Knowledge (XXG)

Void (astronomy)

Source 📝

946:
to allow a quick and effective method for standardizing the cataloging of voids. Once the spherical cells are mined from all of the structure data, each cell is expanded until the underdensity returns to average expected wall density values. One of the helpful features of void regions is that their boundaries are very distinct and defined, with a cosmic mean density that starts at 10% in the body and quickly rises to 20% at the edge and then to 100% in the walls directly outside the edges. The remaining walls and overlapping void regions are then gridded into, respectively, distinct and intertwining zones of filaments, clusters, and near-empty voids. Any overlap of more than 10% with already known voids are considered to be subregions within those known voids. All voids admitted to the catalog had a minimum radius of 10 Mpc in order to ensure all identified voids were not accidentally cataloged due to sampling errors.
955:
not contain free parameters or presumed shape tessellations. Therefore, this technique can create more accurately shaped and sized void regions. Although this algorithm has some advantages in shape and size, it has been criticized often for sometimes providing loosely defined results. Since it has no free parameters, it mostly finds small and trivial voids, although the algorithm places a statistical significance on each void it finds. A physical significance parameter can be applied in order to reduce the number of trivial voids by including a minimum density to average density ratio of at least 1:5. Subvoids are also identified using this process which raises more philosophical questions on what qualifies as a void. Void finders such as VIDE are based on ZOBOV.
1162:
when the cosmological parameters have different values from the outside universe. Due to the observation that larger voids predominantly remain in a linear regime, with most structures within exhibiting spherical symmetry in the underdense environment; that is, the underdensity leads to near-negligible particle-particle gravitational interactions that would otherwise occur in a region of normal galactic density. Testing models for voids can be performed with very high accuracy. The cosmological parameters that differ in these voids are Ω
778: 56: 1071:
morphology-density correlation that holds discrepancies with these voids. Such observations like the morphology-density correlation can help uncover new facets about how galaxies form and evolve on the large scale. On a more local scale, galaxies that reside in voids have differing morphological and spectral properties than those that are located in the walls. One feature that has been found is that voids have been shown to contain a significantly higher fraction of
984:
function bias just as first-class methods do, DIVA is devised such that this bias can be precisely calibrated, leading to much more reliable results. Multiple shortfalls of this Lagrangian-Eulerian hybrid approach exist. One example is that the resulting voids from this method are intrinsically different than those found by other methods, which makes an all-data points inclusive comparison between results of differing algorithms very difficult.
4538: 4450: 607: 1119: 84: 4462: 937:
density. The second class are those which try to find voids via the geometrical structures in the dark matter distribution as suggested by the galaxies. The third class is made up of those finders which identify structures dynamically by using gravitationally unstable points in the distribution of dark matter. The three most popular methods through the study of cosmic voids are listed below:
4502: 1139:, another theory elaborates on the possibility of our galaxy being part of a very large, not-so-underdense, cosmic void. According to this theory, such an environment could naively lead to the demand for dark energy to solve the problem with the observed acceleration. As more data has been released on this topic the chances of it being a realistic solution in place of the current 4526: 619: 4514: 4490: 843:. The new redshift surveys revolutionized the field of astronomy by adding depth to the two-dimensional maps of cosmological structure, which were often densely packed and overlapping, allowing for the first three-dimensional mapping of the universe. Through redshift surveys, their depth was calculated from the individual 954:
This particular second-class algorithm uses a Voronoi tessellation technique and mock border particles in order to categorize regions based on a high-density contrasting border with a very low amount of bias. Neyrinck introduced this algorithm in 2008 with the purpose of introducing a method that did
818:
Voids have a mean density less than a tenth of the average density of the universe. This serves as a working definition even though there is no single agreed-upon definition of what constitutes a void. The matter density value used for describing the cosmic mean density is usually based on a ratio of
745:
in the early universe, the anisotropies grew larger in scale over time. Regions of higher density collapsed more rapidly under gravity, eventually resulting in the large-scale, foam-like structure or "cosmic web" of voids and galaxy filaments seen today. Voids located in high-density environments are
1016:
The simultaneous existence of the largest-known voids and galaxy clusters requires about 70% dark energy in the universe today, consistent with the latest data from the cosmic microwave background. Voids act as bubbles in the universe that are sensitive to background cosmological changes. This means
1161:
The insides of voids often seem to adhere to cosmological parameters which differ from those of the known universe. It is because of this unique feature that cosmic voids are useful laboratories to study the effects that gravitational clustering and growth rates have on local galaxies and structure
945:
This first-class method uses each galaxy in a catalog as its target and then uses the Nearest Neighbor Approximation to calculate the cosmic density in the region contained in a spherical radius determined by the distance to the third-closest galaxy. El Ad & Piran introduced this method in 1997
963:
This third-class method is drastically different from the previous two algorithms listed. The most striking aspect is that it requires a different definition of what it means to be a void. Instead of the general notion that a void is a region of space with a low cosmic mean density; a hole in the
936:
There exist a number of ways for finding voids with the results of large-scale surveys of the universe. Of the many different algorithms, virtually all fall into one of three general categories. The first class consists of void finders that try to find empty regions of space based on local galaxy
1044:
Neutrinos, due to their very small mass and extremely weak interaction with other matter, will free-stream in and out of voids which are smaller than the mean-free path of neutrinos. This has an effect on the size and depth distribution of voids, and is expected to make it possible with future
983:
of voids and how they evolve in the large-scale structure, subsequently leading to the classification of three distinct types of voids. These three morphological classes are True voids, Pancake voids, and Filament voids. Another notable quality is that even though DIVA also contains selection
1070:
Cosmic voids contain a mix of galaxies and matter that is slightly different than other regions in the universe. This unique mix supports the biased galaxy formation picture predicted in Gaussian adiabatic cold dark matter models. This phenomenon provides an opportunity to modify the
2193:; Cross, N. G. J.; Deeley, K.; DePropris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C. A.; Lahav, O.; Lewis, I. J.; Lumsden, S. L.; Madgwick, D. S.; Peacock, J. A.; Peterson, B. A.; Price, I. A.; Seaborne, M.; Taylor, K. (2001). 979:. The purpose for this change in definitions was presented by Lavaux and Wandelt in 2009 as a way to yield cosmic voids such that exact analytical calculations can be made on their dynamical and geometrical properties. This allows DIVA to heavily explore the 1017:
that the evolution of a void's shape is in part the result of the expansion of the universe. Since this acceleration is believed to be caused by dark energy, studying the changes of a void's shape over a period of time can be used to constrain the standard
1065:
of 30 and ending at redshift 0. The model makes it clear to see how the matter-dense regions contract under the collective gravitational force while simultaneously aiding in the expansion of cosmic voids as the matter flees to the walls and filaments.
694:
dominates, which prevents the formation of galaxy clusters and massive galaxies. Hence, although even the emptiest regions of voids contain more than ~15% of the average matter density of the Universe, the voids look almost empty to an observer.
1086:. The specific large-scale magnetic structure of the universe suggests primordial "magnetogenesis", which in turn could have played a role in the formation of magnetic fields within galaxies, and could also change estimates of the timeline of 2686:
Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H. (2013). "A response to arXiv:1310.2791: A self-consistent public catalogue of voids and superclusters in the SDSS Data Release 7 galaxy surveys".
689:
bound together, creating huge cosmic structures known as galaxy filaments. The cosmological evolution of the void regions differs drastically from the evolution of the Universe as a whole: there is a long stage when
904:
1983 – Computer simulations sophisticated enough to provide relatively reliable results of growth and evolution of the large-scale structure emerged and yielded insight on key features of the large-scale galaxy
1114:
was accounted for in the possible solution. Anomalies in CMB screenings are now being potentially explained through the existence of large voids located down the line-of-sight in which the cold spots lie.
785:
The structure of the Universe can be broken down into components that can help describe the characteristics of individual regions of the cosmos. These are the main structural components of the cosmic web:
208: 1226: 1058: 1298:
Lindner, Ulrich; Einasto, Jaan; Einasto, Maret; Freudling, Wolfram; Fricke, Klaus; Tago, Erik (1995). "The structure of supervoids. I. Void hierarchy in the Northern Local Supervoid".
915:
1989 – The Center for Astrophysics Redshift Survey revealed that large voids, sharp filaments, and the walls that surround them dominate the large-scale structure of the universe.
2326:
Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike (2017).
2896:
Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P. (25 January 2017).
2106:
P. Kirshner, Robert; Oemler Jr, August; L. Schechter, Paul; A. Shectman, Stephen; L. Tucker, Douglas (1991). "The Las Campanas Deep Redshift Survey". In Blanchard, A. (ed.).
3008:
Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D.; Hirata, Christopher M. (2015). "Counting voids to probe dark energy".
579: 927:
2009 – The Sloan Digital Sky Survey (SDSS) data combined with previous large-scale surveys now provide the most complete view of the detailed structure of cosmic voids.
4272: 878:
1978 – The first two papers on the topic of voids in the large-scale structure were published referencing voids found in the foreground of the Coma/A1367 clusters.
1705: 4319: 2252:
Abazajian, Kevork N.; Adelman-McCarthy, Jennifer K.; Agüeros, Marcel A.; et al. (2009-06-01). "The Seventh Data Release of the Sloan Digital Sky Survey".
992:
Voids have contributed significantly to the modern understanding of the cosmos, with applications ranging from shedding light on the current understanding of
4563: 2189:
Colless, Matthew; Dalton, G. B.; Maddox, S. J.; Sutherland, W. J.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T. J.; Cannon, R. D.; Collins, C. A.;
649: 1154:
The abundance of voids, particularly when combined with the abundance of clusters of galaxies, is a promising method for precision tests of deviations from
3969: 1335:
Granett, B. R.; Neyrinck, M. C.; Szapudi, I. (2008). "An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs-Wolfe Effect".
3377:
Alexander, Stephon; Biswas, Tirthabir; Notari, Alessio; Vaid, Deepak (2009). "Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae".
800:– the regions that contain the typical cosmic mean density of matter abundance. Walls can be further broken down into two smaller structural features: 1078:
Voids offer opportunities to study the strength of intergalactic magnetic fields. For example, a 2015 study concluded, based on the deflection of
924:
2001 – The completed two-degree Field Galaxy Redshift Survey adds a significantly large amount of voids to the database of all known cosmic voids.
1136: 1049:) to measure the sum of the masses of all neutrino species by comparing the statistical properties of void samples to theoretical predictions. 2120: 1734: 1282: 918:
1991 – The Las Campanas Redshift Survey confirmed the abundance of voids in the large-scale structure of the universe (Kirshner et al. 1991).
1107: 383: 2136:
Fisher, Karl; Huchra, John; Strauss, Michael; Davis, Marc; Yahil, Amos; Schlegel, David (1995). "The IRAS 1.2 Jy Survey: Redshift Data".
3702: 4385: 4304: 3483:
Nan, Yue; Yamamoto, Kazuhiro (2018-08-28). "Gravitational redshift in the void-galaxy cross-correlation function in redshift space".
1501: 1471: 592: 59:
Simulation of the matter distribution in a cubic section of the universe. The blue fiber structures represent the matter (primarily
921:
1995 – Comparisons of optically selected galaxy surveys indicate that the same voids are found regardless of the sample selection.
3685: 3595:(June 2024). "Cosmic Nothing: Huge empty patches of the universe could help solve some of the greatest mysteries in the cosmos". 3232: 1757:
Abell, George O. (1961). "Evidence regarding second-order clustering of galaxies and interactions between clusters of galaxies".
642: 909: 225: 1110:, could possibly be explained by an extremely large cosmic void that has a radius of ~120 Mpc, as long as the late integrated 4390: 898: 719: 587: 301: 1855:
Kirshner, Robert P.; Oemler, Augustus Jr.; Schechter, Paul L.; Shectman, Stephen A. (1987). "A survey of the Bootes void".
1644: 4117: 1082:
gamma-ray emissions that travel through voids, that intergalactic space contains a magnetic field of strength at least 10
1033: 839:
led two separate teams of astrophysicists in 1978 to identify superclusters and voids in the distribution of galaxies and
230: 153: 4480: 2305:
Thompson, Laird A.; Gregory, Stephen A. (2011). "An Historical View: The Discovery of Voids in the Galaxy Distribution".
863:
A summarized timeline of important events in the field of cosmic voids from its beginning to recent times is as follows:
1812:
Kirshner, R. P.; Oemler, A. Jr.; Schechter, P. L.; Shectman, S. A. (1981). "A million cubic megaparsec void in Bootes".
726: 4287: 1099: 1061:
A 43×43×43-megaparsec cube shows the evolution of the large-scale structure over a logarithmic period starting from a
750: 635: 611: 158: 38: 4558: 4405: 4360: 4168: 3757: 3752: 3725: 377: 357: 165: 110: 3324:
Rudnick, Lawrence; Brown, Shea; Williams, Liliya R. (2007). "Extragalactic Radio Sources and the WMAP Cold Spot".
4086: 1955:
Frenk, C. S.; White, S. D. M.; Davis, M. (1983). "Nonlinear evolution of large-scale structure in the universe".
1087: 848: 203: 3430:
Sahlén, Martin; Silk, Joseph (2018-05-03). "Cluster-void degeneracy breaking: Modified gravity in the balance".
4370: 4282: 4277: 4183: 4079: 4037: 3747: 3720: 964:
distribution of galaxies, it defines voids to be regions in which matter is escaping; which corresponds to the
372: 137: 4365: 4350: 4297: 3956: 3944: 3939: 3853: 3818: 3789: 3779: 340: 220: 1111: 806:– highly concentrated zones where walls meet and intersect, adding to the effective size of the local wall. 777: 754: 3868: 3767: 2955:
Lee, Jounghun; Park, Daeseong (2007). "Constraining the Dark Energy Equation of State with Cosmic Voids".
1025: 758: 1036:. Additionally the abundance of voids is a promising way to constrain the dark energy equation of state. 4395: 4292: 3994: 1337: 691: 545: 347: 289: 31: 3643:
Fairall, A. P.; Paverd, W. R.; Ashley, R. P. (1994). "Visualization of Nearby Large-Scale Structures".
3178:
Constantin, Anca; Hoyle, Fiona; Vogeley, Michael S. (2007). "Active Galactic Nuclei in Void Regions".
3064:
Sahlén, Martin (2019-03-22). "Cluster-void degeneracy breaking: Neutrino properties and dark energy".
4425: 4375: 4210: 4122: 3858: 3742: 3678: 3652: 3555: 3502: 3449: 3396: 3343: 3280: 3197: 3144: 3083: 3027: 2974: 2919: 2868: 2786: 2731: 2652: 2597: 2534: 2474: 2455:
Hoyle, Fiona; Vogeley, Michael S. (2002). "Voids in the PSCz Survey and the Updated Zwicky Catalog".
2419: 2349: 2271: 2216: 2155: 2056: 2011: 1964: 1919: 1864: 1821: 1766: 1656: 1604: 1545: 1416: 1356: 1317: 1245: 558: 530: 352: 2000:"A 21 CM survey of the Pisces-Perseus supercluster. I – The declination zone +27.5 to +33.5 degrees" 685:. In spite of their size, most galaxies are not located in voids. This is because most galaxies are 4530: 4188: 4096: 4027: 3919: 3794: 3597: 2571: 1191: 1057: 1046: 868: 797: 742: 490: 450: 420: 367: 323: 311: 215: 105: 4461: 4518: 4506: 4420: 4415: 4400: 4355: 4324: 4309: 4227: 4195: 4032: 3984: 3974: 3571: 3545: 3518: 3492: 3465: 3439: 3412: 3386: 3359: 3333: 3306: 3270: 3213: 3187: 3160: 3134: 3107: 3073: 3043: 3017: 2990: 2964: 2937: 2909: 2858: 2802: 2776: 2749: 2721: 2688: 2668: 2642: 2615: 2587: 2552: 2524: 2490: 2464: 2437: 2409: 2375: 2339: 2306: 2261: 2234: 2206: 2171: 2145: 2088: 1888: 1699: 1622: 1594: 1563: 1535: 1442: 1406: 1372: 1346: 1307: 1235: 1155: 997: 972:. Void centers are then considered to be the maximal source of the displacement field denoted as 571: 510: 480: 445: 415: 362: 306: 75: 3639:
with Sergei Shandarin, Dept. Physics and Astronomy, University of Kansas, Lawrence, Kansas, USA.
4453: 4435: 4410: 4380: 4259: 4101: 4091: 4074: 4006: 3835: 3801: 3762: 3715: 3614: 3298: 3099: 2367: 2287: 2116: 2080: 2072: 2029: 1980: 1937: 1880: 1837: 1782: 1730: 1672: 1497: 1467: 1434: 1278: 757:. Colder regions correlate with voids, and hotter regions correlate with filaments because of 715: 540: 4465: 4267: 4222: 4217: 4205: 4059: 3880: 3813: 3606: 3592: 3563: 3510: 3457: 3404: 3351: 3288: 3205: 3152: 3091: 3035: 2982: 2927: 2876: 2821: 2794: 2790: 2739: 2660: 2605: 2542: 2482: 2427: 2357: 2279: 2224: 2163: 2064: 2019: 1972: 1927: 1872: 1829: 1774: 1664: 1612: 1553: 1424: 1364: 1321: 1253: 1140: 1072: 1018: 623: 435: 425: 410: 261: 130: 55: 4314: 4237: 3929: 3902: 3873: 3825: 3671: 1522:
Pan, Danny C.; Vogeley, Michael S.; Hoyle, Fiona; Choi, Yun-Young; Park, Changbom (2011).
840: 836: 809: 734: 686: 670: 550: 485: 470: 455: 440: 430: 294: 2508: 2107: 1395:"Cluster–Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void" 852: 191: 3656: 3559: 3506: 3453: 3408: 3400: 3347: 3284: 3201: 3148: 3087: 3031: 2978: 2923: 2872: 2735: 2656: 2601: 2538: 2478: 2423: 2353: 2275: 2220: 2159: 2060: 2015: 1968: 1923: 1868: 1825: 1770: 1660: 1608: 1549: 1420: 1360: 1249: 769:, the existence of voids is significant in providing physical evidence for dark energy. 4542: 4178: 4011: 3914: 3909: 3863: 3806: 803: 790:
Voids – vast, largely spherical regions with very low cosmic mean densities, up to 100
535: 495: 3610: 2986: 2932: 2897: 2881: 2846: 2362: 2283: 4552: 4334: 4200: 4163: 3934: 3897: 3885: 3737: 3732: 3522: 3416: 3047: 2941: 2744: 2709: 2610: 2575: 2547: 2512: 2432: 2397: 2379: 2229: 2194: 2190: 1892: 1720: 1617: 1582: 1567: 1558: 1523: 1446: 1429: 1186: 1103: 823:
per unit volume rather than the total mass of the matter contained in a unit volume.
520: 505: 405: 49: 3575: 3469: 3363: 3310: 3217: 3111: 2994: 2806: 2672: 2619: 2556: 2441: 2238: 2175: 2115:. Vol. 2. Gif-sur-Yvette Cedex, France: Editions Frontières. pp. 595–597. 2092: 1376: 4537: 4494: 4329: 4232: 4173: 4158: 4064: 3989: 3784: 3774: 3636: 3293: 3258: 3164: 2753: 2494: 1626: 1083: 872: 832: 707: 525: 500: 475: 460: 316: 17: 714:. They were first discovered in 1978 in a pioneering study by Stephen Gregory and 2068: 1724: 1491: 1461: 4430: 4247: 4137: 4127: 3924: 3890: 3830: 3710: 2798: 2327: 1132: 993: 965: 766: 761:. As the Sachs–Wolfe effect is only significant if the universe is dominated by 678: 273: 266: 60: 3514: 3461: 3095: 3039: 2767:
Sutter, P. M. (2015). "VIDE: The Void IDentification and Examination toolkit".
1394: 4132: 4069: 1932: 1907: 980: 738: 703: 515: 42: 3618: 3103: 2898:"Cosmic Voids in the SDSS DR12 BOSS Galaxy Sample: the Alcock–Paczyński test" 2371: 2291: 2076: 2033: 1984: 1941: 1884: 1841: 1786: 1676: 1438: 1258: 1221: 4142: 1001: 762: 465: 3302: 2576:"Properties of Dark Matter Haloes in Clusters, Filaments, Sheets and Voids" 2529: 2084: 1146:
interpretation has been largely diminished but not all together abandoned.
882: 2511:; Sheth, Ravi K.; Diaferio, Antonaldo; Gao, Liang; Yoshida, Naoki (2005). 3550: 3139: 2647: 2592: 2469: 2211: 2150: 1312: 1062: 1005: 844: 730: 674: 198: 100: 93: 2633:
El-Ad, Hagai; Piran, Tsvi (1997). "Voids in the Large-Scale Structure".
1118: 812:– the branching arms of walls that can stretch for tens of megaparsecs. 3257:
Chen, Wenlei; Buckley, James H.; Ferrer, Francesc (16 November 2015).
83: 3979: 3964: 3694: 1690:
Jõeveer, M.; Einasto, J. (1978). Longair, M. S.; Einasto, J. (eds.).
1201: 1079: 820: 791: 699: 682: 3632: 3536:
Goldberg, David M.; Vogeley, Michael S. (2004). "Simulating Voids".
1908:"Clustering velocities in the adiabatic picture of galaxy formation" 4489: 3567: 3497: 3444: 3355: 3209: 3156: 3078: 3022: 2914: 2664: 2486: 2344: 2167: 2024: 1999: 1976: 1876: 1833: 1778: 1668: 1411: 1368: 1240: 1075:
of young, hot stars when compared to samples of galaxies in walls.
746:
smaller than voids situated in low-density spaces of the universe.
4052: 4047: 4042: 3999: 3391: 3338: 3275: 3192: 2969: 2863: 2781: 2726: 2693: 2414: 2311: 2266: 1599: 1540: 1351: 1196: 1117: 1056: 776: 54: 3667: 2398:"Precision cosmology with voids: Definition, methods, dynamics" 749:
Voids appear to correlate with the observed temperature of the
63:) and the empty regions in between represent the cosmic voids. 30:
This article is about astronomical voids. For other uses, see
3259:"Search for GeV γ-Ray Pair Halos Around Low Redshift Blazars" 2047:
Geller, M. J.; Huchra, J. P. (1989). "Mapping the Universe".
908:
1985 – Details of the supercluster and void structure of the
889:
Mpc in diameter (which was later recalculated to be about 34
871:
features such as "second-order clusters", a specific type of
733:, collapses of mass followed by implosions of the compressed 706:); particularly large voids, defined by the absence of rich 3663: 1008:. Some popular applications are mentioned in detail below. 27:
Vast empty spaces between filaments with few or no galaxies
1227:
Monthly Notices of the Royal Astronomical Society: Letters
1524:"Cosmic Voids in Sloan Digital Sky Survey Data Release 7" 875:, were brought to the astronomical community's attention. 3233:"The Hidden Magnetic Universe Begins to Come Into View" 2845:
Lavaux, Guilhem; Wandelt, Benjamin D. (1 August 2012).
2195:"The 2dF Galaxy Redshift Survey: Spectra and redshifts" 1466:(International ed.). Addison-Wesley. p. 522. 1460:
Ryden, Barbara Sue; Peterson, Bradley M. (2010-01-01).
1393:
Sahlén, Martin; Zubeldía, Íñigo; Silk, Joseph (2016).
1222:"The central region of a void: an analytical solution" 4478: 3645:
Astronomical Society of the Pacific Conference Series
37:"Super void" redirects here. Not to be confused with 4343: 4258: 4151: 4110: 4020: 3955: 3846: 3701: 1490:Carroll, Bradley W.; Ostlie, Dale A. (2013-07-23). 2822:"We Live in a Cosmic Void, Another Study Confirms" 2391: 2389: 2328:"A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies" 1135:is currently the most popular explanation for the 3125:Peebles, P. J. E. (2001). "The Void Phenomenon". 2714:Monthly Notices of the Royal Astronomical Society 2580:Monthly Notices of the Royal Astronomical Society 2517:Monthly Notices of the Royal Astronomical Society 2402:Monthly Notices of the Royal Astronomical Society 2199:Monthly Notices of the Royal Astronomical Society 1912:Monthly Notices of the Royal Astronomical Society 1587:Monthly Notices of the Royal Astronomical Society 1528:Monthly Notices of the Royal Astronomical Society 1496:(International ed.). Pearson. p. 1171. 1273:Freedman, Roger A.; Kaufmann, William J. (2008). 2710:"ZOBOV: A parameter-free void-finding algorithm" 1723:; Schneider, Nicholas; Voit, Mark (1998-12-01). 1583:"ZOBOV: a parameter-free void-finding algorithm" 1032:) model and provide a more accurate dark energy 831:Study of cosmic voids within the discipline of 3633:Animated views of voids and their distribution 3379:Journal of Cosmology and Astroparticle Physics 2396:Lavaux, Guilhem; Wandelt, Benjamin D. (2010). 1799: 1645:"The Coma/A1367 supercluster and its environs" 1638: 1636: 4320:List of the most distant astronomical objects 3679: 1137:acceleration in the expansion of the universe 698:Voids typically have a diameter of 10 to 100 643: 8: 1517: 1515: 1513: 1158:on large scales and in low-density regions. 950:Zone bordering on voidness (ZOBOV) algorithm 2254:The Astrophysical Journal Supplement Series 2138:The Astrophysical Journal Supplement Series 3686: 3672: 3664: 2847:"Precision Cosmography with Stacked Voids" 2513:"Voids in a [Lambda] CDM Universe" 1704:: CS1 maint: location missing publisher ( 725:Voids are believed to have been formed by 650: 636: 250: 124: 82: 66: 3549: 3496: 3443: 3390: 3337: 3292: 3274: 3191: 3138: 3077: 3021: 2968: 2931: 2913: 2880: 2862: 2780: 2743: 2725: 2692: 2646: 2609: 2591: 2546: 2528: 2468: 2431: 2413: 2361: 2343: 2310: 2265: 2228: 2210: 2149: 2023: 1931: 1729:. Pearson College Division. p. 602. 1692:The Large Scale Structure of the Universe 1616: 1598: 1557: 1539: 1428: 1410: 1350: 1311: 1257: 1239: 1643:Gregory, S. A.; Thompson, L. A. (1978). 1277:(3rd ed.). New York: W.H. Freeman. 959:Dynamical void analysis (DIVA) algorithm 881:1981 – Discovery of a large void in the 4485: 1212: 1053:Galactic formation and evolution models 281: 253: 145: 74: 1998:Giovanelli, R.; Haynes, M. P. (1985). 1697: 1493:An Introduction to Modern Astrophysics 3059: 3057: 1719:Rex, Andrew F.; Bennett, Jeffrey O.; 1004:Galaxy is in a cosmic void named the 885:region of the sky that was nearly 50 673:(the largest-scale structures in the 7: 1485: 1483: 1388: 1386: 1108:Wilkinson Microwave Anisotropy Probe 4564:Large-scale structure of the cosmos 2570:Hahn, Oliver; Porciani, Cristiano; 3231:Wolchover, Natalie (2 July 2020). 378:2dF Galaxy Redshift Survey ("2dF") 25: 3611:10.1038/scientificamerican0124-20 1694:. Dordrecht: Reidel. p. 241. 1581:Neyrinck, Mark C. (29 Feb 2008). 1399:The Astrophysical Journal Letters 593:Timeline of cosmological theories 358:Cosmic Background Explorer (COBE) 4536: 4524: 4512: 4500: 4488: 4460: 4449: 4448: 2820:Howell, Elizabeth (2017-06-14). 2745:10.1111/j.1365-2966.2008.13180.x 2611:10.1111/j.1365-2966.2006.11318.x 2548:10.1111/j.1365-2966.2005.09064.x 2433:10.1111/j.1365-2966.2010.16197.x 2230:10.1046/j.1365-8711.2001.04902.x 1906:Merlott, A. L. (November 1983). 1618:10.1111/j.1365-2966.2008.13180.x 1559:10.1111/j.1365-2966.2011.20197.x 737:. Starting from initially small 617: 606: 605: 1045:astronomical surveys (e.g. the 996:, to refining and constraining 373:Sloan Digital Sky Survey (SDSS) 226:Future of an expanding universe 4391:Galaxy formation and evolution 4386:Galaxy color–magnitude diagram 3294:10.1103/PhysRevLett.115.211103 899:dimensionless Hubble parameter 720:Kitt Peak National Observatory 588:History of the Big Bang theory 384:Wilkinson Microwave Anisotropy 48:For various cosmic voids, see 1: 3409:10.1088/1475-7516/2009/09/025 1122:CMB screening of the universe 1024:model, or further refine the 580:Discovery of cosmic microwave 231:Ultimate fate of the universe 2069:10.1126/science.246.4932.897 1275:Universe. Stars and galaxies 835:began in the mid-1970s when 727:baryon acoustic oscillations 4273:Galaxies named after people 2987:10.1088/0004-637X/696/1/L10 2933:10.3847/1538-4357/835/2/160 2882:10.1088/0004-637X/754/2/109 2799:10.1016/j.ascom.2014.10.002 2363:10.3847/1538-4357/835/2/161 2284:10.1088/0067-0049/182/2/543 1463:Foundations of Astrophysics 1100:cosmic microwave background 847:of the galaxies due to the 751:cosmic microwave background 348:Black Hole Initiative (BHI) 4580: 4406:Gravitational microlensing 4361:Galactic coordinate system 3515:10.1103/PhysRevD.98.043527 3462:10.1103/PhysRevD.97.103504 3096:10.1103/PhysRevD.99.063525 3040:10.1103/PhysRevD.92.083531 2708:Neyrinck, Mark C. (2008). 1800:Jõeveer & Einasto 1978 1430:10.3847/2041-8205/820/1/L7 1300:Astronomy and Astrophysics 669:) are vast spaces between 111:Chronology of the universe 47: 36: 29: 4444: 3538:The Astrophysical Journal 3326:The Astrophysical Journal 3180:The Astrophysical Journal 3127:The Astrophysical Journal 2957:The Astrophysical Journal 2902:The Astrophysical Journal 2851:The Astrophysical Journal 2635:The Astrophysical Journal 2574:; Dekel, Avishai (2007). 2457:The Astrophysical Journal 2332:The Astrophysical Journal 1957:The Astrophysical Journal 1857:The Astrophysical Journal 1814:The Astrophysical Journal 1649:The Astrophysical Journal 1094:Anomalies in anisotropies 849:expansion of the universe 759:gravitational redshifting 204:Expansion of the universe 4371:Galactic magnetic fields 4184:Brightest cluster galaxy 4080:Luminous infrared galaxy 2004:The Astronomical Journal 1759:The Astronomical Journal 368:Planck space observatory 154:Gravitational wave (GWB) 4366:Galactic habitable zone 4351:Extragalactic astronomy 3940:Supermassive black hole 3854:Active galactic nucleus 3263:Physical Review Letters 2791:2015A&C.....9....1S 2769:Astronomy and Computing 1933:10.1093/mnras/205.3.637 1322:1995A&A...301..329L 1220:Baushev, A. N. (2021). 1090:in the early universe. 710:, are sometimes called 221:Inhomogeneous cosmology 4118:Low surface brightness 3869:Central massive object 1726:The Cosmic Perspective 1259:10.1093/mnrasl/slab036 1150:Gravitational theories 1123: 1067: 998:cosmological evolution 869:Large-scale structural 782: 64: 4396:Galaxy rotation curve 1338:Astrophysical Journal 1121: 1060: 910:Perseus–Pisces region 781:A map of galaxy voids 780: 773:Large-scale structure 753:(CMB) because of the 312:Large-scale structure 290:Shape of the universe 58: 4431:Population III stars 4426:Intergalactic travel 4376:Galactic orientation 4243:Voids and supervoids 3593:Lemonick, Michael D. 2572:Marcella Carollo, C. 1028:+ Cold Dark Matter ( 941:VoidFinder algorithm 901:, approximately 0.7. 743:quantum fluctuations 624:Astronomy portal 582:background radiation 559:List of cosmologists 4421:Intergalactic stars 4310:Large quasar groups 4305:Groups and clusters 4169:Groups and clusters 4028:Lyman-alpha emitter 3920:Interstellar medium 3657:1994ASPC...67...21F 3598:Scientific American 3560:2004ApJ...605....1G 3507:2018PhRvD..98d3527N 3454:2018PhRvD..97j3504S 3401:2009JCAP...09..025A 3348:2007ApJ...671...40R 3285:2015PhRvL.115u1103C 3202:2008ApJ...673..715C 3149:2001ApJ...557..495P 3088:2019PhRvD..99f3525S 3032:2015PhRvD..92h3531P 2979:2009ApJ...696L..10L 2924:2017ApJ...835..160M 2873:2012ApJ...754..109L 2736:2008MNRAS.386.2101N 2657:1997ApJ...491..421E 2602:2007MNRAS.375..489H 2539:2005MNRAS.360..216C 2479:2002ApJ...566..641H 2424:2010MNRAS.403.1392L 2354:2017ApJ...835..161M 2276:2009ApJS..182..543A 2221:2001MNRAS.328.1039C 2160:1995ApJS..100...69F 2061:1989Sci...246..897G 2016:1985AJ.....90.2445G 1969:1983ApJ...271..417F 1924:1983MNRAS.205..637M 1869:1987ApJ...314..493K 1826:1981ApJ...248L..57K 1771:1961AJ.....66..607A 1661:1978ApJ...222..784G 1609:2008MNRAS.386.2101N 1550:2012MNRAS.421..926P 1421:2016ApJ...820L...7S 1361:2008ApJ...683L..99G 1250:2021MNRAS.504L..56B 1192:Observable universe 968:equation of state, 932:Methods for finding 702:(30 to 300 million 324:Structure formation 216:Friedmann equations 106:Age of the universe 70:Part of a series on 18:Intercluster medium 4416:Intergalactic dust 4401:Gravitational lens 4356:Galactic astronomy 4325:Starburst galaxies 4065:blue compact dwarf 4021:Energetic galaxies 3985:BL Lacertae object 2530:astro-ph/0409162v2 2109:Physical cosmology 1156:general relativity 1124: 1112:Sachs–Wolfe effect 1098:Cold spots in the 1073:starburst galaxies 1068: 794:(Mpc) in diameter. 783: 755:Sachs–Wolfe effect 692:the curvature term 363:Dark Energy Survey 307:Large quasar group 76:Physical cosmology 65: 4559:Voids (astronomy) 4476: 4475: 4436:Galaxy X (galaxy) 4411:Illustris project 4381:Galactic quadrant 4102:Wolf-Rayet galaxy 4092:Green bean galaxy 4087:Hot dust-obscured 4038:Luminous infrared 3802:Elliptical galaxy 3485:Physical Review D 3432:Physical Review D 3066:Physical Review D 3010:Physical Review D 2509:Colberg, Joerg M. 2122:978-2-86332-094-5 2055:(4932): 897–903. 1736:978-0-201-47399-5 1284:978-0-7167-9561-2 1034:equation of state 716:Laird A. Thompson 677:), which contain 660: 659: 331: 330: 173: 172: 16:(Redirected from 4571: 4541: 4540: 4529: 4528: 4527: 4517: 4516: 4515: 4505: 4504: 4503: 4493: 4492: 4484: 4464: 4452: 4451: 4097:Hanny's Voorwerp 4007:Relativistic jet 3881:Dark matter halo 3688: 3681: 3674: 3665: 3660: 3622: 3580: 3579: 3553: 3551:astro-ph/0307191 3533: 3527: 3526: 3500: 3480: 3474: 3473: 3447: 3427: 3421: 3420: 3394: 3374: 3368: 3367: 3341: 3321: 3315: 3314: 3296: 3278: 3254: 3248: 3247: 3245: 3243: 3228: 3222: 3221: 3195: 3175: 3169: 3168: 3142: 3140:astro-ph/0101127 3122: 3116: 3115: 3081: 3061: 3052: 3051: 3025: 3005: 2999: 2998: 2972: 2952: 2946: 2945: 2935: 2917: 2893: 2887: 2886: 2884: 2866: 2842: 2836: 2835: 2833: 2832: 2817: 2811: 2810: 2784: 2764: 2758: 2757: 2747: 2729: 2720:(4): 2101–2109. 2705: 2699: 2698: 2696: 2683: 2677: 2676: 2650: 2648:astro-ph/9702135 2630: 2624: 2623: 2613: 2595: 2593:astro-ph/0610280 2567: 2561: 2560: 2550: 2532: 2505: 2499: 2498: 2472: 2470:astro-ph/0109357 2452: 2446: 2445: 2435: 2417: 2393: 2384: 2383: 2365: 2347: 2323: 2317: 2316: 2314: 2302: 2296: 2295: 2269: 2249: 2243: 2242: 2232: 2214: 2212:astro-ph/0106498 2205:(4): 1039–1063. 2186: 2180: 2179: 2153: 2151:astro-ph/9502101 2133: 2127: 2126: 2114: 2103: 2097: 2096: 2044: 2038: 2037: 2027: 1995: 1989: 1988: 1952: 1946: 1945: 1935: 1903: 1897: 1896: 1852: 1846: 1845: 1809: 1803: 1797: 1791: 1790: 1754: 1748: 1747: 1745: 1743: 1716: 1710: 1709: 1703: 1695: 1687: 1681: 1680: 1640: 1631: 1630: 1620: 1602: 1593:(4): 2101–2109. 1578: 1572: 1571: 1561: 1543: 1519: 1508: 1507: 1487: 1478: 1477: 1457: 1451: 1450: 1432: 1414: 1390: 1381: 1380: 1354: 1332: 1326: 1325: 1315: 1313:astro-ph/9503044 1295: 1289: 1288: 1270: 1264: 1263: 1261: 1243: 1217: 1047:Euclid satellite 837:redshift surveys 652: 645: 638: 622: 621: 620: 609: 608: 302:Galaxy formation 262:Lambda-CDM model 251: 243:Components  125: 86: 67: 21: 4579: 4578: 4574: 4573: 4572: 4570: 4569: 4568: 4549: 4548: 4547: 4535: 4525: 4523: 4513: 4511: 4501: 4499: 4487: 4479: 4477: 4472: 4440: 4339: 4254: 4147: 4106: 4016: 3951: 3930:Galaxy filament 3874:Galactic Center 3842: 3697: 3692: 3642: 3629: 3591: 3588: 3586:Further reading 3583: 3535: 3534: 3530: 3482: 3481: 3477: 3429: 3428: 3424: 3376: 3375: 3371: 3323: 3322: 3318: 3256: 3255: 3251: 3241: 3239: 3237:Quanta Magazine 3230: 3229: 3225: 3177: 3176: 3172: 3124: 3123: 3119: 3063: 3062: 3055: 3007: 3006: 3002: 2954: 2953: 2949: 2895: 2894: 2890: 2844: 2843: 2839: 2830: 2828: 2819: 2818: 2814: 2766: 2765: 2761: 2707: 2706: 2702: 2685: 2684: 2680: 2632: 2631: 2627: 2569: 2568: 2564: 2507: 2506: 2502: 2454: 2453: 2449: 2408:(3): 403–1408. 2395: 2394: 2387: 2325: 2324: 2320: 2304: 2303: 2299: 2251: 2250: 2246: 2188: 2187: 2183: 2135: 2134: 2130: 2123: 2112: 2105: 2104: 2100: 2046: 2045: 2041: 1997: 1996: 1992: 1954: 1953: 1949: 1905: 1904: 1900: 1854: 1853: 1849: 1811: 1810: 1806: 1798: 1794: 1756: 1755: 1751: 1741: 1739: 1737: 1718: 1717: 1713: 1696: 1689: 1688: 1684: 1642: 1641: 1634: 1580: 1579: 1575: 1521: 1520: 1511: 1504: 1489: 1488: 1481: 1474: 1459: 1458: 1454: 1392: 1391: 1384: 1345:(2): L99–L102. 1334: 1333: 1329: 1297: 1296: 1292: 1285: 1272: 1271: 1267: 1219: 1218: 1214: 1210: 1183: 1176: 1169: 1165: 1152: 1129: 1096: 1055: 1042: 1014: 990: 978: 961: 952: 943: 934: 861: 829: 775: 735:baryonic matter 687:gravitationally 665:(also known as 656: 618: 616: 598: 597: 584: 581: 574: 572:Subject history 564: 563: 555: 400: 392: 391: 388: 385: 343: 333: 332: 295:Galaxy filament 248: 236: 235: 187: 182:Expansion  175: 174: 159:Microwave (CMB) 138:Nucleosynthesis 122: 53: 46: 35: 28: 23: 22: 15: 12: 11: 5: 4577: 4575: 4567: 4566: 4561: 4551: 4550: 4546: 4545: 4533: 4521: 4509: 4497: 4474: 4473: 4471: 4470: 4458: 4445: 4442: 4441: 4439: 4438: 4433: 4428: 4423: 4418: 4413: 4408: 4403: 4398: 4393: 4388: 4383: 4378: 4373: 4368: 4363: 4358: 4353: 4347: 4345: 4341: 4340: 4338: 4337: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4301: 4300: 4295: 4290: 4285: 4280: 4275: 4264: 4262: 4256: 4255: 4253: 4252: 4251: 4250: 4240: 4235: 4230: 4228:Stellar stream 4225: 4220: 4215: 4214: 4213: 4208: 4203: 4193: 4192: 4191: 4186: 4181: 4176: 4166: 4161: 4155: 4153: 4149: 4148: 4146: 4145: 4140: 4135: 4130: 4125: 4120: 4114: 4112: 4108: 4107: 4105: 4104: 4099: 4094: 4089: 4084: 4083: 4082: 4077: 4072: 4067: 4057: 4056: 4055: 4050: 4045: 4035: 4030: 4024: 4022: 4018: 4017: 4015: 4014: 4009: 4004: 4003: 4002: 3997: 3987: 3982: 3977: 3972: 3967: 3961: 3959: 3953: 3952: 3950: 3949: 3948: 3947: 3937: 3932: 3927: 3922: 3917: 3915:Galactic ridge 3912: 3910:Galactic plane 3907: 3906: 3905: 3895: 3894: 3893: 3883: 3878: 3877: 3876: 3866: 3861: 3856: 3850: 3848: 3844: 3843: 3841: 3840: 3839: 3838: 3828: 3823: 3822: 3821: 3811: 3810: 3809: 3799: 3798: 3797: 3792: 3787: 3782: 3772: 3771: 3770: 3765: 3760: 3755: 3750: 3745: 3740: 3730: 3729: 3728: 3723: 3713: 3707: 3705: 3699: 3698: 3693: 3691: 3690: 3683: 3676: 3668: 3662: 3661: 3640: 3628: 3627:External links 3625: 3624: 3623: 3587: 3584: 3582: 3581: 3568:10.1086/382143 3528: 3475: 3438:(10): 103504. 3422: 3369: 3356:10.1086/522222 3316: 3269:(21): 211103. 3249: 3223: 3210:10.1086/524310 3186:(2): 715–729. 3170: 3157:10.1086/322254 3133:(2): 495–504. 3117: 3053: 3000: 2963:(1): L10–L12. 2947: 2888: 2837: 2812: 2759: 2700: 2678: 2665:10.1086/304973 2641:(2): 421–435. 2625: 2586:(2): 489–499. 2562: 2523:(1): 216–226. 2500: 2487:10.1086/338340 2463:(2): 641–651. 2447: 2385: 2318: 2297: 2260:(2): 543–558. 2244: 2181: 2168:10.1086/192208 2128: 2121: 2098: 2039: 2025:10.1086/113949 1990: 1977:10.1086/161209 1947: 1918:(3): 637–641. 1898: 1877:10.1086/165080 1847: 1834:10.1086/183623 1804: 1792: 1779:10.1086/108472 1749: 1735: 1721:Donahue, Megan 1711: 1682: 1669:10.1086/156198 1632: 1573: 1534:(2): 926–934. 1509: 1502: 1479: 1472: 1452: 1382: 1369:10.1086/591670 1327: 1290: 1283: 1265: 1234:(1): L56–L60. 1211: 1209: 1206: 1205: 1204: 1199: 1194: 1189: 1182: 1179: 1174: 1167: 1163: 1151: 1148: 1128: 1125: 1104:WMAP cold spot 1102:, such as the 1095: 1092: 1054: 1051: 1041: 1038: 1013: 1010: 989: 986: 976: 960: 957: 951: 948: 942: 939: 933: 930: 929: 928: 925: 922: 919: 916: 913: 912:were surveyed. 906: 902: 879: 876: 860: 857: 841:Abell clusters 828: 825: 819:the number of 816: 815: 814: 813: 807: 795: 774: 771: 658: 657: 655: 654: 647: 640: 632: 629: 628: 627: 626: 614: 600: 599: 596: 595: 590: 585: 578: 575: 570: 569: 566: 565: 562: 561: 554: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 503: 498: 493: 488: 483: 478: 473: 468: 463: 458: 453: 448: 443: 438: 433: 428: 423: 418: 413: 408: 402: 401: 398: 397: 394: 393: 390: 389: 382: 380: 375: 370: 365: 360: 355: 350: 344: 339: 338: 335: 334: 329: 328: 327: 326: 314: 309: 304: 292: 284: 283: 279: 278: 277: 276: 264: 256: 255: 249: 242: 241: 238: 237: 234: 233: 228: 223: 218: 206: 201: 188: 181: 180: 177: 176: 171: 170: 169: 168: 166:Neutrino (CNB) 156: 148: 147: 143: 142: 141: 140: 123: 121:Early universe 120: 119: 116: 115: 114: 113: 108: 103: 88: 87: 79: 78: 72: 71: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4576: 4565: 4562: 4560: 4557: 4556: 4554: 4544: 4539: 4534: 4532: 4522: 4520: 4510: 4508: 4498: 4496: 4491: 4486: 4482: 4469: 4468: 4463: 4459: 4457: 4456: 4447: 4446: 4443: 4437: 4434: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4402: 4399: 4397: 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4369: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4348: 4346: 4342: 4336: 4333: 4331: 4330:Superclusters 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4270: 4269: 4266: 4265: 4263: 4261: 4257: 4249: 4246: 4245: 4244: 4241: 4239: 4236: 4234: 4233:Superclusters 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4212: 4209: 4207: 4204: 4202: 4199: 4198: 4197: 4194: 4190: 4187: 4185: 4182: 4180: 4177: 4175: 4172: 4171: 4170: 4167: 4165: 4164:Galactic tide 4162: 4160: 4157: 4156: 4154: 4150: 4144: 4141: 4139: 4136: 4134: 4131: 4129: 4126: 4124: 4123:Ultra diffuse 4121: 4119: 4116: 4115: 4113: 4109: 4103: 4100: 4098: 4095: 4093: 4090: 4088: 4085: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4062: 4061: 4058: 4054: 4051: 4049: 4046: 4044: 4041: 4040: 4039: 4036: 4034: 4031: 4029: 4026: 4025: 4023: 4019: 4013: 4010: 4008: 4005: 4001: 3998: 3996: 3993: 3992: 3991: 3988: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3962: 3960: 3958: 3957:Active nuclei 3954: 3946: 3943: 3942: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3904: 3901: 3900: 3899: 3896: 3892: 3889: 3888: 3887: 3884: 3882: 3879: 3875: 3872: 3871: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3851: 3849: 3845: 3837: 3834: 3833: 3832: 3829: 3827: 3824: 3820: 3817: 3816: 3815: 3812: 3808: 3805: 3804: 3803: 3800: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3777: 3776: 3773: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3735: 3734: 3731: 3727: 3724: 3722: 3719: 3718: 3717: 3714: 3712: 3709: 3708: 3706: 3704: 3700: 3696: 3689: 3684: 3682: 3677: 3675: 3670: 3669: 3666: 3658: 3654: 3650: 3646: 3641: 3638: 3634: 3631: 3630: 3626: 3620: 3616: 3612: 3608: 3605:(2s): 20–27. 3604: 3600: 3599: 3594: 3590: 3589: 3585: 3577: 3573: 3569: 3565: 3561: 3557: 3552: 3547: 3543: 3539: 3532: 3529: 3524: 3520: 3516: 3512: 3508: 3504: 3499: 3494: 3491:(4): 043527. 3490: 3486: 3479: 3476: 3471: 3467: 3463: 3459: 3455: 3451: 3446: 3441: 3437: 3433: 3426: 3423: 3418: 3414: 3410: 3406: 3402: 3398: 3393: 3388: 3384: 3380: 3373: 3370: 3365: 3361: 3357: 3353: 3349: 3345: 3340: 3335: 3331: 3327: 3320: 3317: 3312: 3308: 3304: 3300: 3295: 3290: 3286: 3282: 3277: 3272: 3268: 3264: 3260: 3253: 3250: 3238: 3234: 3227: 3224: 3219: 3215: 3211: 3207: 3203: 3199: 3194: 3189: 3185: 3181: 3174: 3171: 3166: 3162: 3158: 3154: 3150: 3146: 3141: 3136: 3132: 3128: 3121: 3118: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3085: 3080: 3075: 3072:(6): 063525. 3071: 3067: 3060: 3058: 3054: 3049: 3045: 3041: 3037: 3033: 3029: 3024: 3019: 3016:(8): 083531. 3015: 3011: 3004: 3001: 2996: 2992: 2988: 2984: 2980: 2976: 2971: 2966: 2962: 2958: 2951: 2948: 2943: 2939: 2934: 2929: 2925: 2921: 2916: 2911: 2907: 2903: 2899: 2892: 2889: 2883: 2878: 2874: 2870: 2865: 2860: 2856: 2852: 2848: 2841: 2838: 2827: 2823: 2816: 2813: 2808: 2804: 2800: 2796: 2792: 2788: 2783: 2778: 2774: 2770: 2763: 2760: 2755: 2751: 2746: 2741: 2737: 2733: 2728: 2723: 2719: 2715: 2711: 2704: 2701: 2695: 2690: 2682: 2679: 2674: 2670: 2666: 2662: 2658: 2654: 2649: 2644: 2640: 2636: 2629: 2626: 2621: 2617: 2612: 2607: 2603: 2599: 2594: 2589: 2585: 2581: 2577: 2573: 2566: 2563: 2558: 2554: 2549: 2544: 2540: 2536: 2531: 2526: 2522: 2518: 2514: 2510: 2504: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2471: 2466: 2462: 2458: 2451: 2448: 2443: 2439: 2434: 2429: 2425: 2421: 2416: 2411: 2407: 2403: 2399: 2392: 2390: 2386: 2381: 2377: 2373: 2369: 2364: 2359: 2355: 2351: 2346: 2341: 2337: 2333: 2329: 2322: 2319: 2313: 2308: 2301: 2298: 2293: 2289: 2285: 2281: 2277: 2273: 2268: 2263: 2259: 2255: 2248: 2245: 2240: 2236: 2231: 2226: 2222: 2218: 2213: 2208: 2204: 2200: 2196: 2192: 2185: 2182: 2177: 2173: 2169: 2165: 2161: 2157: 2152: 2147: 2143: 2139: 2132: 2129: 2124: 2118: 2111: 2110: 2102: 2099: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2043: 2040: 2035: 2031: 2026: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1951: 1948: 1943: 1939: 1934: 1929: 1925: 1921: 1917: 1913: 1909: 1902: 1899: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1851: 1848: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1808: 1805: 1802:, p. 241 1801: 1796: 1793: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1753: 1750: 1738: 1732: 1728: 1727: 1722: 1715: 1712: 1707: 1701: 1693: 1686: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1639: 1637: 1633: 1628: 1624: 1619: 1614: 1610: 1606: 1601: 1596: 1592: 1588: 1584: 1577: 1574: 1569: 1565: 1560: 1555: 1551: 1547: 1542: 1537: 1533: 1529: 1525: 1518: 1516: 1514: 1510: 1505: 1503:9781292022932 1499: 1495: 1494: 1486: 1484: 1480: 1475: 1473:9780321595584 1469: 1465: 1464: 1456: 1453: 1448: 1444: 1440: 1436: 1431: 1426: 1422: 1418: 1413: 1408: 1404: 1400: 1396: 1389: 1387: 1383: 1378: 1374: 1370: 1366: 1362: 1358: 1353: 1348: 1344: 1340: 1339: 1331: 1328: 1323: 1319: 1314: 1309: 1305: 1301: 1294: 1291: 1286: 1280: 1276: 1269: 1266: 1260: 1255: 1251: 1247: 1242: 1237: 1233: 1229: 1228: 1223: 1216: 1213: 1207: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1187:List of voids 1185: 1184: 1180: 1178: 1173: 1159: 1157: 1149: 1147: 1145: 1144: 1138: 1134: 1126: 1120: 1116: 1113: 1109: 1105: 1101: 1093: 1091: 1089: 1088:recombination 1085: 1081: 1076: 1074: 1064: 1059: 1052: 1050: 1048: 1039: 1037: 1035: 1031: 1027: 1023: 1022: 1011: 1009: 1007: 1003: 999: 995: 987: 985: 982: 975: 971: 967: 958: 956: 949: 947: 940: 938: 931: 926: 923: 920: 917: 914: 911: 907: 905:distribution. 903: 900: 896: 892: 888: 884: 880: 877: 874: 870: 866: 865: 864: 858: 856: 854: 851:according to 850: 846: 842: 838: 834: 826: 824: 822: 811: 808: 805: 802: 801: 799: 796: 793: 789: 788: 787: 779: 772: 770: 768: 764: 760: 756: 752: 747: 744: 740: 736: 732: 728: 723: 721: 717: 713: 709: 708:superclusters 705: 701: 696: 693: 688: 684: 680: 676: 672: 668: 664: 653: 648: 646: 641: 639: 634: 633: 631: 630: 625: 615: 613: 604: 603: 602: 601: 594: 591: 589: 586: 583: 577: 576: 573: 568: 567: 560: 557: 556: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 422: 419: 417: 414: 412: 409: 407: 404: 403: 396: 395: 387: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 349: 346: 345: 342: 337: 336: 325: 322: 318: 315: 313: 310: 308: 305: 303: 300: 296: 293: 291: 288: 287: 286: 285: 280: 275: 272: 268: 265: 263: 260: 259: 258: 257: 252: 246: 240: 239: 232: 229: 227: 224: 222: 219: 217: 214: 210: 207: 205: 202: 200: 197: 193: 190: 189: 185: 179: 178: 167: 164: 160: 157: 155: 152: 151: 150: 149: 144: 139: 136: 132: 129: 128: 127: 126: 118: 117: 112: 109: 107: 104: 102: 99: 95: 92: 91: 90: 89: 85: 81: 80: 77: 73: 69: 68: 62: 57: 51: 50:List of voids 44: 40: 33: 19: 4531:Solar System 4466: 4454: 4242: 4189:fossil group 4111:Low activity 3945:Ultramassive 3775:Dwarf galaxy 3758:intermediate 3753:grand design 3648: 3644: 3637:Hume Feldman 3602: 3596: 3541: 3537: 3531: 3488: 3484: 3478: 3435: 3431: 3425: 3382: 3378: 3372: 3332:(1): 40–44. 3329: 3325: 3319: 3266: 3262: 3252: 3240:. Retrieved 3236: 3226: 3183: 3179: 3173: 3130: 3126: 3120: 3069: 3065: 3013: 3009: 3003: 2960: 2956: 2950: 2905: 2901: 2891: 2854: 2850: 2840: 2829:. Retrieved 2825: 2815: 2772: 2768: 2762: 2717: 2713: 2703: 2681: 2638: 2634: 2628: 2583: 2579: 2565: 2520: 2516: 2503: 2460: 2456: 2450: 2405: 2401: 2335: 2331: 2321: 2300: 2257: 2253: 2247: 2202: 2198: 2184: 2141: 2137: 2131: 2108: 2101: 2052: 2048: 2042: 2007: 2003: 1993: 1960: 1956: 1950: 1915: 1911: 1901: 1860: 1856: 1850: 1817: 1813: 1807: 1795: 1762: 1758: 1752: 1740:. Retrieved 1725: 1714: 1691: 1685: 1652: 1648: 1590: 1586: 1576: 1531: 1527: 1492: 1462: 1455: 1402: 1398: 1342: 1336: 1330: 1303: 1299: 1293: 1274: 1268: 1231: 1225: 1215: 1171: 1160: 1153: 1142: 1130: 1097: 1077: 1069: 1043: 1029: 1026:Quintessence 1020: 1015: 1000:models. The 991: 988:Significance 973: 969: 962: 953: 944: 935: 894: 890: 886: 873:supercluster 862: 853:Hubble's law 833:astrophysics 830: 817: 784: 748: 739:anisotropies 724: 711: 697: 666: 663:Cosmic voids 662: 661: 386:Probe (WMAP) 320: 317:Reionization 298: 270: 244: 212: 195: 192:Hubble's law 183: 162: 134: 97: 4519:Outer space 4507:Spaceflight 4248:void galaxy 4211:cannibalism 4196:Interacting 4152:Interaction 4138:Blue Nugget 4128:Dark galaxy 4033:Lyman-break 3925:Protogalaxy 3891:Disc galaxy 2191:J Couch, W. 1133:dark energy 1012:Dark energy 994:dark energy 981:ellipticity 966:dark energy 893:Mpc). Here 792:megaparsecs 767:dark energy 704:light-years 700:megaparsecs 341:Experiments 274:Dark matter 267:Dark energy 209:FLRW metric 146:Backgrounds 61:dark matter 4553:Categories 4288:Polar-ring 4133:Red nugget 4075:faint blue 3935:Spiral arm 3790:spheroidal 3780:elliptical 3763:Magellanic 3748:flocculent 3716:Lenticular 3703:Morphology 3544:(1): 1–6. 3498:1805.05708 3445:1612.06595 3385:(9): 025. 3079:1807.02470 3023:1503.07690 2915:1602.06306 2908:(2): 160. 2857:(2): 109. 2831:2023-11-26 2345:1602.02771 2338:(2): 161. 1412:1511.04075 1241:2104.01359 1208:References 712:supervoids 667:dark space 421:Copernicus 399:Scientists 254:Components 43:Giant Void 39:Great Void 4223:Satellite 4218:Jellyfish 4206:collision 4143:Dead disk 4060:Starburst 3975:Markarian 3847:Structure 3814:Irregular 3785:irregular 3619:0036-8733 3523:119351761 3417:119259755 3392:0712.0370 3339:0704.0908 3276:1410.7717 3193:0710.1631 3104:2470-0010 3048:119253930 2970:0704.0881 2942:119276823 2864:1110.0345 2826:Space.com 2782:1406.1191 2727:0712.3049 2694:1310.5067 2415:0906.4101 2380:119098071 2372:0004-637X 2312:1109.1268 2292:0067-0049 2267:0812.0649 2077:0036-8075 2034:0004-6256 1985:0004-637X 1942:0035-8711 1893:118385803 1885:0004-637X 1842:0004-637X 1787:0004-6256 1700:cite book 1677:0004-637X 1600:0712.3049 1568:119182772 1541:1103.4156 1447:119286482 1439:2041-8205 1405:(1): L7. 1352:0805.3695 1131:Although 1127:Expansion 1106:found by 1040:Neutrinos 1002:Milky Way 845:redshifts 827:Discovery 810:Filaments 763:radiation 671:filaments 551:Zeldovich 451:Friedmann 426:de Sitter 353:BOOMERanG 282:Structure 247:Structure 131:Inflation 4455:Category 4344:See also 4268:Galaxies 3995:X-shaped 3826:Peculiar 3768:unbarred 3726:unbarred 3695:Galaxies 3576:13242401 3470:73621033 3364:14316362 3311:32638647 3303:26636838 3218:15383038 3112:85530907 2995:18219268 2807:62620511 2673:16336543 2620:14225529 2557:18912038 2442:15294193 2239:40393799 2176:13605316 2093:31328798 2085:17812575 2010:: 2445. 1377:15976818 1181:See also 1063:redshift 1006:KBC Void 859:Timeline 821:galaxies 804:Clusters 731:Big Bang 683:galaxies 679:very few 675:universe 612:Category 531:Suntzeff 491:Lemaître 441:Einstein 406:Aaronson 199:Redshift 101:Universe 94:Big Bang 4543:Science 4481:Portals 4315:Quasars 4283:Nearest 4278:Largest 4179:cluster 4012:Seyfert 3653:Bibcode 3556:Bibcode 3503:Bibcode 3450:Bibcode 3397:Bibcode 3344:Bibcode 3281:Bibcode 3198:Bibcode 3165:2138259 3145:Bibcode 3084:Bibcode 3028:Bibcode 2975:Bibcode 2920:Bibcode 2869:Bibcode 2787:Bibcode 2775:: 1–9. 2754:5670329 2732:Bibcode 2653:Bibcode 2598:Bibcode 2535:Bibcode 2495:5822042 2475:Bibcode 2420:Bibcode 2350:Bibcode 2272:Bibcode 2217:Bibcode 2156:Bibcode 2057:Bibcode 2049:Science 2012:Bibcode 1965:Bibcode 1963:: 417. 1920:Bibcode 1865:Bibcode 1863:: 493. 1822:Bibcode 1820:: L57. 1767:Bibcode 1765:: 607. 1657:Bibcode 1655:: 784. 1627:5670329 1605:Bibcode 1546:Bibcode 1417:Bibcode 1357:Bibcode 1318:Bibcode 1306:: 329. 1246:Bibcode 897:is the 867:1961 – 729:in the 718:at the 536:Sunyaev 521:Schmidt 511:Penzias 506:Penrose 481:Huygens 471:Hawking 456:Galileo 4467:Portal 4298:Spiral 4201:merger 3980:Quasar 3965:Blazar 3903:corona 3819:barred 3795:spiral 3743:barred 3738:anemic 3733:Spiral 3721:barred 3651:: 21. 3617:  3574:  3521:  3468:  3415:  3362:  3309:  3301:  3242:7 July 3216:  3163:  3110:  3102:  3046:  2993:  2940:  2805:  2752:  2671:  2618:  2555:  2493:  2440:  2378:  2370:  2290:  2237:  2174:  2144:: 69. 2119:  2091:  2083:  2075:  2032:  1983:  1940:  1891:  1883:  1840:  1785:  1733:  1675:  1625:  1566:  1500:  1470:  1445:  1437:  1375:  1281:  1202:Vacuum 1170:, and 1080:blazar 883:Boötes 681:or no 610:  546:Wilson 541:Tolman 501:Newton 496:Mather 486:Kepler 476:Hubble 436:Ehlers 416:Alpher 411:Alfvén 319:  297:  269:  211:  194:  186:Future 161:  133:  96:  4495:Stars 4335:Voids 4260:Lists 4238:Walls 4174:group 4159:Field 4053:ELIRG 4048:HLIRG 4043:ULIRG 4000:DRAGN 3990:Radio 3970:LINER 3864:Bulge 3836:Polar 3635:from 3572:S2CID 3546:arXiv 3519:S2CID 3493:arXiv 3466:S2CID 3440:arXiv 3413:S2CID 3387:arXiv 3360:S2CID 3334:arXiv 3307:S2CID 3271:arXiv 3214:S2CID 3188:arXiv 3161:S2CID 3135:arXiv 3108:S2CID 3074:arXiv 3044:S2CID 3018:arXiv 2991:S2CID 2965:arXiv 2938:S2CID 2910:arXiv 2859:arXiv 2803:S2CID 2777:arXiv 2750:S2CID 2722:arXiv 2689:arXiv 2669:S2CID 2643:arXiv 2616:S2CID 2588:arXiv 2553:S2CID 2525:arXiv 2491:S2CID 2465:arXiv 2438:S2CID 2410:arXiv 2376:S2CID 2340:arXiv 2307:arXiv 2262:arXiv 2235:S2CID 2207:arXiv 2172:S2CID 2146:arXiv 2113:(PDF) 2089:S2CID 1889:S2CID 1742:4 May 1623:S2CID 1595:arXiv 1564:S2CID 1536:arXiv 1443:S2CID 1407:arXiv 1373:S2CID 1347:arXiv 1308:arXiv 1236:arXiv 1197:Space 798:Walls 741:from 526:Smoot 516:Rubin 461:Gamow 446:Ellis 431:Dicke 4293:Ring 3898:Halo 3886:Disc 3831:Ring 3711:Disc 3615:ISSN 3383:2009 3299:PMID 3244:2020 3100:ISSN 2368:ISSN 2288:ISSN 2117:ISBN 2081:PMID 2073:ISSN 2030:ISSN 1981:ISSN 1938:ISSN 1881:ISSN 1838:ISSN 1783:ISSN 1744:2014 1731:ISBN 1706:link 1673:ISSN 1498:ISBN 1468:ISBN 1435:ISSN 1279:ISBN 1030:QCDM 466:Guth 32:Void 4070:pea 3859:Bar 3607:doi 3603:330 3564:doi 3542:605 3511:doi 3458:doi 3405:doi 3352:doi 3330:671 3289:doi 3267:115 3206:doi 3184:673 3153:doi 3131:557 3092:doi 3036:doi 2983:doi 2961:696 2928:doi 2906:835 2877:doi 2855:754 2795:doi 2740:doi 2718:386 2661:doi 2639:491 2606:doi 2584:375 2543:doi 2521:360 2483:doi 2461:566 2428:doi 2406:403 2358:doi 2336:835 2280:doi 2258:182 2225:doi 2203:328 2164:doi 2142:100 2065:doi 2053:246 2020:doi 1973:doi 1961:271 1928:doi 1916:205 1873:doi 1861:314 1830:doi 1818:248 1775:doi 1665:doi 1653:222 1613:doi 1591:386 1554:doi 1532:421 1425:doi 1403:820 1365:doi 1343:683 1304:301 1254:doi 1232:504 1166:, Ω 1143:CDM 1021:CDM 765:or 41:or 4555:: 3807:cD 3649:67 3647:. 3613:. 3601:. 3570:. 3562:. 3554:. 3540:. 3517:. 3509:. 3501:. 3489:98 3487:. 3464:. 3456:. 3448:. 3436:97 3434:. 3411:. 3403:. 3395:. 3381:. 3358:. 3350:. 3342:. 3328:. 3305:. 3297:. 3287:. 3279:. 3265:. 3261:. 3235:. 3212:. 3204:. 3196:. 3182:. 3159:. 3151:. 3143:. 3129:. 3106:. 3098:. 3090:. 3082:. 3070:99 3068:. 3056:^ 3042:. 3034:. 3026:. 3014:92 3012:. 2989:. 2981:. 2973:. 2959:. 2936:. 2926:. 2918:. 2904:. 2900:. 2875:. 2867:. 2853:. 2849:. 2824:. 2801:. 2793:. 2785:. 2771:. 2748:. 2738:. 2730:. 2716:. 2712:. 2667:. 2659:. 2651:. 2637:. 2614:. 2604:. 2596:. 2582:. 2578:. 2551:. 2541:. 2533:. 2519:. 2515:. 2489:. 2481:. 2473:. 2459:. 2436:. 2426:. 2418:. 2404:. 2400:. 2388:^ 2374:. 2366:. 2356:. 2348:. 2334:. 2330:. 2286:. 2278:. 2270:. 2256:. 2233:. 2223:. 2215:. 2201:. 2197:. 2170:. 2162:. 2154:. 2140:. 2087:. 2079:. 2071:. 2063:. 2051:. 2028:. 2018:. 2008:90 2006:. 2002:. 1979:. 1971:. 1959:. 1936:. 1926:. 1914:. 1910:. 1887:. 1879:. 1871:. 1859:. 1836:. 1828:. 1816:. 1781:. 1773:. 1763:66 1761:. 1702:}} 1698:{{ 1671:. 1663:. 1651:. 1647:. 1635:^ 1621:. 1611:. 1603:. 1589:. 1585:. 1562:. 1552:. 1544:. 1530:. 1526:. 1512:^ 1482:^ 1441:. 1433:. 1423:. 1415:. 1401:. 1397:. 1385:^ 1371:. 1363:. 1355:. 1341:. 1316:. 1302:. 1252:. 1244:. 1230:. 1224:. 1177:. 855:. 722:. 4483:: 3687:e 3680:t 3673:v 3659:. 3655:: 3621:. 3609:: 3578:. 3566:: 3558:: 3548:: 3525:. 3513:: 3505:: 3495:: 3472:. 3460:: 3452:: 3442:: 3419:. 3407:: 3399:: 3389:: 3366:. 3354:: 3346:: 3336:: 3313:. 3291:: 3283:: 3273:: 3246:. 3220:. 3208:: 3200:: 3190:: 3167:. 3155:: 3147:: 3137:: 3114:. 3094:: 3086:: 3076:: 3050:. 3038:: 3030:: 3020:: 2997:. 2985:: 2977:: 2967:: 2944:. 2930:: 2922:: 2912:: 2885:. 2879:: 2871:: 2861:: 2834:. 2809:. 2797:: 2789:: 2779:: 2773:9 2756:. 2742:: 2734:: 2724:: 2697:. 2691:: 2675:. 2663:: 2655:: 2645:: 2622:. 2608:: 2600:: 2590:: 2559:. 2545:: 2537:: 2527:: 2497:. 2485:: 2477:: 2467:: 2444:. 2430:: 2422:: 2412:: 2382:. 2360:: 2352:: 2342:: 2315:. 2309:: 2294:. 2282:: 2274:: 2264:: 2241:. 2227:: 2219:: 2209:: 2178:. 2166:: 2158:: 2148:: 2125:. 2095:. 2067:: 2059:: 2036:. 2022:: 2014:: 1987:. 1975:: 1967:: 1944:. 1930:: 1922:: 1895:. 1875:: 1867:: 1844:. 1832:: 1824:: 1789:. 1777:: 1769:: 1746:. 1708:) 1679:. 1667:: 1659:: 1629:. 1615:: 1607:: 1597:: 1570:. 1556:: 1548:: 1538:: 1506:. 1476:. 1449:. 1427:: 1419:: 1409:: 1379:. 1367:: 1359:: 1349:: 1324:. 1320:: 1310:: 1287:. 1262:. 1256:: 1248:: 1238:: 1175:0 1172:H 1168:Λ 1164:m 1141:Λ 1084:G 1019:Λ 977:ψ 974:S 970:w 895:h 891:h 887:h 651:e 644:t 637:v 321:· 299:· 271:· 245:· 213:· 196:· 184:· 163:· 135:· 98:· 52:. 45:. 34:. 20:)

Index

Intercluster medium
Void
Great Void
Giant Void
List of voids
Structure of the Universe
dark matter
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.