 7174: 7165: 7164: 7160: 7106: 7105: 7101: 7094: 7067: 7066: 7062: 7053: 7052: 7048: 7041: 7027: 7026: 7022: 7015: 7001: 7000: 6996: 6982: 6981: 6972: 6963: 6962: 6958: 6951: 6936: 6935: 6931: 6916: 6891: 6890: 6886: 6871: 6870: 6866: 6851: 6826: 6825: 6821: 6806: 6780: 6779: 6775: 6761: 6760: 6756: 6749: 6735: 6734: 6730: 6721: 6720: 6716: 6707: 6706: 6702: 6693: 6692: 6688: 6661: 6660: 6656: 6650: 6646: 6641: 6637: 6610: 6609: 6605: 6598: 6583: 6582: 6578: 6571: 6557: 6556: 6552: 6545: 6530: 6529: 6525: 6518: 6503: 6502: 6498: 6483: 6482: 6478: 6451: 6450: 6446: 6439: 6415: 6414: 6410: 6400: 6398: 6394: 6371: 6366: 6365: 6361: 6345: 6338: 6337: 6333: 6326: 6311: 6310: 6306: 6297: 6296: 6292: 6285: 6270: 6269: 6265: 6251: 6250: 6246: 6239: 6224: 6223: 6219: 6212: 6197: 6196: 6192: 6185: 6170: 6169: 6165: 6158: 6143: 6142: 6138: 6131: 6116: 6115: 6111: 6104: 6089: 6088: 6084: 6077: 6062: 6061: 6057: 6048: 6046: 6033: 6032: 6028: 6021: 6007: 6006: 6002: 5992: 5990: 5981: 5980: 5976: 5967: 5965: 5952: 5951: 5947: 5938: 5936: 5923: 5922: 5915: 5902: 5901: 5897: 5888: 5886: 5873: 5872: 5868: 5859: 5857: 5844: 5843: 5839: 5826: 5825: 5821: 5812: 5810: 5803:www.disco.co.jp 5797: 5796: 5792: 5783: 5781: 5774:www.disco.co.jp 5768: 5767: 5763: 5754: 5752: 5745:www.disco.co.jp 5739: 5738: 5734: 5724: 5722: 5720: 5701: 5700: 5696: 5689: 5674: 5673: 5669: 5662: 5637: 5636: 5632: 5622: 5620: 5614: 5613: 5609: 5599: 5597: 5591: 5590: 5586: 5577: 5576: 5569: 5555: 5554: 5545: 5511: 5510: 5506: 5499: 5485: 5484: 5480: 5473: 5458: 5457: 5453: 5439: 5438: 5434: 5424: 5422: 5391: 5390: 5386: 5376: 5374: 5372: 5357: 5356: 5349: 5342: 5338: 5325: 5324: 5320: 5313: 5298: 5297: 5293: 5283: 5281: 5268: 5267: 5263: 5254: 5253: 5246: 5237: 5236: 5232: 5218: 5217: 5213: 5197: 5196: 5192: 5177:Miller, Chris. 5176: 5175: 5171: 5166:. 14 June 2021. 5162: 5161: 5157: 5143: 5142: 5138: 5129: 5127: 5111: 5110: 5106: 5097: 5095: 5081: 5080: 5076: 5066: 5064: 5051: 5050: 5046: 5037: 5035: 5020:Shilov, Anton. 5019: 5018: 5014: 5005: 5004: 5000: 4991: 4990: 4986: 4981:. 24 July 2017. 4977: 4976: 4972: 4963: 4962: 4958: 4953:. 25 July 2016. 4949: 4948: 4944: 4935: 4934: 4930: 4921: 4920: 4916: 4907: 4906: 4902: 4893: 4892: 4888: 4879: 4878: 4874: 4865: 4864: 4860: 4827: 4826: 4822: 4812: 4810: 4801: 4800: 4796: 4786: 4784: 4777: 4772: 4771: 4767: 4758: 4757: 4753: 4744: 4743: 4739: 4725: 4724: 4720: 4706: 4705: 4701: 4685: 4684: 4680: 4671: 4669: 4662:en.wikichip.org 4656: 4655: 4651: 4642: 4640: 4633:en.wikichip.org 4627: 4626: 4622: 4613: 4611: 4598: 4597: 4593: 4584: 4582: 4569: 4568: 4564: 4555: 4553: 4537: 4536: 4532: 4523: 4521: 4507: 4506: 4502: 4493: 4492: 4488: 4479: 4478: 4474: 4465: 4464: 4460: 4450: 4448: 4439: 4438: 4434: 4420: 4419: 4415: 4401: 4400: 4396: 4387: 4385: 4372: 4371: 4367: 4354: 4353: 4349: 4339: 4337: 4328: 4327: 4323: 4294: 4293: 4289: 4282: 4268: 4267: 4263: 4237: 4236: 4232: 4213:MRS Proceedings 4206: 4205: 4201: 4194: 4180: 4179: 4175: 4141: 4140: 4136: 4107: 4106: 4102: 4086: 4085: 4081: 4067: 4066: 4062: 4055: 4040: 4039: 4032: 4025:10.1063/1.56795 4010: 4009: 4005: 4000:. 10 July 2000. 3996: 3995: 3991: 3978: 3977: 3973: 3964: 3963: 3956: 3951:. 10 July 2000. 3947: 3946: 3942: 3913: 3912: 3908: 3901: 3887: 3886: 3882: 3873: 3872: 3868: 3859: 3858: 3854: 3839: 3838: 3834: 3815: 3814: 3810: 3801: 3800: 3796: 3787: 3786: 3782: 3773: 3772: 3768: 3759: 3758: 3754: 3747: 3733: 3732: 3728: 3721: 3707: 3706: 3702: 3693: 3692: 3688: 3681: 3667: 3666: 3662: 3649:(12): 1487–90. 3638: 3637: 3633: 3601: 3600: 3596: 3576: 3571: 3570: 3557: 3548: 3546: 3539: 3531:. p. 330. 3520: 3519: 3515: 3490: 3489: 3485: 3475: 3473: 3458: 3457: 3450: 3430: 3429: 3425: 3417: 3411: 3410: 3406: 3398: 3392: 3391: 3387: 3380: 3372:. p. 120. 3363: 3362: 3358: 3351: 3332: 3331: 3327: 3320: 3305: 3304: 3300: 3293: 3285:. p. 168. 3274: 3273: 3269: 3243: 3242: 3238: 3231: 3224: 3223: 3219: 3185: 3184: 3180: 3154: 3153: 3149: 3139: 3137: 3128: 3127: 3123: 3114: 3112: 3096: 3095: 3091: 3081: 3079: 3065: 3064: 3057: 3047: 3045: 3036: 3035: 3028: 3019: 3017: 3008: 3007: 3003: 2989: 2988: 2984: 2972: 2968: 2967: 2963: 2953: 2951: 2946: 2945: 2938: 2931: 2916: 2915: 2911: 2904: 2889: 2888: 2884: 2877: 2862: 2861: 2857: 2850: 2835: 2834: 2830: 2796: 2795: 2788: 2754: 2753: 2749: 2734: 2711: 2710: 2706: 2697: 2695: 2691: 2676:10.1.1.493.1460 2658: 2653: 2652: 2645: 2611: 2610: 2606: 2595: 2594: 2587: 2572: 2549: 2548: 2541: 2499: 2498: 2494: 2484: 2483: 2470: 2461: 2459: 2450: 2449: 2445: 2435: 2433: 2404: 2403: 2396: 2391: 2386: 2263: 2258: 2250:Main articles: 2248: 2177: 2171: 2119: 2113: 2100: 2098:Die preparation 2092:Main articles: 2090: 2088:Die preparation 2069: 2017: 1992: 1986: 1953: 1951:Wafer metrology 1900:in them with a 1868: 1862: 1847: 1835: 1821: 1816: 1810: 1790:silicon dioxide 1788:(traditionally 1786:gate dielectric 1782: 1774:Main articles: 1772: 1753: 1749: 1725:crystal lattice 1693: 1687: 1673:) to fabricate 1523: 1517: 1481: 1473:Main articles: 1471: 1450:cleanroom suits 1430: 1424: 1314:Die cutting or 1309:ball grid array 1244:Die preparation 1189:Furnace anneals 996:Wafer scrubbing 981:ultrapure water 946: 925: 921: 849:GlobalFoundries 795: 679: 616: 611: 589: 553:transistor gate 533:technology node 503: 469:die singulation 375: 346: 342:Nanoelectronics 293: 287: 278: 269: 260: 251: 242: 233: 224: 215: 206: 197: 188: 179: 170: 125: 116: 107: 98: 89: 80: 67: 48: 46: 28: 23: 22: 15: 12: 11: 5: 7630: 7628: 7620: 7619: 7614: 7609: 7599: 7598: 7595: 7594: 7589: 7584: 7577: 7576:External links 7574: 7573: 7572: 7563: 7558: 7546: 7543: 7540: 7539: 7532: 7512: 7486: 7471: 7457: 7443: 7429: 7418: 7389: 7354: 7323: 7291: 7263: 7231: 7186: 7183:. 13 May 2014. 7172: 7158: 7099: 7092: 7060: 7046: 7039: 7020: 7013: 6994: 6970: 6956: 6949: 6929: 6914: 6884: 6864: 6849: 6819: 6804: 6773: 6754: 6747: 6728: 6725:. 12 May 2015. 6714: 6700: 6686: 6654: 6644: 6635: 6603: 6596: 6576: 6569: 6550: 6543: 6523: 6516: 6496: 6476: 6444: 6437: 6408: 6382:(1): 111–137. 6359: 6331: 6324: 6304: 6290: 6283: 6263: 6244: 6237: 6217: 6210: 6190: 6183: 6163: 6156: 6136: 6129: 6123:. OUP Oxford. 6109: 6102: 6082: 6075: 6069:. OUP Oxford. 6055: 6039:www.eesemi.com 6026: 6019: 6000: 5974: 5945: 5913: 5895: 5866: 5837: 5819: 5790: 5761: 5732: 5718: 5694: 5687: 5667: 5660: 5630: 5607: 5584: 5567: 5543: 5504: 5497: 5478: 5471: 5451: 5432: 5406:(2): 767–774. 5384: 5370: 5347: 5336: 5318: 5311: 5291: 5261: 5244: 5230: 5211: 5190: 5169: 5155: 5136: 5104: 5074: 5044: 5012: 4998: 4984: 4970: 4956: 4942: 4928: 4914: 4900: 4886: 4883:. 24 May 2021. 4872: 4858: 4820: 4794: 4765: 4751: 4737: 4718: 4699: 4686:Cutress, Ian. 4678: 4649: 4620: 4606:. 2018-03-12. 4591: 4577:. 2016-09-10. 4562: 4530: 4500: 4486: 4472: 4458: 4432: 4413: 4394: 4380:. 2017-05-09. 4365: 4347: 4321: 4287: 4280: 4261: 4250:(2): 138–146. 4230: 4199: 4192: 4173: 4134: 4100: 4079: 4060: 4053: 4030: 4003: 3989: 3971: 3954: 3940: 3906: 3899: 3880: 3866: 3852: 3832: 3808: 3794: 3780: 3766: 3752: 3745: 3726: 3719: 3700: 3686: 3679: 3660: 3631: 3612:(4): 1349–51. 3594: 3555: 3537: 3513: 3496:Wanlass, Frank 3492:Sah, Chih-Tang 3483: 3448: 3423: 3404: 3385: 3378: 3356: 3349: 3325: 3318: 3298: 3291: 3267: 3236: 3217: 3178: 3147: 3121: 3097:Cutress, Ian. 3089: 3055: 3026: 3001: 2982: 2961: 2936: 2929: 2909: 2902: 2882: 2875: 2855: 2848: 2828: 2809:(2): 310–315. 2786: 2767:(4): 670–679. 2747: 2732: 2704: 2663:Hitachi Review 2643: 2624:(1): 108–115. 2604: 2585: 2570: 2539: 2492: 2468: 2458:. 11 July 2013 2443: 2393: 2392: 2390: 2387: 2385: 2384: 2379: 2377:Planar process 2374: 2369: 2364: 2358: 2352: 2347: 2342: 2337: 2331: 2326: 2321: 2320: 2319: 2314: 2304: 2303: 2302: 2292: 2291: 2290: 2280: 2275: 2270: 2264: 2262: 2259: 2247: 2244: 2239: 2238: 2219: 2200: 2170: 2167: 2115:Main article: 2112: 2109: 2089: 2086: 2068: 2065: 2015: 1988:Main article: 1985: 1982: 1952: 1949: 1917:microprocessor 1864:Main article: 1861: 1858: 1845: 1838:silicate glass 1833: 1820: 1817: 1812:Main article: 1809: 1806: 1771: 1768: 1751: 1747: 1717:straining step 1689:Main article: 1686: 1683: 1647: 1646: 1614: 1583: 1565: 1516: 1513: 1470: 1467: 1426:Main article: 1423: 1420: 1404: 1403: 1398: 1397: 1396: 1395: 1394: 1387: 1384: 1365:Electroplating 1362: 1359: 1350: 1331: 1328:Die attachment 1320: 1319: 1318: 1312: 1301: 1291: 1277: 1263: 1256: 1241: 1240: 1239: 1236:laser trimming 1225: 1219: 1216:Electroplating 1212: 1205: 1204: 1203: 1202: 1201: 1191: 1186: 1183: 1180: 1171: 1165: 1162: 1161: 1160: 1149: 1148: 1147: 1144: 1135: 1129: 1128: 1127: 1115: 1114: 1113: 1112: 1111: 1101: 1100: 1099: 1098: 1097: 1096: 1095: 1092: 1083: 1068:plasma etching 1056: 1046: 1045: 1044: 1041: 1038: 1035: 1032: 1029: 1021: 1016: 1015: 1014: 1011: 1006: 1003: 1000: 997: 994: 989: 984: 945: 942: 906:Toshiba Memory 794: 791: 641:planar process 615: 612: 588: 585: 502: 499: 491:Tokyo Electron 426:semiconducting 392:(ICs) such as 377: 376: 374: 373: 366: 359: 351: 348: 347: 345: 344: 339: 334: 329: 324: 319: 309: 304: 299: 292: 289: 288: 286: 285: 274: 271: 270: 268: 267: 258: 249: 240: 231: 222: 213: 204: 195: 186: 177: 168: 162: 156: 150: 144: 138: 132: 123: 114: 105: 96: 87: 77: 74: 73: 65:MOSFET scaling 61: 60: 52: 51: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7629: 7618: 7615: 7613: 7610: 7608: 7605: 7604: 7602: 7593: 7590: 7588: 7587:Wafer heating 7585: 7583: 7580: 7579: 7575: 7569: 7564: 7562: 7559: 7554: 7549: 7548: 7544: 7535: 7529: 7525: 7524: 7516: 7513: 7500: 7496: 7490: 7487: 7482: 7475: 7472: 7467: 7461: 7458: 7453: 7447: 7444: 7439: 7433: 7430: 7427: 7422: 7419: 7407: 7403: 7399: 7393: 7390: 7375: 7372:. p. 6. 7371: 7364: 7358: 7355: 7344:on 2020-10-26 7340: 7333: 7327: 7324: 7312: 7308: 7307: 7302: 7295: 7292: 7287: 7281: 7266: 7264:1-877750-60-3 7260: 7253: 7252: 7244: 7238: 7236: 7232: 7221: 7217: 7213: 7209: 7205: 7201: 7197: 7190: 7187: 7182: 7176: 7173: 7168: 7162: 7159: 7154: 7150: 7145: 7140: 7135: 7130: 7126: 7122: 7118: 7114: 7110: 7103: 7100: 7095: 7089: 7085: 7081: 7077: 7076: 7071: 7064: 7061: 7056: 7050: 7047: 7042: 7036: 7032: 7031: 7024: 7021: 7016: 7010: 7006: 7005: 6998: 6995: 6990: 6986: 6979: 6977: 6975: 6971: 6966: 6960: 6957: 6952: 6946: 6942: 6941: 6933: 6930: 6925: 6921: 6917: 6911: 6907: 6903: 6899: 6895: 6888: 6885: 6880: 6879: 6874: 6868: 6865: 6860: 6856: 6852: 6846: 6842: 6838: 6834: 6830: 6823: 6820: 6815: 6811: 6807: 6805:1-4244-0438-X 6801: 6797: 6793: 6789: 6785: 6777: 6774: 6769: 6765: 6758: 6755: 6750: 6744: 6740: 6739: 6732: 6729: 6724: 6718: 6715: 6710: 6704: 6701: 6696: 6690: 6687: 6682: 6678: 6674: 6670: 6666: 6665: 6658: 6655: 6648: 6645: 6639: 6636: 6631: 6627: 6623: 6619: 6615: 6614: 6607: 6604: 6599: 6593: 6589: 6588: 6580: 6577: 6572: 6566: 6562: 6561: 6554: 6551: 6546: 6540: 6537:. Routledge. 6536: 6535: 6527: 6524: 6519: 6513: 6510:. CRC Press. 6509: 6508: 6500: 6497: 6492: 6491: 6486: 6480: 6477: 6472: 6468: 6464: 6460: 6456: 6455: 6448: 6445: 6440: 6434: 6430: 6426: 6422: 6418: 6412: 6409: 6393: 6389: 6385: 6381: 6377: 6370: 6363: 6360: 6355: 6351: 6344: 6343: 6335: 6332: 6327: 6321: 6317: 6316: 6308: 6305: 6300: 6294: 6291: 6286: 6280: 6276: 6275: 6267: 6264: 6259: 6255: 6248: 6245: 6240: 6234: 6230: 6229: 6221: 6218: 6213: 6207: 6203: 6202: 6194: 6191: 6186: 6180: 6176: 6175: 6167: 6164: 6159: 6153: 6149: 6148: 6140: 6137: 6132: 6126: 6122: 6121: 6113: 6110: 6105: 6099: 6095: 6094: 6086: 6083: 6078: 6072: 6068: 6067: 6059: 6056: 6044: 6040: 6036: 6030: 6027: 6022: 6016: 6012: 6011: 6004: 6001: 5989: 5985: 5978: 5975: 5963: 5959: 5955: 5949: 5946: 5934: 5930: 5926: 5920: 5918: 5914: 5909: 5905: 5899: 5896: 5884: 5880: 5876: 5870: 5867: 5856:on 2019-05-26 5855: 5851: 5850:www.nitto.com 5847: 5841: 5838: 5833: 5829: 5823: 5820: 5808: 5804: 5800: 5794: 5791: 5779: 5775: 5771: 5765: 5762: 5750: 5746: 5742: 5736: 5733: 5721: 5715: 5711: 5707: 5706: 5698: 5695: 5690: 5684: 5680: 5679: 5671: 5668: 5663: 5657: 5653: 5649: 5645: 5641: 5634: 5631: 5618: 5611: 5608: 5595: 5588: 5585: 5580: 5574: 5572: 5568: 5563: 5559: 5552: 5550: 5548: 5544: 5539: 5535: 5531: 5527: 5523: 5519: 5515: 5508: 5505: 5500: 5494: 5490: 5489: 5482: 5479: 5474: 5468: 5464: 5463: 5455: 5452: 5447: 5443: 5436: 5433: 5421: 5417: 5413: 5409: 5405: 5401: 5400: 5395: 5388: 5385: 5373: 5367: 5363: 5362: 5354: 5352: 5348: 5345: 5340: 5337: 5332: 5328: 5322: 5319: 5314: 5308: 5304: 5303: 5295: 5292: 5279: 5275: 5271: 5265: 5262: 5257: 5251: 5249: 5245: 5240: 5234: 5231: 5226: 5222: 5215: 5212: 5207: 5206: 5201: 5194: 5191: 5186: 5185: 5180: 5173: 5170: 5165: 5159: 5156: 5151: 5150:The Telegraph 5147: 5140: 5137: 5125: 5121: 5120: 5115: 5108: 5105: 5093: 5089: 5088:WikiChip Fuse 5085: 5078: 5075: 5063: 5059: 5055: 5048: 5045: 5033: 5029: 5028: 5023: 5016: 5013: 5008: 5002: 4999: 4994: 4988: 4985: 4980: 4974: 4971: 4966: 4960: 4957: 4952: 4946: 4943: 4938: 4932: 4929: 4924: 4918: 4915: 4910: 4904: 4901: 4896: 4890: 4887: 4882: 4876: 4873: 4868: 4862: 4859: 4855: 4851: 4847: 4843: 4839: 4835: 4831: 4824: 4821: 4809: 4805: 4798: 4795: 4783: 4776: 4769: 4766: 4761: 4755: 4752: 4747: 4741: 4738: 4733: 4729: 4722: 4719: 4714: 4710: 4703: 4700: 4695: 4694: 4689: 4682: 4679: 4667: 4663: 4659: 4653: 4650: 4638: 4634: 4630: 4624: 4621: 4609: 4605: 4604:eejournal.com 4601: 4595: 4592: 4580: 4576: 4572: 4566: 4563: 4551: 4547: 4546: 4541: 4534: 4531: 4519: 4515: 4511: 4504: 4501: 4496: 4490: 4487: 4482: 4476: 4473: 4468: 4462: 4459: 4447: 4443: 4436: 4433: 4428: 4424: 4417: 4414: 4409: 4405: 4398: 4395: 4383: 4379: 4375: 4369: 4366: 4361: 4357: 4351: 4348: 4335: 4331: 4325: 4322: 4317: 4313: 4309: 4305: 4301: 4297: 4291: 4288: 4283: 4277: 4273: 4272: 4265: 4262: 4257: 4253: 4249: 4245: 4241: 4234: 4231: 4226: 4222: 4218: 4214: 4210: 4203: 4200: 4195: 4189: 4185: 4184: 4177: 4174: 4169: 4165: 4161: 4157: 4153: 4149: 4145: 4138: 4135: 4130: 4126: 4122: 4118: 4114: 4110: 4104: 4101: 4096: 4095: 4090: 4083: 4080: 4075: 4071: 4064: 4061: 4056: 4050: 4046: 4045: 4037: 4035: 4031: 4026: 4022: 4018: 4014: 4007: 4004: 3999: 3993: 3990: 3985: 3981: 3975: 3972: 3967: 3961: 3959: 3955: 3950: 3944: 3941: 3936: 3932: 3928: 3924: 3920: 3916: 3910: 3907: 3902: 3896: 3892: 3891: 3884: 3881: 3876: 3870: 3867: 3862: 3856: 3853: 3848: 3847: 3842: 3836: 3833: 3828: 3824: 3820: 3819: 3812: 3809: 3804: 3798: 3795: 3790: 3784: 3781: 3776: 3770: 3767: 3762: 3756: 3753: 3748: 3742: 3738: 3737: 3730: 3727: 3722: 3716: 3712: 3711: 3704: 3701: 3696: 3690: 3687: 3682: 3676: 3672: 3671: 3664: 3661: 3656: 3652: 3648: 3644: 3643: 3635: 3632: 3627: 3623: 3619: 3615: 3611: 3607: 3606: 3598: 3595: 3590: 3586: 3582: 3575: 3568: 3566: 3564: 3562: 3560: 3556: 3544: 3540: 3538:9783540342588 3534: 3530: 3526: 3525: 3517: 3514: 3509: 3505: 3501: 3497: 3493: 3487: 3484: 3471: 3467: 3466: 3461: 3455: 3453: 3449: 3443: 3438: 3434: 3427: 3424: 3414: 3408: 3405: 3395: 3389: 3386: 3381: 3379:9783540342588 3375: 3371: 3367: 3360: 3357: 3352: 3346: 3342: 3338: 3337: 3329: 3326: 3321: 3315: 3311: 3310: 3302: 3299: 3294: 3288: 3284: 3280: 3279: 3271: 3268: 3263: 3259: 3255: 3251: 3247: 3240: 3237: 3227: 3221: 3218: 3213: 3209: 3205: 3201: 3197: 3193: 3189: 3182: 3179: 3174: 3170: 3166: 3162: 3158: 3151: 3148: 3135: 3131: 3125: 3122: 3110: 3106: 3105: 3100: 3093: 3090: 3077: 3073: 3069: 3062: 3060: 3056: 3044: 3040: 3033: 3031: 3027: 3015: 3011: 3005: 3002: 2997: 2993: 2986: 2983: 2978: 2971: 2965: 2962: 2950: 2943: 2941: 2937: 2932: 2926: 2923:. CRC Press. 2922: 2921: 2913: 2910: 2905: 2899: 2896:. CRC Press. 2895: 2894: 2886: 2883: 2878: 2872: 2868: 2867: 2859: 2856: 2851: 2845: 2842:. CRC Press. 2841: 2840: 2832: 2829: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2793: 2791: 2787: 2782: 2778: 2774: 2770: 2766: 2762: 2758: 2751: 2748: 2743: 2739: 2735: 2729: 2725: 2721: 2717: 2716: 2708: 2705: 2690: 2686: 2682: 2677: 2672: 2668: 2664: 2657: 2650: 2648: 2644: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2608: 2605: 2600: 2599: 2592: 2590: 2586: 2581: 2577: 2573: 2567: 2563: 2559: 2555: 2554: 2546: 2544: 2540: 2535: 2531: 2527: 2523: 2519: 2515: 2512:(4): 040801. 2511: 2507: 2503: 2496: 2493: 2488: 2481: 2479: 2477: 2475: 2473: 2469: 2457: 2453: 2447: 2444: 2432: 2428: 2424: 2420: 2416: 2412: 2408: 2401: 2399: 2395: 2388: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2362: 2359: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2335: 2332: 2330: 2327: 2325: 2322: 2318: 2315: 2313: 2312:Foundry model 2310: 2309: 2308: 2305: 2301: 2298: 2297: 2296: 2293: 2289: 2286: 2285: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2265: 2260: 2257: 2253: 2245: 2243: 2236: 2232: 2231:sulfuric acid 2228: 2224: 2220: 2217: 2213: 2209: 2205: 2201: 2198: 2194: 2190: 2186: 2182: 2181: 2180: 2176: 2168: 2166: 2162: 2160: 2156: 2152: 2148: 2146: 2142: 2138: 2134: 2130: 2125: 2118: 2110: 2108: 2106: 2099: 2095: 2087: 2085: 2081: 2077: 2073: 2066: 2064: 2062: 2058: 2057: 2051: 2049: 2045: 2040: 2036: 2032: 2029: 2024: 2019: 2013: 2009: 2004: 2002: 1998: 1991: 1990:Wafer testing 1983: 1981: 1979: 1975: 1970: 1966: 1965:reflectometry 1962: 1958: 1950: 1948: 1944: 1941: 1937: 1932: 1928: 1924: 1923: 1918: 1913: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1886: 1877: 1876:standard cell 1872: 1867: 1859: 1857: 1853: 1849: 1843: 1839: 1830: 1826: 1818: 1815: 1807: 1805: 1803: 1799: 1795: 1791: 1787: 1781: 1777: 1769: 1767: 1763: 1761: 1756: 1743: 1739: 1737: 1732: 1731: 1726: 1722: 1718: 1714: 1710: 1709:logic devices 1706: 1702: 1698: 1692: 1684: 1682: 1678: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1644: 1640: 1635: 1630: 1626: 1622: 1618: 1615: 1612: 1611:plasma ashing 1607: 1603: 1602: 1597: 1596: 1591: 1587: 1584: 1581: 1577: 1573: 1569: 1566: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1528: 1527: 1526: 1522: 1514: 1512: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1480: 1476: 1468: 1466: 1463: 1459: 1455: 1454:contamination 1451: 1447: 1443: 1439: 1435: 1429: 1421: 1415: 1411: 1409: 1402: 1399: 1392: 1388: 1385: 1382: 1378: 1374: 1371:leads of the 1370: 1366: 1363: 1360: 1357: 1356: 1354: 1351: 1348: 1344: 1340: 1336: 1332: 1329: 1326: 1325: 1324: 1321: 1317: 1313: 1310: 1306: 1302: 1299: 1295: 1292: 1289: 1285: 1281: 1280:Wafer bonding 1278: 1275: 1271: 1267: 1264: 1261: 1257: 1254: 1250: 1247: 1246: 1245: 1242: 1237: 1233: 1229: 1228:Wafer testing 1226: 1223: 1220: 1217: 1213: 1210: 1206: 1200: 1197: 1196: 1195: 1192: 1190: 1187: 1184: 1181: 1179: 1175: 1174: 1172: 1169: 1168:Plasma ashing 1166: 1163: 1158: 1155: 1154: 1153: 1150: 1145: 1142: 1141: 1139: 1136: 1133: 1130: 1125: 1122: 1121: 1119: 1116: 1110: 1107: 1106: 1105: 1102: 1093: 1090: 1089: 1087: 1084: 1081: 1078: 1077: 1075: 1072: 1071: 1069: 1065: 1062: 1061: 1060: 1057: 1054: 1050: 1047: 1042: 1039: 1036: 1033: 1030: 1027: 1026: 1025: 1022: 1020: 1017: 1012: 1010: 1007: 1004: 1001: 999:Spin cleaning 998: 995: 993: 990: 988: 985: 982: 978: 974: 970: 969: 967: 966: 964: 963: 962: 960: 956: 952: 944:List of steps 943: 941: 939: 934: 931: 919: 915: 911: 907: 903: 899: 895: 891: 887: 882: 880: 876: 871: 869: 866:demonstrated 865: 860: 858: 857:10 nm process 854: 850: 844: 841: 839: 835: 831: 828: 824: 820: 816: 812: 808: 804: 800: 792: 790: 787: 781: 777: 775: 771: 767: 762: 759: 756: 752: 749: 747: 743: 739: 735: 731: 726: 724: 720: 716: 712: 708: 704: 700: 696: 692: 687: 685: 677: 673: 669: 665: 664:Frank Wanlass 661: 660:Chih-Tang Sah 657: 653: 648: 646: 642: 638: 634: 629: 620: 613: 610: 606: 602: 598: 594: 586: 584: 582: 578: 574: 570: 569:10 nm process 564: 562: 558: 557:90 nm process 554: 550: 546: 542: 538: 534: 530: 526: 521: 519: 514: 509: 505: 500: 498: 496: 492: 488: 484: 479: 477: 472: 470: 466: 461: 458: 454: 450: 446: 442: 437: 435: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 383: 372: 367: 365: 360: 358: 353: 352: 350: 349: 343: 340: 338: 335: 333: 332:Semiconductor 330: 328: 325: 323: 320: 317: 313: 310: 308: 305: 303: 300: 298: 295: 294: 291: 290: 283: 277: 276: 273: 272: 265: 259: 256: 250: 247: 241: 238: 232: 229: 223: 220: 214: 211: 205: 202: 196: 193: 187: 184: 178: 175: 169: 166: 163: 160: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 124: 121: 115: 112: 106: 103: 97: 94: 88: 85: 79: 78: 76: 75: 71: 70:process nodes 66: 63: 62: 58: 54: 53: 50: 45:Semiconductor 42: 37: 32: 19: 7570:. CRC Press. 7567: 7552: 7526:. Elsevier. 7522: 7515: 7505:February 17, 7503:. Retrieved 7498: 7489: 7474: 7460: 7446: 7432: 7421: 7410:. Retrieved 7401: 7392: 7381:. Retrieved 7369: 7357: 7346:. Retrieved 7339:the original 7326: 7315:. Retrieved 7304: 7294: 7269:. Retrieved 7250: 7223:. Retrieved 7206:(1): 66–71. 7203: 7199: 7189: 7175: 7161: 7119:(21): 5049. 7116: 7112: 7102: 7074: 7069: 7063: 7049: 7029: 7023: 7003: 6997: 6988: 6959: 6943:. Springer. 6939: 6932: 6897: 6887: 6876: 6867: 6832: 6822: 6787: 6776: 6767: 6757: 6737: 6731: 6717: 6703: 6689: 6663: 6657: 6647: 6638: 6612: 6606: 6586: 6579: 6559: 6553: 6533: 6526: 6506: 6499: 6488: 6479: 6453: 6447: 6420: 6411: 6399:. Retrieved 6392:the original 6379: 6375: 6362: 6341: 6334: 6314: 6307: 6293: 6273: 6266: 6257: 6247: 6227: 6220: 6200: 6193: 6177:. Elsevier. 6173: 6166: 6146: 6139: 6119: 6112: 6096:. Springer. 6092: 6085: 6065: 6058: 6047:. Retrieved 6038: 6029: 6009: 6003: 5993:November 23, 5991:. Retrieved 5987: 5977: 5966:. Retrieved 5958:Chip History 5957: 5948: 5937:. Retrieved 5928: 5907: 5898: 5887:. Retrieved 5878: 5869: 5858:. Retrieved 5854:the original 5849: 5840: 5831: 5822: 5811:. Retrieved 5802: 5793: 5782:. Retrieved 5773: 5764: 5753:. Retrieved 5744: 5735: 5723:. Retrieved 5704: 5697: 5677: 5670: 5643: 5633: 5621:. Retrieved 5610: 5598:. Retrieved 5587: 5561: 5524:(1): 60–66. 5521: 5517: 5507: 5487: 5481: 5461: 5454: 5445: 5435: 5423:. Retrieved 5403: 5397: 5387: 5375:. Retrieved 5360: 5339: 5330: 5321: 5301: 5294: 5284:December 16, 5282:. Retrieved 5273: 5264: 5233: 5224: 5214: 5203: 5193: 5187:(Interview). 5182: 5172: 5158: 5149: 5139: 5128:. Retrieved 5117: 5107: 5096:. Retrieved 5087: 5077: 5067:25 September 5065:. Retrieved 5057: 5047: 5036:. Retrieved 5025: 5015: 5001: 4987: 4973: 4959: 4945: 4931: 4917: 4903: 4889: 4875: 4861: 4853: 4836:(6): 20–29. 4833: 4829: 4823: 4811:. Retrieved 4807: 4797: 4785:. Retrieved 4781: 4768: 4754: 4740: 4731: 4721: 4712: 4702: 4691: 4681: 4670:. Retrieved 4661: 4652: 4641:. Retrieved 4632: 4623: 4612:. Retrieved 4603: 4594: 4583:. Retrieved 4575:wccftech.com 4574: 4565: 4554:. Retrieved 4543: 4533: 4522:. Retrieved 4513: 4503: 4489: 4475: 4461: 4449:. Retrieved 4445: 4435: 4426: 4416: 4407: 4397: 4386:. Retrieved 4377: 4368: 4360:Chip History 4359: 4350: 4338:. Retrieved 4334:the original 4324: 4299: 4290: 4270: 4264: 4247: 4243: 4233: 4216: 4212: 4202: 4182: 4176: 4151: 4147: 4137: 4112: 4103: 4092: 4082: 4073: 4063: 4043: 4016: 4006: 3992: 3984:Chip History 3983: 3974: 3943: 3918: 3909: 3889: 3883: 3869: 3855: 3844: 3835: 3817: 3811: 3797: 3783: 3769: 3755: 3735: 3729: 3709: 3703: 3689: 3669: 3663: 3646: 3640: 3634: 3609: 3603: 3597: 3584: 3580: 3547:. Retrieved 3523: 3516: 3499: 3486: 3474:. Retrieved 3463: 3432: 3426: 3407: 3388: 3365: 3359: 3335: 3328: 3308: 3301: 3277: 3270: 3253: 3249: 3239: 3220: 3195: 3191: 3181: 3164: 3160: 3150: 3138:. Retrieved 3124: 3113:. Retrieved 3102: 3092: 3080:. Retrieved 3071: 3046:. Retrieved 3042: 3018:. Retrieved 3004: 2995: 2985: 2964: 2952:. Retrieved 2919: 2912: 2892: 2885: 2865: 2858: 2838: 2831: 2806: 2802: 2764: 2760: 2750: 2714: 2707: 2696:. Retrieved 2669:(3): 70–74. 2666: 2662: 2621: 2617: 2607: 2597: 2552: 2509: 2505: 2495: 2489:. CRC Press. 2486: 2460:. Retrieved 2455: 2446: 2434:. Retrieved 2414: 2410: 2240: 2178: 2163: 2158: 2149: 2120: 2105:wafer dicing 2101: 2082: 2078: 2074: 2070: 2067:Device yield 2054: 2052: 2041: 2037: 2033: 2020: 2005: 1996: 1993: 1961:ellipsometry 1954: 1945: 1939: 1920: 1914: 1893: 1889: 1883: 1881: 1860:Interconnect 1854: 1850: 1828: 1822: 1819:Metal layers 1783: 1764: 1757: 1744: 1740: 1728: 1716: 1712: 1694: 1679: 1648: 1628: 1624: 1616: 1599: 1593: 1585: 1567: 1529: 1524: 1499:cylindrical 1489:pure silicon 1482: 1431: 1405: 1367:(plates the 1335:Wire bonding 1333:IC bonding: 1323:IC packaging 1316:wafer dicing 1185:Laser anneal 947: 935: 890:10 nanometer 886:14 nanometer 884:As of 2019, 883: 872: 861: 845: 842: 832: 796: 793:21st century 782: 778: 763: 760: 757: 753: 750: 727: 714: 710: 701:division of 688: 654:technology, 649: 625: 614:20th century 581:7 nm process 565: 540: 537:process node 536: 532: 522: 512: 510: 506: 504: 501:Feature size 495:Lam Research 480: 473: 462: 438: 388:, typically 381: 380: 284: ~ 2025 266: â€“ 2022 257: â€“ 2020 248: â€“ 2018 239: â€“ 2016 230: â€“ 2014 221: â€“ 2012 212: â€“ 2010 203: â€“ 2009 194: â€“ 2007 185: â€“ 2005 176: â€“ 2003 167: â€“ 2001 161: â€“ 1999 155: â€“ 1996 149: â€“ 1993 143: â€“ 1990 137: â€“ 1987 131: â€“ 1984 122: â€“ 1981 113: â€“ 1977 104: â€“ 1974 95: â€“ 1971 86: â€“ 1968 44: 6401:26 February 5596:. AspenCore 4545:ExtremeTech 4340:18 February 3082:October 21, 2436:November 9, 2372:Passivation 2227:nitric acid 2044:scan chains 1984:Device test 1885:of aluminum 1697:transistors 1623:transistor 1595:photoresist 1590:lithography 1442:pressurized 1434:micrometres 1408:Wright etch 1373:lead frames 1274:PCMCIA card 1260:dicing tape 1211:production) 1146:Evaporation 1104:Wet etching 1094:Thermal ALE 1064:Dry etching 968:Wet cleans 930:3 nanometer 920:is TSMC's 5 914:5 nanometer 910:7 nanometer 746:Middle East 637:Jean Hoerni 628:Carl Frosch 597:Moore's law 549:micrometers 511:A specific 322:Moore's law 165:130 nm 159:180 nm 153:250 nm 147:350 nm 141:600 nm 135:800 nm 120:1.5 ÎĽm 49:fabrication 7601:Categories 7412:2020-12-18 7402:eesemi.com 7383:2018-09-25 7348:2020-10-23 7317:2020-04-12 7271:2023-01-22 7225:2021-11-16 6049:2020-10-14 5988:PCMag Asia 5968:2020-10-14 5939:2020-10-14 5889:2019-05-26 5860:2019-05-26 5813:2019-05-26 5784:2019-05-26 5755:2019-05-26 5130:2019-10-12 5098:2019-04-07 5038:2019-05-31 4830:IEEE Micro 4672:2019-08-17 4643:2019-08-17 4614:2019-07-09 4585:2019-07-09 4556:2019-07-09 4524:2019-07-09 4388:2017-11-19 4378:AnySilicon 3549:2019-07-21 3413:US 3064167 3394:US 3025589 3256:(9): 547. 3226:US2802760A 3167:(9): 547. 3140:20 October 3115:2020-11-07 3020:2020-10-20 2698:2021-11-01 2462:2023-01-21 2417:(1): 1–8. 2389:References 2197:phosphorus 2187:, such as 2173:See also: 2129:lead frame 1798:capacitors 1604:focuses a 1586:Patterning 1530:Deposition 1519:See also: 1515:Processing 1483:A typical 1438:cleanrooms 1401:IC testing 1143:Sputtering 1091:Plasma ALE 1051:(in which 1009:Megasonics 744:, and the 734:California 715:fabricated 699:Autonetics 591:See also: 545:nanometers 518:die shrink 445:clean room 428:material. 402:NAND flash 316:multi-gate 297:Half-nodes 237:10 nm 228:14 nm 219:22 nm 210:28 nm 201:32 nm 192:45 nm 183:65 nm 174:90 nm 93:10 ÎĽm 84:20 ÎĽm 36:clean room 7306:AnandTech 7280:cite book 7113:Materials 5725:8 January 5623:8 January 5600:8 January 5579:"Epitaxy" 5538:244560651 5425:8 January 5377:8 January 5119:AnandTech 5058:TSMC Blog 5027:AnandTech 4813:April 19, 4808:TechRadar 4787:April 18, 4782:intel.com 4693:AnandTech 4316:110840307 3935:109383925 3212:1064-8208 3198:(3): 29. 3104:AnandTech 2823:213026336 2781:252555815 2671:CiteSeerX 2534:2166-2746 2361:SEMI font 2268:Deathnium 2225:, fuming 2208:phosphine 2145:Flip-chip 2124:bondwires 2111:Packaging 1957:metrology 1940:etch back 1931:damascene 1663:oxidation 1428:Cleanroom 1381:soldering 1343:flip chip 1305:flip chip 1300:packages) 1270:smartcard 992:RCA clean 862:In 2011, 853:7 nm 689:In 1963, 626:In 1955, 457:7 nm 282:2 nm 264:3 nm 255:5 nm 246:7 nm 129:1 ÎĽm 111:3 ÎĽm 102:6 ÎĽm 7406:Archived 7374:Archived 7311:Archived 7220:26263093 7153:33182434 6859:25926459 6814:23881959 6681:35956689 6630:32122636 6043:Archived 5962:Archived 5933:Archived 5883:Archived 5807:Archived 5778:Archived 5749:Archived 5278:Archived 5124:Archived 5092:Archived 5032:Archived 4746:"FinFET" 4666:Archived 4637:Archived 4608:Archived 4579:Archived 4550:Archived 4518:Archived 4451:22 April 4382:Archived 4129:70599233 4094:EE Times 3591:: 12–15. 3543:Archived 3470:Archived 3134:Archived 3109:Archived 3076:Archived 3072:PC Gamer 3014:Archived 2689:Archived 2685:30883737 2638:25469704 2431:12369827 2261:See also 2193:antimony 2021:The fab 1898:tungsten 1829:back end 1632:against 1491:that is 1379:to make 902:SK Hynix 823:Broadcom 819:Qualcomm 337:Industry 7617:MOSFETs 7144:7664900 7121:Bibcode 6924:1589266 6471:1194426 5408:Bibcode 5274:Reuters 5225:Reuters 4850:6700881 4156:Bibcode 3614:Bibcode 2742:3240442 2580:2482339 2514:Bibcode 2336:(LOCOS) 2189:arsenic 2185:dopants 2056:corners 1825:created 1802:Qimonda 1705:epitaxy 1701:silicon 1667:silicon 1625:sources 1601:stepper 1568:Removal 1544:(ECD), 1540:(CVD), 1536:(PVD), 1383:easier) 1152:Epitaxy 1053:dopants 973:acetone 827:fabless 766:Bipolar 587:History 430:Silicon 302:Density 275:Future 7530:  7261:  7218:  7151:  7141:  7090:  7037:  7011:  6947:  6922:  6912:  6857:  6847:  6812:  6802:  6745:  6679:  6628:  6594:  6567:  6541:  6514:  6469:  6435:  6322:  6281:  6235:  6208:  6181:  6154:  6127:  6100:  6073:  6017:  5716:  5685:  5658:  5536:  5495:  5469:  5368:  5309:  4848:  4314:  4278:  4190:  4127:  4051:  3933:  3897:  3743:  3717:  3677:  3535:  3476:6 July 3418:  3399:  3376:  3347:  3316:  3289:  3232:  3210:  3048:22 May 2954:22 May 2927:  2900:  2873:  2846:  2821:  2779:  2740:  2730:  2683:  2673:  2636:  2578:  2568:  2532:  2429:  2300:FinFET 2283:MOSFET 2233:, and 2216:silane 2204:arsine 2195:, and 2159:before 2133:solder 2046:or a " 2028:eFUSEs 1894:vias") 1629:drains 1621:doping 1582:(CMP). 1578:) and 1505:boules 1501:ingots 1469:Wafers 1369:copper 1361:Baking 1140:(PVD) 1120:(CVD) 1088:(ALE) 1082:(DRIE) 1076:(RIE) 926:  922:  898:Micron 879:GAAFET 875:FinFET 786:BCDMOS 742:Europe 719:MOSFET 707:Boeing 680:  652:MOSFET 607:, and 573:FinFET 312:Device 117:  47:device 7377:(PDF) 7366:(PDF) 7342:(PDF) 7335:(PDF) 7255:(PDF) 7246:(PDF) 6920:S2CID 6855:S2CID 6810:S2CID 6677:S2CID 6626:S2CID 6467:S2CID 6395:(PDF) 6372:(PDF) 6346:(PDF) 5534:S2CID 4846:S2CID 4778:(PDF) 4312:S2CID 4125:S2CID 3931:S2CID 3587:(3). 3577:(PDF) 2973:(PDF) 2819:S2CID 2777:S2CID 2738:S2CID 2692:(PDF) 2681:S2CID 2659:(PDF) 2634:S2CID 2576:S2CID 2427:S2CID 1997:yield 1927:low-Îş 1836:or a 1713:prior 1671:LOCOS 1562:LOCOS 1554:oxide 1495:into 1493:grown 1485:wafer 1458:FOUPs 1375:with 1349:(TAB) 1307:BGA ( 1298:WLCSP 1224:(CMP) 1199:LOCOS 1159:(MBE) 1134:(ALD) 864:Intel 807:Intel 774:LDMOS 730:Texas 705:(now 529:CHMOS 476:FOUPs 422:wafer 7528:ISBN 7507:2024 7499:CNET 7286:link 7259:ISBN 7216:PMID 7149:PMID 7088:ISBN 7035:ISBN 7009:ISBN 6945:ISBN 6910:ISBN 6878:IEEE 6845:ISBN 6800:ISBN 6743:ISBN 6592:ISBN 6565:ISBN 6539:ISBN 6512:ISBN 6490:IEEE 6433:ISBN 6403:2024 6320:ISBN 6279:ISBN 6233:ISBN 6206:ISBN 6179:ISBN 6152:ISBN 6125:ISBN 6098:ISBN 6071:ISBN 6015:ISBN 5995:2023 5727:2024 5714:ISBN 5683:ISBN 5656:ISBN 5625:2024 5602:2024 5493:ISBN 5467:ISBN 5427:2024 5379:2024 5366:ISBN 5307:ISBN 5286:2019 5069:2023 5062:TSMC 4815:2018 4789:2018 4453:2018 4342:2024 4276:ISBN 4188:ISBN 4049:ISBN 3895:ISBN 3846:IEEE 3741:ISBN 3715:ISBN 3675:ISBN 3533:ISBN 3478:2019 3374:ISBN 3345:ISBN 3314:ISBN 3287:ISBN 3208:ISSN 3142:2020 3084:2020 3050:2022 2956:2022 2925:ISBN 2898:ISBN 2871:ISBN 2844:ISBN 2728:ISBN 2566:ISBN 2530:ISSN 2438:2015 2288:CMOS 2254:and 2206:and 2141:RoHS 2137:lead 2096:and 1974:dies 1814:BEOL 1778:and 1746:(HfO 1691:FEOL 1627:and 1606:mask 1477:and 1462:SMIF 1460:and 1288:MEMS 1286:and 888:and 821:and 811:TSMC 797:The 772:and 770:CMOS 738:Asia 732:and 662:and 656:CMOS 577:TSMC 525:HMOS 493:and 483:ASML 465:dies 406:DRAM 404:and 307:CMOS 7208:doi 7139:PMC 7129:doi 7080:doi 6902:doi 6837:doi 6792:doi 6669:doi 6618:doi 6459:doi 6425:doi 6384:doi 6350:doi 5648:doi 5526:doi 5416:doi 5404:146 4838:doi 4304:doi 4252:doi 4221:doi 4217:470 4164:doi 4152:237 4117:doi 4021:doi 3923:doi 3823:doi 3651:doi 3622:doi 3504:doi 3437:doi 3258:doi 3254:104 3200:doi 3169:doi 3165:104 2811:doi 2769:doi 2720:doi 2626:doi 2558:doi 2522:doi 2419:doi 2012:die 2008:5nm 1963:or 1902:CVD 1832:SiO 1653:in 1576:dry 1574:or 1572:wet 1377:tin 1345:or 1272:or 1209:LED 979:or 894:UMC 838:AMD 748:. 672:RCA 666:at 579:'s 543:in 535:or 7603:: 7497:. 7404:. 7400:. 7368:. 7309:. 7303:. 7282:}} 7278:{{ 7248:. 7234:^ 7214:. 7202:. 7198:. 7147:. 7137:. 7127:. 7117:13 7115:. 7111:. 7086:. 6987:. 6973:^ 6918:. 6908:. 6896:. 6875:. 6853:. 6843:. 6831:. 6808:. 6798:. 6786:. 6766:. 6675:. 6624:. 6487:. 6465:. 6431:. 6419:. 6380:86 6378:. 6374:. 6256:. 6041:. 6037:. 5986:. 5960:. 5956:. 5931:. 5927:. 5916:^ 5906:. 5881:. 5877:. 5848:. 5830:. 5805:. 5801:. 5776:. 5772:. 5747:. 5743:. 5708:. 5654:. 5642:. 5570:^ 5560:. 5546:^ 5532:. 5522:35 5520:. 5516:. 5444:. 5414:. 5402:. 5396:. 5350:^ 5329:. 5272:. 5247:^ 5223:. 5202:. 5181:. 5148:. 5122:. 5116:. 5090:. 5086:. 5060:. 5056:. 5030:. 5024:. 4852:. 4844:. 4834:37 4832:. 4806:. 4780:. 4730:. 4711:. 4690:. 4664:. 4660:. 4635:. 4631:. 4602:. 4573:. 4548:. 4542:. 4516:. 4512:. 4444:. 4425:. 4406:. 4376:. 4358:. 4310:. 4302:. 4298:. 4248:16 4246:. 4242:. 4219:. 4215:. 4211:. 4162:. 4150:. 4146:. 4123:. 4115:. 4111:. 4091:. 4072:. 4033:^ 4015:. 3982:. 3957:^ 3929:. 3921:. 3917:. 3843:. 3647:52 3645:. 3620:. 3610:35 3608:. 3583:. 3579:. 3558:^ 3541:. 3527:. 3494:; 3468:. 3462:. 3451:^ 3368:. 3339:. 3281:. 3252:. 3248:. 3206:. 3196:16 3194:. 3190:. 3163:. 3159:. 3107:. 3101:. 3074:. 3070:. 3058:^ 3041:. 3029:^ 3012:. 2994:. 2975:. 2939:^ 2817:. 2807:33 2805:. 2801:. 2789:^ 2775:. 2765:35 2763:. 2759:. 2736:. 2726:. 2687:. 2679:. 2667:56 2665:. 2661:. 2646:^ 2632:. 2622:31 2620:. 2616:. 2588:^ 2574:. 2564:. 2542:^ 2528:. 2520:. 2510:30 2508:. 2504:. 2471:^ 2454:. 2425:. 2415:19 2413:. 2409:. 2397:^ 2229:, 2191:, 1711:, 1341:, 1337:, 1070:) 975:, 904:, 900:, 851:' 768:, 740:, 725:. 717:a 647:. 603:, 599:, 595:, 497:. 489:, 485:, 453:10 449:14 396:, 279:00 261:00 252:00 243:00 126:00 108:00 99:00 7509:. 7483:. 7415:. 7386:. 7351:. 7320:. 7288:) 7274:. 7228:. 7210:: 7204:6 7169:. 7155:. 7131:: 7123:: 7082:: 7070:k 7057:. 7043:. 7017:. 6991:. 6967:. 6953:. 6926:. 6904:: 6881:. 6861:. 6839:: 6816:. 6794:: 6770:. 6751:. 6711:. 6697:. 6683:. 6671:: 6632:. 6620:: 6600:. 6573:. 6493:. 6473:. 6461:: 6441:. 6427:: 6405:. 6386:: 6356:. 6352:: 6328:. 6301:. 6287:. 6260:. 6052:. 6023:. 5997:. 5971:. 5942:. 5910:. 5892:. 5863:. 5834:. 5816:. 5787:. 5758:. 5729:. 5664:. 5650:: 5627:. 5604:. 5581:. 5564:. 5540:. 5528:: 5501:. 5448:. 5429:. 5418:: 5410:: 5381:. 5333:. 5241:. 5227:. 5208:. 5152:. 5133:. 5101:. 5071:. 5041:. 4967:. 4925:. 4911:. 4869:. 4840:: 4817:. 4791:. 4762:. 4748:. 4734:. 4715:. 4696:. 4675:. 4646:. 4617:. 4588:. 4559:. 4527:. 4455:. 4429:. 4410:. 4391:. 4362:. 4344:. 4318:. 4306:: 4284:. 4258:. 4254:: 4227:. 4223:: 4196:. 4170:. 4166:: 4158:: 4131:. 4119:: 4097:. 4076:. 4057:. 4027:. 4023:: 3986:. 3968:. 3937:. 3925:: 3903:. 3877:. 3863:. 3849:. 3829:. 3825:: 3805:. 3791:. 3777:. 3763:. 3749:. 3723:. 3697:. 3683:. 3657:. 3653:: 3628:. 3624:: 3616:: 3585:9 3552:. 3510:. 3506:: 3480:. 3445:. 3439:: 3382:. 3353:. 3322:. 3295:. 3264:. 3260:: 3214:. 3202:: 3175:. 3171:: 3144:. 3118:. 3086:. 3052:. 3023:. 2998:. 2979:. 2958:. 2933:. 2906:. 2879:. 2852:. 2825:. 2813:: 2783:. 2771:: 2744:. 2722:: 2701:. 2640:. 2628:: 2582:. 2560:: 2536:. 2524:: 2516:: 2465:. 2440:. 2421:: 2199:. 2016:0 1846:2 1834:2 1752:2 1748:2 1669:( 1564:. 1503:( 1393:) 1290:) 1262:) 1255:) 1218:. 1066:( 455:/ 451:/ 370:e 363:t 356:v 318:) 314:( 234:0 225:0 216:0 207:0 198:0 189:0 180:0 171:0 90:0 81:0 72:) 68:( 20:)

Index

Integrated circuit manufacturing

clean room
Semiconductor
device
fabrication


MOSFET scaling
process nodes
20 ÎĽm
10 ÎĽm
6 ÎĽm
3 ÎĽm
1.5 ÎĽm
1 ÎĽm
800 nm
600 nm
350 nm
250 nm
180 nm
130 nm
90 nm
65 nm
45 nm
32 nm
28 nm
22 nm
14 nm
10 nm
7 nm
5 nm
3 nm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑