Knowledge (XXG)

Integral polytope

Source 📝

61: 68: 54: 75: 45: 31: 38: 24: 398:. For general graphs, however, there are two other characterizations of the matching polytope one of which makes use of the blossom inequality for odd subsets of vertices and hence allows to relax the integer program to a linear program while still obtaining valid matchings. These characterizations are of further interest in 410:
For a polytope described by linear inequalities, when the polytope is non-integral, one can prove its non-integrality by finding a vertex whose coordinates are not integers. Such a vertex can be described combinatorially by specifying a subset of inequalities that, when turned into a
658:
with exponent vector (0,0). Its Newton polytope is the convex hull of the four points (1,1), (2,0), (0,5), and (0,0). This hull is an integral triangle with the point (1,1) interior to the triangle and the other three points as its vertices.
390:. Clearly, one seeks for finding matchings algorithmically and one technique is linear programming. The polytope described by the linear program upper bounding the sum of edges taken per vertex is integral in the case of 394:, that is, it exactly describes the matching polytope, while for general graphs it is non-integral. Hence, for bipartite graphs, it suffices to solve the corresponding linear program to obtain a valid 386:, a polytope defined by pairwise inequalities between coordinates corresponding to comparable elements in the set. Another well-known polytope in combinatorial optimization is the 230: 556: 287: 699:, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 74, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics (SIAM), p. 4, 341: 236:, can be formed as the convex hull of integer points whose coordinates begin with some number of consecutive ones followed by zeros in all remaining coordinates. The 609: 636: 579: 656: 483: 254: 191: 741:, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics (SIAM), p. 90, 415:, have a unique solution, and verifying that this solution point obeys all of the other inequalities. Therefore, testing integrality belongs to the 232:, the convex hull of the integer points for which one coordinate is one and the rest are zero. Another important type of integral simplex, the 871: 836: 165:. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively. 789: 764: 712: 895:
Ding, Guoli; Feng, Li; Zang, Wenan (2008), "The complexity of recognizing linear systems with certain integrality properties",
449:, where they correspond to polarized projective toric varieties. For instance, the toric variety corresponding to a 412: 375: 360: 127: 395: 383: 200: 146: 503: 263: 97: 368: 367:
that their points must obey. When a polytope is integral, linear programming can be used to solve
347:
in Loday's convex realization is also an integer polytope and a deformation of the permutahedron.
981: 489: 439: 356: 296: 293:
has vertices whose coordinates are obtained by applying all possible permutations to the vector
371:
problems for the given system of inequalities, a problem that can otherwise be more difficult.
877: 867: 842: 832: 760: 708: 673: 496:
are the convex hulls of vectors representing the exponents of each variable in the terms of a
399: 387: 364: 139: 60: 736: 948: 912: 904: 798: 750: 742: 700: 694: 668: 584: 454: 416: 962: 926: 812: 774: 722: 614: 67: 53: 958: 922: 808: 770: 718: 493: 462: 391: 135: 74: 939:
Barvinok, A. I. (1994), "Computing the Ehrhart polynomial of a convex lattice polytope",
561: 641: 468: 422:
of problems for which a negative answer can be easily proven. More specifically, it is
379: 239: 176: 44: 975: 446: 423: 344: 290: 154: 87: 233: 150: 908: 497: 92: 881: 846: 746: 704: 458: 289:
has as its vertices all integer points whose coordinates are zero or one. A
257: 30: 37: 23: 434:
Many of the important properties of an integral polytope, including its
953: 917: 803: 755: 450: 378:
problems are automatically integral. For instance, this is true of the
194: 143: 16:
A convex polytope whose vertices all have integer Cartesian coordinates
861: 826: 435: 419: 82: 445:
Integral polytopes are prominently featured in the theory of
492:, an important instance of lattice polytopes called the 363:, convex polytopes are often described by a system of 18: 644: 617: 587: 564: 506: 471: 299: 266: 242: 203: 179: 787:Stanley, Richard P. (1986), "Two poset polytopes", 402:used for finding such matchings in general graphs. 650: 630: 603: 573: 550: 477: 335: 281: 248: 224: 185: 696:Combinatorial Optimization: Packing and Covering 197:can be represented as an integer polytope in 8: 149:. That is, it is a polytope that equals the 120:Four integral polytopes in three dimensions 438:and number of vertices, is encoded by its 952: 916: 802: 754: 643: 622: 616: 595: 586: 563: 536: 523: 505: 470: 298: 273: 269: 268: 265: 241: 210: 206: 205: 202: 178: 685: 457:. The toric variety corresponding to a 485:-fold product of the projective line. 941:Discrete & Computational Geometry 790:Discrete & Computational Geometry 157:. Integral polytopes are also called 7: 866:. North-Holland. pp. 274–281. 831:. North-Holland. pp. 269–274. 897:Mathematical Programming, Series A 225:{\displaystyle \mathbb {R} ^{n+1}} 14: 551:{\displaystyle xy+2x^{2}+y^{5}+4} 400:Edmonds' famous blossom algorithm 638:with exponent vector (0,5), and 282:{\displaystyle \mathbb {R} ^{n}} 73: 66: 59: 52: 43: 36: 29: 22: 500:. For example, the polynomial 330: 300: 1: 611:with exponent vector (2,0), 581:with exponent vector (1,1), 374:Some polyhedra arising from 693:Cornuéjols, Gérard (2001), 336:{\displaystyle (1,2,...,n)} 998: 413:system of linear equations 376:combinatorial optimization 909:10.1007/s10107-007-0103-y 361:mathematical optimization 119: 738:Discrete convex analysis 406:Computational complexity 359:and related problems in 128:polyhedral combinatorics 860:Lovász, László (1986). 825:Lovász, László (1986). 747:10.1137/1.9780898718508 705:10.1137/1.9780898717105 735:Murota, Kazuo (2003), 652: 632: 605: 604:{\displaystyle 2x^{2}} 575: 552: 479: 337: 283: 250: 226: 187: 653: 633: 631:{\displaystyle y^{5}} 606: 576: 553: 480: 384:partially ordered set 338: 284: 251: 227: 193:-dimensional regular 188: 147:Cartesian coordinates 642: 615: 585: 562: 504: 469: 297: 264: 240: 201: 177: 369:integer programming 365:linear inequalities 954:10.1007/BF02574364 804:10.1007/BF02187680 648: 628: 601: 574:{\displaystyle xy} 571: 548: 490:algebraic geometry 475: 440:Ehrhart polynomial 357:linear programming 355:In the context of 333: 279: 246: 222: 183: 873:978-0-444-87916-5 838:978-0-444-87916-5 674:Reeve tetrahedron 651:{\displaystyle 4} 478:{\displaystyle n} 388:matching polytope 249:{\displaystyle n} 186:{\displaystyle n} 159:lattice polytopes 132:integral polytope 124: 123: 989: 966: 965: 956: 936: 930: 929: 920: 892: 886: 885: 857: 851: 850: 822: 816: 815: 806: 784: 778: 777: 758: 732: 726: 725: 690: 669:Delzant polytope 657: 655: 654: 649: 637: 635: 634: 629: 627: 626: 610: 608: 607: 602: 600: 599: 580: 578: 577: 572: 558:has four terms, 557: 555: 554: 549: 541: 540: 528: 527: 494:Newton polytopes 484: 482: 481: 476: 455:projective space 417:complexity class 392:bipartite graphs 342: 340: 339: 334: 288: 286: 285: 280: 278: 277: 272: 255: 253: 252: 247: 231: 229: 228: 223: 221: 220: 209: 192: 190: 189: 184: 126:In geometry and 77: 70: 63: 56: 47: 40: 33: 26: 19: 997: 996: 992: 991: 990: 988: 987: 986: 972: 971: 970: 969: 938: 937: 933: 894: 893: 889: 874: 863:Matching theory 859: 858: 854: 839: 828:Matching theory 824: 823: 819: 786: 785: 781: 767: 734: 733: 729: 715: 692: 691: 687: 682: 665: 640: 639: 618: 613: 612: 591: 583: 582: 560: 559: 532: 519: 502: 501: 467: 466: 463:Segre embedding 447:toric varieties 432: 430:Related objects 408: 353: 351:In optimization 295: 294: 267: 262: 261: 238: 237: 204: 199: 198: 175: 174: 171: 136:convex polytope 99: 17: 12: 11: 5: 995: 993: 985: 984: 974: 973: 968: 967: 931: 903:(2): 321–334, 887: 872: 852: 837: 817: 779: 765: 727: 713: 684: 683: 681: 678: 677: 676: 671: 664: 661: 647: 625: 621: 598: 594: 590: 570: 567: 547: 544: 539: 535: 531: 526: 522: 518: 515: 512: 509: 474: 431: 428: 407: 404: 380:order polytope 352: 349: 332: 329: 326: 323: 320: 317: 314: 311: 308: 305: 302: 276: 271: 245: 219: 216: 213: 208: 182: 170: 167: 155:integer points 122: 121: 117: 116: 113: 110: 107: 103: 102: 95: 90: 85: 79: 78: 71: 64: 57: 49: 48: 41: 34: 27: 15: 13: 10: 9: 6: 4: 3: 2: 994: 983: 980: 979: 977: 964: 960: 955: 950: 946: 942: 935: 932: 928: 924: 919: 914: 910: 906: 902: 898: 891: 888: 883: 879: 875: 869: 865: 864: 856: 853: 848: 844: 840: 834: 830: 829: 821: 818: 814: 810: 805: 800: 796: 792: 791: 783: 780: 776: 772: 768: 766:0-89871-540-7 762: 757: 752: 748: 744: 740: 739: 731: 728: 724: 720: 716: 714:0-89871-481-8 710: 706: 702: 698: 697: 689: 686: 679: 675: 672: 670: 667: 666: 662: 660: 645: 623: 619: 596: 592: 588: 568: 565: 545: 542: 537: 533: 529: 524: 520: 516: 513: 510: 507: 499: 495: 491: 486: 472: 464: 460: 456: 452: 448: 443: 441: 437: 429: 427: 425: 424:coNP-complete 421: 418: 414: 405: 403: 401: 397: 393: 389: 385: 381: 377: 372: 370: 366: 362: 358: 350: 348: 346: 345:associahedron 327: 324: 321: 318: 315: 312: 309: 306: 303: 292: 291:permutahedron 274: 259: 256:-dimensional 243: 235: 217: 214: 211: 196: 180: 168: 166: 164: 160: 156: 152: 148: 145: 141: 137: 133: 129: 118: 114: 111: 108: 106:(±1, ±1, ±1) 105: 104: 101: 96: 94: 91: 89: 88:Cuboctahedron 86: 84: 81: 80: 76: 72: 69: 65: 62: 58: 55: 51: 50: 46: 42: 39: 35: 32: 28: 25: 21: 20: 947:(1): 35–48, 944: 940: 934: 900: 896: 890: 862: 855: 827: 820: 794: 788: 782: 737: 730: 695: 688: 487: 444: 433: 409: 373: 354: 172: 162: 158: 131: 125: 115:(0, ±1, ±2) 109:(0, ±1, ±1) 918:10722/58972 797:(1): 9–23, 756:2433/149564 234:orthoscheme 163:Z-polytopes 151:convex hull 112:(0, 0, ±1) 680:References 498:polynomial 100:octahedron 93:Octahedron 982:Polytopes 882:316569965 847:316569965 459:unit cube 258:unit cube 142:all have 98:Truncated 976:Category 663:See also 396:matching 169:Examples 140:vertices 963:1280575 927:2393045 813:0824105 775:1997998 723:1828452 465:of the 461:is the 451:simplex 382:of any 195:simplex 153:of its 144:integer 961:  925:  880:  870:  845:  835:  811:  773:  763:  721:  711:  436:volume 138:whose 453:is a 343:. An 134:is a 130:, an 878:OCLC 868:ISBN 843:OCLC 833:ISBN 761:ISBN 709:ISBN 420:coNP 83:Cube 949:doi 913:hdl 905:doi 901:114 799:doi 751:hdl 743:doi 701:doi 488:In 260:in 173:An 161:or 978:: 959:MR 957:, 945:12 943:, 923:MR 921:, 911:, 899:, 876:. 841:. 809:MR 807:, 793:, 771:MR 769:, 759:, 749:, 719:MR 717:, 707:, 442:. 426:. 951:: 915:: 907:: 884:. 849:. 801:: 795:1 753:: 745:: 703:: 646:4 624:5 620:y 597:2 593:x 589:2 569:y 566:x 546:4 543:+ 538:5 534:y 530:+ 525:2 521:x 517:2 514:+ 511:y 508:x 473:n 331:) 328:n 325:, 322:. 319:. 316:. 313:, 310:2 307:, 304:1 301:( 275:n 270:R 244:n 218:1 215:+ 212:n 207:R 181:n

Index









Cube
Cuboctahedron
Octahedron
Truncated
octahedron

polyhedral combinatorics
convex polytope
vertices
integer
Cartesian coordinates
convex hull
integer points
simplex
orthoscheme
unit cube
permutahedron
associahedron
linear programming
mathematical optimization
linear inequalities
integer programming
combinatorial optimization
order polytope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.