Knowledge (XXG)

Error correction code

Source đź“ť

391: 403: 564:
whose error rate tends to zero: His proof relies on Gaussian random coding, which is not suitable to real-world applications. The upper bound given by Shannon's work inspired a long journey in designing ECCs that can come close to the ultimate performance boundary. Various codes today can attain almost the Shannon limit. However, capacity achieving ECCs are usually extremely complex to implement.
808: 560:
the receiver SNR (signal-to-noise-ratio) decreasing the bit error rate, at the cost of reducing the effective data rate. On the other extreme, not using any ECC (i.e., a code-rate equal to 1) uses the full channel for information transfer purposes, at the cost of leaving the bits without any additional protection.
953:
Transmitted sentence: ThisIsAnExampleOfInterleaving... Error-free transmission: TIEpfeaghsxlIrv.iAaenli.snmOten. Received sentence with a burst error: TIEpfe______Irv.iAaenli.snmOten. Received sentence after deinterleaving:
586:
coding schemes in which a short constraint-length Viterbi-decoded convolutional code does most of the work and a block code (usually Reed–Solomon) with larger symbol size and block length "mops up" any errors made by the convolutional decoder. Single pass decoding with this family of error correction
441:
increasing complexity. A convolutional code that is terminated is also a 'block code' in that it encodes a block of input data, but the block size of a convolutional code is generally arbitrary, while block codes have a fixed size dictated by their algebraic characteristics. Types of termination for
762:
Sometimes it is only necessary to decode single bits of the message, or to check whether a given signal is a codeword, and do so without looking at the entire signal. This can make sense in a streaming setting, where codewords are too large to be classically decoded fast enough and where only a few
563:
One interesting question is the following: how efficient in terms of information transfer can an ECC be that has a negligible decoding error rate? This question was answered by Claude Shannon with his second theorem, which says that the channel capacity is the maximum bit rate achievable by any ECC
559:
The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect. This causes a fundamental tradeoff between reliability and data rate. In one extreme, a strong code (with low code-rate) can induce an important increase in
555:
The fundamental principle of ECC is to add redundant bits in order to help the decoder to find out the true message that was encoded by the transmitter. The code-rate of a given ECC system is defined as the ratio between the number of information bits and the total number of bits (i.e., information
182:
can be used to compute the maximum achievable communication bandwidth for a given maximum acceptable error probability. This establishes bounds on the theoretical maximum information transfer rate of a channel with some given base noise level. However, the proof is not constructive, and hence gives
965:
Use of interleaving techniques increases total delay. This is because the entire interleaved block must be received before the packets can be decoded. Also interleavers hide the structure of errors; without an interleaver, more advanced decoding algorithms can take advantage of the error structure
987:
context. The idea is to directly use software ECCs in the communications. For instance in the 5G, the software ECCs could be located in the cloud and the antennas connected to this computing resources: improving this way the flexibility of the communication network and eventually increasing the
567:
The most popular ECCs have a trade-off between performance and computational complexity. Usually, their parameters give a range of possible code rates, which can be optimized depending on the scenario. Usually, this optimization is done in order to achieve a low decoding error probability while
928:
Error-free code words: aaaabbbbccccddddeeeeffffgggg Interleaved: abcdefgabcdefgabcdefgabcdefg Transmission with a burst error: abcdefgabcd____bcdefgabcdefg Received code words after deinterleaving:
169:
The maximum proportion of errors or missing bits that can be corrected is determined by the design of the ECC, so different forward error correcting codes are suitable for different conditions. In general, a stronger code induces more redundancy that needs to be transmitted using the available
320:
ECC could be said to work by "averaging noise"; since each data bit affects many transmitted symbols, the corruption of some symbols by noise usually allows the original user data to be extracted from the other, uncorrupted received symbols that also depend on the same user data.
199:
to the transmitted information using an algorithm. A redundant bit may be a complicated function of many original information bits. The original information may or may not appear literally in the encoded output; codes that include the unmodified input in the output are
556:
plus redundancy bits) in a given communication package. The code-rate is hence a real number. A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code.
777:
are error-correcting codes for which single bits of the message can be probabilistically recovered by only looking at a small (say constant) number of positions of a codeword, even after the codeword has been corrupted at some constant fraction of positions.
914:
Here, each group of the same letter represents a 4-bit one-bit error-correcting codeword. The codeword cccc is altered in one bit and can be corrected, but the codeword dddd is altered in three bits, so either it cannot be decoded at all or it might be
998:(A Fast Forward Error Correction Toolbox): a full communication chain in C++ (many supported codes like Turbo, LDPC, Polar codes, etc.), very fast and specialized on channel coding (can be used as a program for simulations or as a library for the SDR). 1669:
Both Reed–Solomon algorithm and BCH algorithm are common ECC choices for MLC NAND flash. ... Hamming based block codes are the most commonly used ECC for SLC.... both Reed–Solomon and BCH are able to handle multiple errors and are widely used on MLC
311:
is a relatively inefficient ECC. Better ECC codes typically examine the last several tens or even the last several hundreds of previously received bits to determine how to decode the current small handful of bits (typically in groups of 2 to 8 bits).
978:
Simulating the behaviour of error-correcting codes (ECCs) in software is a common practice to design, validate and improve ECCs. The upcoming wireless 5G standard raises a new range of applications for the software ECCs: the
623:(the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length. Practical implementations rely heavily on decoding the constituent SPC codes in parallel. 2168:"Digital Video Broadcast (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other satellite broadband applications (DVB-S2)". 827:
exceeds the error-correcting code's capability, it fails to recover the original code word. Interleaving alleviates this problem by shuffling source symbols across several code words, thereby creating a more
347:
Interleaving ECC coded data can reduce the all or nothing properties of transmitted ECC codes when the channel errors tend to occur in bursts. However, this method has limits; it is best used on narrowband
689:
is an iterated soft-decoding scheme that combines two or more relatively simple convolutional codes and an interleaver to produce a block code that can perform to within a fraction of a decibel of the
437:, though other algorithms are sometimes used. Viterbi decoding allows asymptotically optimal decoding efficiency with increasing constraint length of the convolutional code, but at the expense of 850:
For turbo codes, an interleaver is an integral component and its proper design is crucial for good performance. The iterative decoding algorithm works best when there are not short cycles in the
500:
algorithms, which means that for every input and output signal a hard decision is made whether it corresponds to a one or a zero bit. In contrast, convolutional codes are typically decoded using
568:
minimizing the impact to the data rate. Another criterion for optimizing the code rate is to balance low error rate and retransmissions number in order to the energy cost of the communication.
1641: 125:
Long-latency connections also benefit; in the case of satellites orbiting distant planets, retransmission due to errors would create a delay of several hours. FEC is also widely used in
1709: 136:
FEC processing in a receiver may be applied to a digital bit stream or in the demodulation of a digitally modulated carrier. For the latter, FEC is an integral part of the initial
870:
S-random interleaver (where the interleaver is a known random permutation with the constraint that no input symbols within distance S appear within a distance of S in the output).
782:
are error-correcting codes for which it can be checked probabilistically whether a signal is close to a codeword by only looking at a small number of positions of the signal.
847:, typically assumes an independent distribution of errors. Systems using LDPC codes therefore typically employ additional interleaving across the symbols within a code word. 788:
Not all locally decodable codes (LDCs) are locally testable codes (LTCs) neither locally correctable codes (LCCs), q-query LCCs are bounded exponentially while LDCs can have
2187:
Andrews, K. S.; Divsalar, D.; Dolinar, S.; Hamkins, J.; Jones, C. R.; Pollara, F. (November 2007). "The Development of Turbo and LDPC Codes for Deep-Space Applications".
372:
uses a variety of ECC rates, adding more error-correction bits per packet when there are higher error rates in the channel, or taking them out when they are not needed.
1361: 2328:"Digital Video Broadcast (DVB); Frame structure, channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)". 941:
Original transmitted sentence: ThisIsAnExampleOfInterleaving Received sentence with a burst error: ThisIs______pleOfInterleaving
118:
FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in
911:
Error-free message: aaaabbbbccccddddeeeeffffgggg Transmission with a burst error: aaaabbbbccc____deeeeffffgggg
1381: 2674: 661:(ITU-T Standard for networking over power lines, phone lines and coaxial cable). Other LDPC codes are standardized for wireless communication standards within 619:(LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the 932:
In each of the codewords "aaaa", "eeee", "ffff", and "gggg", only one bit is altered, so one-bit error-correcting code will decode everything correctly.
360:, and then fail to work at all if the bit error rate is ever worse. However, some systems adapt to the given channel error conditions: some instances of 296:
This allows an error in any one of the three samples to be corrected by "majority vote", or "democratic voting". The correcting ability of this ECC is:
1648:. 2005. Both say: "The Hamming algorithm is an industry-accepted method for error detection and correction in many SLC NAND flash-based applications." 1487: 2737: 2263: 1638: 1384: 508:
algorithms, which process (discretized) analog signals, and which allow for much higher error-correction performance than hard-decision decoding.
426:
Block codes work on fixed-size blocks (packets) of bits or symbols of predetermined size. Practical block codes can generally be hard-decoded in
815:
Interleaving is frequently used in digital communication and storage systems to improve the performance of forward error correcting codes. Many
537:. A few forward error correction codes are designed to correct bit-insertions and bit-deletions, such as Marker Codes and Watermark Codes. The 2596: 2545: 2134: 2074: 1982: 1850: 2532:. North-Holland Mathematical Library. Vol. 16 (digital print of 12th impression, 1st ed.). Amsterdam / London / New York / Tokyo: 1869: 1452: 1416: 2687: 2680: 1630: 2668: 1905: 966:
and achieve more reliable communication than a simpler decoder combined with an interleaver. An example of such an algorithm is based on
577: 518:
In contrast to classical block codes that often specify an error-detecting or error-correcting ability, many modern block codes such as
1004:: a C++ library of classes and functions for linear algebra, numerical optimization, signal processing, communications, and statistics. 587:
codes can yield very low error rates, but for long range transmission conditions (like deep space) iterative decoding is recommended.
485:
memory errors. This provides single-bit error correction and 2-bit error detection. Hamming codes are only suitable for more reliable
471: 1271: 447: 2659: 2636: 2604: 2577: 2501: 1555: 829: 768: 187:
come very close to the theoretical maximum given by the Shannon channel capacity under the hypothesis of an infinite length frame.
2533: 602:
craft used iterative concatenated codes to compensate for the very high error rate conditions caused by having a failed antenna.
493:(MLC) NAND may use multi-bit correcting ECC such as BCH or Reed–Solomon. NOR Flash typically does not use any error correction. 1739: 764: 361: 196: 81: 1411: 369: 2224:
Dolinar, S.; Divsalar, D. (15 August 1995). "Weight Distributions for Turbo Codes Using Random and Nonrandom Permutations".
325:
Because of this "risk-pooling" effect, digital communication systems that use ECC tend to work well above a certain minimum
630:
in his PhD thesis in 1960, but due to the computational effort in implementing encoder and decoder and the introduction of
1792: 1579: 1215: 616: 611: 2521: 1661: 175: 1930:
Kothari, Pravesh K.; Manohar, Peter (2023). "An Exponential Lower Bound for Linear 3-Query Locally Correctable Codes".
2525: 1396: 1159: 833: 463: 137: 1769: 1257: 894: 184: 1290: 1041: 824: 433:
Convolutional codes work on bit or symbol streams of arbitrary length. They are most often soft decoded with the
308: 1784: 1426: 878: 717: 526: 365: 1316: 183:
no insight of how to build a capacity achieving code. After years of research, some advanced FEC systems like
159:(magnetic, optical and solid state/flash based) devices to enable recovery of corrupted data, and is used as 2189: 1321: 1242: 1210: 1117: 1081: 148:
to demodulate digital data from an analog signal corrupted by noise. Many FEC decoders can also generate a
2241: 1574: 1281: 984: 874: 774: 753: 2153:; Mitzenmacher, M.; Shokrollahi, A.; Spielman, D.; Stemann, V. (1997). "Practical Loss-Resilient Codes". 1499: 716:, and other carriers. It is also used for the evolution of CDMA2000 1x specifically for Internet access, 1431: 1204: 1173: 816: 779: 757: 402: 326: 171: 145: 74: 1276: 1683: 2396: 2282: 2233: 1139: 599: 538: 104:
to request re-transmission may not be needed. The cost is a fixed, higher forward channel bandwidth.
100:
that may occur anywhere in the message, but often to correct a limited number of errors. Therefore a
2261:
Takeshita, Oscar (2006). "Permutation Polynomial Interleavers: An Algebraic-Geometric Perspective".
2246: 2595:
Series in Computer Systems. Vol. 10 (1 ed.). Cambridge, Massachusetts, USA / London, UK:
801: 789: 31: 2386: 2298: 2272: 2206: 2092: 2080: 2035: 1988: 1960: 1931: 1866: 1705:"A Simple Scheme for Belief Propagation Decoding of BCH and RS Codes in Multimedia Transmissions" 1610: 1199: 1144: 991:
In this context, there are various available Open-source software listed below (non exhaustive).
627: 419: 407: 385: 112: 46: 1464: 861:
rectangular (or uniform) interleavers (similar to the method using skip factors described above)
590:
Concatenated codes have been standard practice in satellite and deep space communications since
340:– becomes more pronounced as stronger codes are used that more closely approach the theoretical 1627: 1327: 1010:: implementation (in C) of the 3GPP specifications concerning the Evolved Packet Core Networks. 2655: 2632: 2610: 2600: 2573: 2551: 2541: 2497: 2424: 2155:
Proc. 29th Annual Association for Computing Machinery (ACM) Symposium on Theory of Computation
2130: 2070: 2027: 1978: 1890: 1846: 1551: 1223: 1169: 1163: 1103: 1092: 763:
bits of the message are of interest for now. Also such codes have become an important tool in
486: 434: 390: 70: 42: 631: 522:
lack such guarantees. Instead, modern codes are evaluated in terms of their bit error rates.
2487: 2479: 2451: 2414: 2404: 2290: 2198: 2062: 2019: 1970: 1838: 1809: 1801: 1718: 1600: 1592: 1183: 957:
No word is completely lost and the missing letters can be recovered with minimal guesswork.
890: 725: 709: 530: 529:
codes correct only bit-flips, but not bit-insertions or bit-deletions. In this setting, the
490: 438: 213:
A simplistic example of ECC is to transmit each data bit 3 times, which is known as a (3,1)
130: 111:
pioneered this field in the 1940s and invented the first error-correcting code in 1950: the
217:. Through a noisy channel, a receiver might see 8 versions of the output, see table below. 2126: 2104: 1873: 1814: 1645: 1634: 1286: 591: 459: 427: 214: 202: 163: 152:(BER) signal which can be used as feedback to fine-tune the analog receiving electronics. 141: 108: 101: 97: 1691:
For SLC, a code with a correction threshold of 1 is sufficient. t=4 required ... for MLC.
889:
communication systems, interleaving across carriers may be employed to provide frequency
2400: 2286: 2237: 2419: 2374: 1805: 1596: 1366: 967: 886: 534: 505: 357: 179: 170:
bandwidth, which reduces the effective bit-rate while improving the received effective
149: 2456: 1528: 2731: 2651: 2628: 2084: 1306: 1266: 1252: 1232: 1219: 1178: 1149: 729: 713: 690: 669: 620: 582:
Classical (algebraic) block codes and convolutional codes are frequently combined in
341: 66: 50: 2686:
Sphere Packings, Lattices and Groups, By J. H. Conway, Neil James Alexander Sloane,
2348: 2315: 2039: 1992: 1953:"Exponential lower bound for 2-query locally decodable codes via a quantum argument" 1614: 364:
use a fixed ECC method as long as the ECC can handle the error rate, then switch to
2569: 2210: 2150: 1886: 1547: 1406: 1302: 1298: 1237: 1207:, a type of erasure correcting code across networks instead of point-to-point links 1193: 1188: 1052: 851: 650: 646: 637:
LDPC codes are now used in many recent high-speed communication standards, such as
512: 475: 451: 395: 353: 337: 156: 1131:
used for radar, telemetry, ultra sound, Wifi, DSSS mobile phone networks, GPS etc.
2054: 2007: 1831:"Optimizing the code rate for achieving energy-efficient wireless communications" 1125:, which can be designed to correct any arbitrary number of errors per code block. 2537: 1835:
Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC)
1421: 1262: 1248: 1134: 1128: 820: 2409: 2302: 1952: 1830: 541:
is a more appropriate way to measure the bit error rate when using such codes.
410:
where redundant bits are added continuously into the structure of the code word
2202: 1842: 1311: 1154: 854:
that represents the decoder; the interleaver is chosen to avoid short cycles.
840: 694: 686: 681: 519: 482: 415: 381: 160: 2471: 2031: 1639:"Micron Technical Note TN-29-08: Hamming Codes for NAND Flash Memory Devices" 1295:
Spinal code, a rateless, nonlinear code based on pseudo-random hash functions
944:
The term "AnExample" ends up mostly unintelligible and difficult to correct.
398:) where redundant bits are added as a block to the end of the initial message 2592: 2483: 2294: 2066: 2023: 1401: 844: 119: 38: 2528:(2007) . Written at AT&T Shannon Labs, Florham Park, New Jersey, USA. 2428: 1957:
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing
1007: 807: 17: 2059:
Proceedings of the forty-first annual ACM symposium on Theory of computing
1974: 1723: 1704: 1965: 1122: 1112: 867:
random interleavers (where the interleaver is a known random permutation)
721: 705: 701: 697:
in terms of practical application, they now provide similar performance.
550: 467: 2492: 1196:
for non-white noise (prevalent for example in broadband over powerlines)
515:. Hence classical block codes are often referred to as algebraic codes. 1605: 1588: 1228: 916: 654: 27:
Scheme for controlling errors in data over noisy communication channels
2722: 2681:
Observations on Errors, Corrections, & Trust of Dependent Systems
2442:
Nordstrom, A.W.; Robinson, J.P. (1967), "An optimum nonlinear code",
1060: 1001: 638: 595: 700:
One of the earliest commercial applications of turbo coding was the
2391: 2277: 1936: 511:
Nearly all classical block codes apply the algebraic properties of
2716: 2008:"Towards 3-query locally decodable codes of subexponential length" 980: 806: 642: 401: 389: 126: 1906:"'Magical' Error Correction Scheme Proved Inherently Inefficient" 736:, Sprint's consumer and business marketing names for 1xEV-DO are 649:
standard for microwave communications), High-Speed Wireless LAN (
2669:"Error Correction Code in Single Level Cell NAND Flash memories" 2614: 2555: 2375:"Deep Neural Network Probabilistic Decoder for Stabilizer Codes" 2333: 2173: 785:
Not all testing codes are locally decoding and testing of codes
665: 662: 658: 2589:
A Commonsense Approach to the Theory of Error Correcting Codes
2476:
Proceedings of the 10th ACM Workshop on Hot Topics in Networks
800:"Interleaver" redirects here. For the fiber-optic device, see 732:, and other carriers (Verizon's marketing name for 1xEV-DO is 641:(Digital Video Broadcasting – Satellite – Second Generation), 455: 30:"Interleaver" redirects here. For the fiber-optic device, see 442:
convolutional codes include "tail-biting" and "bit-flushing".
80:
The central idea is that the sender encodes the message in a
2470:
Perry, Jonathan; Balakrishnan, Hari; Shah, Devavrat (2011).
1577:(April 1950). "Error Detecting and Error Correcting Codes". 1486:
Charles Wang; Dean Sklar; Diana Johnson (Winter 2001–2002).
1451:
Charles Wang; Dean Sklar; Diana Johnson (Winter 2001–2002).
995: 823:
rather than independently. If the number of errors within a
545:
Code-rate and the tradeoff between reliability and data rate
166:
on systems that require special provisions for reliability.
2625:
Error Control Systems for Digital Communication and Storage
303:
up to 2 bits of triplet omitted (cases not shown in table).
2723:
lpdec: library for LP decoding and related things (Python)
2702: 2055:"3-query locally decodable codes of subexponential length" 1385:
Mathematics of cyclic redundancy checks § Bitfilters
1829:
Rosas, F.; Brante, G.; Souza, R. D.; Oberli, C. (2014).
1710:
International Journal of Digital Multimedia Broadcasting
704:(TIA IS-2000) digital cellular technology developed by 1363:
bits long for optimal generator polynomials of degree
832:
of errors. Therefore, interleaving is widely used for
1369: 1330: 1324:(CRCs) can correct 1-bit errors for messages at most 2373:
Krastanov, Stefan; Jiang, Liang (8 September 2017).
1951:
Kerenidis, Iordanis; de Wolf, Ronald (9 June 2003).
594:
first used the technique in its 1986 encounter with
2116: 2114: 1662:"What Types of ECC Should Be Used on Flash Memory?" 2566:Error-Correction Coding for Digital Communications 1738:Shah, Gaurav; Molina, Andres; Blaze, Matt (2006). 1375: 1355: 462:. Other examples of classical block codes include 96:). The redundancy allows the receiver not only to 634:codes, they were mostly ignored until the 1990s. 307:Though simple to implement and widely used, this 1876:, IEEE, 29 October 2009, accessed 21 March 2011. 1233:rateless erasure correcting code (Fountain code) 496:Classical block codes are usually decoded using 1544:Practical Error Correction Design For Engineers 572:Concatenated ECC codes for improved performance 2675:"Error Correction Code in NAND Flash memories" 1891:"Locally Testable vs. Locally Decodable Codes" 1684:"The Inconvenient Truths of NAND Flash Memory" 1498:(1). The Aerospace Corporation. Archived from 1463:(1). The Aerospace Corporation. Archived from 819:are not memoryless: errors typically occur in 720:(TIA IS-856). Like 1x, EV-DO was developed by 2587:Arazi, Benjamin (1987). Swetman, Herb (ed.). 2564:Clark, Jr., George C.; Cain, J. Bibb (1981). 1628:"Hamming codes for NAND flash memory devices" 1078:6 (double-error correct-/triple error detect) 356:designed to tolerate the expected worst-case 8: 839:The analysis of modern iterated codes, like 352:Most telecommunication systems use a fixed 1656: 1654: 2491: 2455: 2418: 2408: 2390: 2276: 2245: 1964: 1935: 1813: 1722: 1604: 1569: 1567: 1368: 1335: 1329: 811:A short illustration of interleaving idea 414:The two main categories of ECC codes are 2123:Turbo codes: principles and applications 1785:"A mathematical theory of communication" 1512:How Forward Error-Correcting Codes Work] 1018: 481:Hamming ECC is commonly used to correct 450:is noteworthy for its widespread use in 219: 2690:, 2013-03-09 – Mathematics – 682 pages. 2264:IEEE Transactions on Information Theory 1546:(Revision 1.1, 2nd ed.). CO, USA: 1443: 2100: 2090: 1766:Fundamentals of Wireless Communication 1764:Tse, David; Viswanath, Pramod (2005), 954:T_isI_AnE_amp_eOfInterle_vin_... 533:is the appropriate way to measure the 2719:. Database of error correcting codes. 2688:Springer Science & Business Media 2650:. Englewood Cliffs, New Jersey, USA: 2627:. Englewood Cliffs, New Jersey, USA: 2597:Massachusetts Institute of Technology 1637:. EE Times-Asia. Apparently based on 446:There are many types of block codes; 7: 2530:The Theory of Error-Correcting Codes 1542:Glover, Neal; Dudley, Trent (1990). 1522: 1520: 1417:Error-correcting codes with feedback 626:LDPC codes were first introduced by 504:algorithms like the Viterbi, MAP or 1245:, used in Geometry and Group Theory 981:Cloud Radio Access Networks (C-RAN) 974:Software for error-correcting codes 877:(QPP). An example of use is in the 748:Local decoding and testing of codes 578:Concatenated error correction codes 368:when the error rate gets too high; 300:Up to 1 bit of triplet in error, or 2006:Yekhanin, Sergey (February 2008). 1806:10.1002/j.1538-7305.1948.tb01338.x 1703:Baldi, M.; Chiaraluce, F. (2008). 1597:10.1002/j.1538-7305.1950.tb00463.x 881:mobile telecommunication standard. 769:probabilistically checkable proofs 25: 2703:"The Correcting Codes (ECC) Page" 2701:Morelos-Zaragoza, Robert (2004). 1865:IEEE Standard, section 20.3.11.6 1488:"Forward Error-Correction Coding" 1453:"Forward Error-Correction Coding" 988:energy efficiency of the system. 936:Transmission without interleaving 906:Transmission without interleaving 1904:Brubaker, Ben (9 January 2024). 1267:rateless erasure correcting code 1253:rateless erasure correcting code 551:Bit rate § Information rate 316:Averaging noise to reduce errors 2683:, by James Hamilton, 2012-02-26 2053:Efremenko, Klim (31 May 2009). 1740:"Keyboards and covert channels" 765:computational complexity theory 606:Low-density parity-check (LDPC) 362:hybrid automatic repeat-request 2738:Error detection and correction 2121:Vucetic, B.; Yuan, J. (2000). 1815:11858/00-001M-0000-002C-4314-2 1800:(3–4): 379–423 & 623–656. 1412:Error detection and correction 1015:List of error-correcting codes 370:adaptive modulation and coding 206:, while those that do not are 195:ECC is accomplished by adding 1: 2648:Digital Modulation and Coding 2522:MacWilliams, Florence Jessiem 2457:10.1016/S0019-9958(67)90835-2 1793:Bell System Technical Journal 1580:Bell System Technical Journal 1272:Reed–Solomon error correction 1216:Low-density parity-check code 961:Disadvantages of interleaving 929:aa_abbbbccccdddde_eef_ffg_gg 857:Interleaver designs include: 612:Low-density parity-check code 394:A block code (specifically a 2526:Sloane, Neil James Alexander 1529:"Overview of Channel Coding" 985:Software-defined radio (SDR) 897:or narrowband interference. 873:a contention-free quadratic 176:noisy-channel coding theorem 155:FEC information is added to 138:analog-to-digital conversion 84:way, most often by using an 2646:Wilson, Stephen G. (1996). 2623:Wicker, Stephen B. (1995). 1397:Burst error-correcting code 1071:5 (double-error correcting) 1048:3 (single-error correcting) 1038:3 (single-error correcting) 107:The American mathematician 2754: 2410:10.1038/s41598-017-11266-1 1770:Cambridge University Press 1258:Polar code (coding theory) 1231:, which is a near-optimal 1088:7 (three-error correcting) 1030:2 (single-error detecting) 895:frequency-selective fading 864:convolutional interleavers 799: 767:, e.g., for the design of 751: 679: 609: 575: 548: 379: 29: 2349:"Explaining Interleaving" 2203:10.1109/JPROC.2007.905132 1959:. ACM. pp. 106–115. 1843:10.1109/WCNC.2014.6952166 1682:Jim Cooke (August 2007). 1356:{\displaystyle 2^{n-1}-1} 1291:Triple modular redundancy 1042:Triple modular redundancy 309:triple modular redundancy 73:over unreliable or noisy 2318:, version 8.8.0, page 14 1527:Maunder, Robert (2016). 1427:Quantum error correction 1322:Cyclic redundancy checks 1166:is of practical interest 1051:perfect Hamming such as 879:3GPP Long Term Evolution 617:Low-density parity-check 527:forward error correction 329:and not at all below it. 65:is a technique used for 55:forward error correction 2484:10.1145/2070562.2070568 2472:"Rateless Spinal Codes" 2444:Information and Control 2295:10.1109/TIT.2007.896870 2190:Proceedings of the IEEE 2067:10.1145/1536414.1536422 2061:. ACM. pp. 39–44. 2024:10.1145/1326554.1326555 1872:3 February 2013 at the 1783:Shannon, C. E. (1948). 1575:Hamming, Richard Wesley 1305:, and the precursor to 1303:erasure correcting code 1243:Nordstrom-Robinson code 1222:, as the archetype for 1194:Latin square based code 1118:Algebraic geometry code 1082:Nordstrom-Robinson code 775:Locally decodable codes 472:Multidimensional parity 334:all-or-nothing tendency 146:soft-decision algorithm 2347:Techie (3 June 2010). 1644:29 August 2017 at the 1633:21 August 2016 at the 1377: 1357: 1282:Repeat-accumulate code 875:permutation polynomial 834:burst error-correction 817:communication channels 812: 780:Locally testable codes 754:Locally decodable code 430:to their block length. 411: 399: 75:communication channels 1975:10.1145/780542.780560 1889:; Viderman, Michael. 1432:Soft-decision decoder 1378: 1358: 1205:Linear Network Coding 1174:McEliece cryptosystem 810: 758:Locally testable code 405: 393: 327:signal-to-noise ratio 172:signal-to-noise ratio 140:in the receiver. The 90:error correcting code 86:error correction code 2717:error correction zoo 1837:. pp. 775–780. 1367: 1328: 1140:Constant-weight code 893:, e.g., to mitigate 830:uniform distribution 539:Levenshtein distance 2401:2017NatSR...711003K 2287:2006cs........1048T 2238:1995TDAPR.122...56D 2226:TDA Progress Report 1724:10.1155/2008/957846 1317:Walsh–Hadamard code 917:decoded incorrectly 802:optical interleaver 489:(SLC) NAND. Denser 448:Reed–Solomon coding 420:convolutional codes 32:optical interleaver 2560:(xxii+762+6 pages) 2379:Scientific Reports 2012:Journal of the ACM 1667:. Spansion. 2011. 1665:(Application note) 1373: 1353: 1224:sparse graph codes 1200:Lexicographic code 1145:Convolutional code 813: 655:10GBase-T Ethernet 628:Robert G. Gallager 412: 408:convolutional code 400: 386:Convolutional code 113:Hamming (7,4) code 67:controlling errors 47:information theory 2619:(x+2+208+4 pages) 2568:. New York, USA: 2547:978-0-444-85193-2 2336:. September 2009. 2197:(11): 2142–2156. 2136:978-0-7923-7868-6 2076:978-1-60558-506-2 1984:978-1-58113-674-6 1852:978-1-4799-3083-8 1376:{\displaystyle n} 1301:, a near-optimal 1265:, a near-optimal 1251:, a near-optimal 1164:Binary Golay code 1109: 1108: 1104:binary Golay code 1093:binary Golay code 1066:Extended Hamming 948:With interleaving 923:With interleaving 744:, respectively). 724:, and is sold by 487:single-level cell 435:Viterbi algorithm 294: 293: 223:Triplet received 131:cellular networks 71:data transmission 43:telecommunication 16:(Redirected from 2745: 2713: 2711: 2709: 2665: 2642: 2618: 2583: 2559: 2508: 2507: 2495: 2478:. pp. 1–6. 2467: 2461: 2460: 2459: 2450:(5–6): 613–616, 2439: 2433: 2432: 2422: 2412: 2394: 2370: 2364: 2363: 2361: 2359: 2344: 2338: 2337: 2325: 2319: 2313: 2307: 2306: 2280: 2271:(6): 2116–2132. 2258: 2252: 2251: 2249: 2221: 2215: 2214: 2184: 2178: 2177: 2165: 2159: 2158: 2147: 2141: 2140: 2118: 2109: 2108: 2102: 2098: 2096: 2088: 2050: 2044: 2043: 2003: 1997: 1996: 1968: 1966:quant-ph/0208062 1948: 1942: 1941: 1939: 1927: 1921: 1920: 1918: 1916: 1901: 1895: 1894: 1883: 1877: 1863: 1857: 1856: 1826: 1820: 1819: 1817: 1789: 1780: 1774: 1773: 1761: 1755: 1754: 1752: 1750: 1735: 1729: 1728: 1726: 1700: 1694: 1693: 1688: 1679: 1673: 1672: 1666: 1658: 1649: 1625: 1619: 1618: 1608: 1571: 1562: 1561: 1539: 1533: 1532: 1524: 1515: 1514: 1509: 1507: 1502:on 14 March 2012 1483: 1477: 1476: 1474: 1472: 1467:on 14 March 2012 1448: 1382: 1380: 1379: 1374: 1362: 1360: 1359: 1354: 1346: 1345: 1287:Repetition codes 1277:Reed–Muller code 1218:, also known as 1184:Hagelbarger code 1019: 742:Mobile Broadband 734:Broadband Access 726:Verizon Wireless 710:Verizon Wireless 621:channel capacity 531:Hamming distance 491:multi-level cell 460:hard disk drives 220: 21: 2753: 2752: 2748: 2747: 2746: 2744: 2743: 2742: 2728: 2727: 2707: 2705: 2700: 2697: 2662: 2645: 2639: 2622: 2607: 2586: 2580: 2563: 2548: 2520: 2517: 2515:Further reading 2512: 2511: 2504: 2469: 2468: 2464: 2441: 2440: 2436: 2372: 2371: 2367: 2357: 2355: 2346: 2345: 2341: 2327: 2326: 2322: 2314: 2310: 2260: 2259: 2255: 2247:10.1.1.105.6640 2223: 2222: 2218: 2186: 2185: 2181: 2167: 2166: 2162: 2149: 2148: 2144: 2137: 2127:Springer Verlag 2120: 2119: 2112: 2099: 2089: 2077: 2052: 2051: 2047: 2005: 2004: 2000: 1985: 1950: 1949: 1945: 1929: 1928: 1924: 1914: 1912: 1910:Quanta Magazine 1903: 1902: 1898: 1885: 1884: 1880: 1874:Wayback Machine 1864: 1860: 1853: 1828: 1827: 1823: 1787: 1782: 1781: 1777: 1763: 1762: 1758: 1748: 1746: 1737: 1736: 1732: 1702: 1701: 1697: 1686: 1681: 1680: 1676: 1664: 1660: 1659: 1652: 1646:Wayback Machine 1635:Wayback Machine 1626: 1622: 1573: 1572: 1565: 1558: 1541: 1540: 1536: 1526: 1525: 1518: 1505: 1503: 1485: 1484: 1480: 1470: 1468: 1450: 1449: 1445: 1440: 1393: 1365: 1364: 1331: 1326: 1325: 1162:, of which the 1017: 976: 963: 955: 942: 930: 912: 903: 805: 798: 760: 752:Main articles: 750: 684: 678: 614: 608: 580: 574: 553: 547: 428:polynomial time 388: 380:Main articles: 378: 318: 266:1 (error-free) 234:0 (error-free) 226:Interpreted as 215:repetition code 193: 164:computer memory 142:Viterbi decoder 109:Richard Hamming 102:reverse channel 35: 28: 23: 22: 15: 12: 11: 5: 2751: 2749: 2741: 2740: 2730: 2729: 2726: 2725: 2720: 2714: 2696: 2695:External links 2693: 2692: 2691: 2684: 2678: 2672: 2666: 2660: 2643: 2637: 2620: 2605: 2584: 2578: 2561: 2546: 2516: 2513: 2510: 2509: 2502: 2462: 2434: 2365: 2353:W3 Techie Blog 2339: 2320: 2316:3GPP TS 36.212 2308: 2253: 2216: 2179: 2160: 2142: 2135: 2110: 2101:|journal= 2075: 2045: 1998: 1983: 1943: 1922: 1896: 1878: 1867:"802.11n-2009" 1858: 1851: 1821: 1775: 1756: 1730: 1695: 1689:. p. 28. 1674: 1650: 1620: 1563: 1556: 1534: 1516: 1478: 1442: 1441: 1439: 1436: 1435: 1434: 1429: 1424: 1419: 1414: 1409: 1404: 1399: 1392: 1389: 1388: 1387: 1372: 1352: 1349: 1344: 1341: 1338: 1334: 1319: 1314: 1309: 1307:Fountain codes 1296: 1293: 1284: 1279: 1274: 1269: 1260: 1255: 1246: 1240: 1235: 1226: 1213: 1208: 1202: 1197: 1191: 1186: 1181: 1176: 1172:, used in the 1167: 1157: 1152: 1150:Expander codes 1147: 1142: 1137: 1132: 1126: 1120: 1115: 1107: 1106: 1100: 1096: 1095: 1089: 1085: 1084: 1079: 1075: 1074: 1072: 1068: 1067: 1064: 1056: 1055: 1049: 1045: 1044: 1039: 1035: 1034: 1031: 1027: 1026: 1023: 1016: 1013: 1012: 1011: 1005: 999: 975: 972: 968:neural network 962: 959: 952: 940: 927: 910: 902: 899: 883: 882: 871: 868: 865: 862: 797: 794: 790:subexponential 749: 746: 680:Main article: 677: 674: 670:fountain codes 657:(802.3an) and 610:Main article: 607: 604: 576:Main article: 573: 570: 546: 543: 535:bit error rate 444: 443: 431: 377: 374: 358:bit error rate 350: 349: 345: 330: 317: 314: 305: 304: 301: 292: 291: 288: 284: 283: 280: 276: 275: 272: 268: 267: 264: 260: 259: 256: 252: 251: 248: 244: 243: 240: 236: 235: 232: 228: 227: 224: 208:non-systematic 192: 189: 180:Claude Shannon 150:bit-error rate 63:channel coding 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2750: 2739: 2736: 2735: 2733: 2724: 2721: 2718: 2715: 2704: 2699: 2698: 2694: 2689: 2685: 2682: 2679: 2676: 2673: 2670: 2667: 2663: 2661:0-13-210071-1 2657: 2653: 2652:Prentice-Hall 2649: 2644: 2640: 2638:0-13-200809-2 2634: 2630: 2629:Prentice-Hall 2626: 2621: 2616: 2612: 2608: 2606:0-262-01098-4 2602: 2598: 2594: 2590: 2585: 2581: 2579:0-306-40615-2 2575: 2571: 2567: 2562: 2557: 2553: 2549: 2543: 2539: 2535: 2534:North-Holland 2531: 2527: 2523: 2519: 2518: 2514: 2505: 2503:9781450310598 2499: 2494: 2489: 2485: 2481: 2477: 2473: 2466: 2463: 2458: 2453: 2449: 2445: 2438: 2435: 2430: 2426: 2421: 2416: 2411: 2406: 2402: 2398: 2393: 2388: 2384: 2380: 2376: 2369: 2366: 2354: 2350: 2343: 2340: 2335: 2331: 2324: 2321: 2317: 2312: 2309: 2304: 2300: 2296: 2292: 2288: 2284: 2279: 2274: 2270: 2266: 2265: 2257: 2254: 2248: 2243: 2239: 2235: 2231: 2227: 2220: 2217: 2212: 2208: 2204: 2200: 2196: 2192: 2191: 2183: 2180: 2176:. April 2009. 2175: 2171: 2164: 2161: 2156: 2152: 2151:Luby, Michael 2146: 2143: 2138: 2132: 2128: 2124: 2117: 2115: 2111: 2106: 2094: 2086: 2082: 2078: 2072: 2068: 2064: 2060: 2056: 2049: 2046: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2002: 1999: 1994: 1990: 1986: 1980: 1976: 1972: 1967: 1962: 1958: 1954: 1947: 1944: 1938: 1933: 1926: 1923: 1911: 1907: 1900: 1897: 1892: 1888: 1887:Kaufman, Tali 1882: 1879: 1875: 1871: 1868: 1862: 1859: 1854: 1848: 1844: 1840: 1836: 1832: 1825: 1822: 1816: 1811: 1807: 1803: 1799: 1795: 1794: 1786: 1779: 1776: 1771: 1767: 1760: 1757: 1745: 1741: 1734: 1731: 1725: 1720: 1716: 1712: 1711: 1706: 1699: 1696: 1692: 1685: 1678: 1675: 1671: 1663: 1657: 1655: 1651: 1647: 1643: 1640: 1636: 1632: 1629: 1624: 1621: 1616: 1612: 1607: 1602: 1598: 1594: 1590: 1586: 1582: 1581: 1576: 1570: 1568: 1564: 1559: 1557:0-927239-00-0 1553: 1549: 1545: 1538: 1535: 1530: 1523: 1521: 1517: 1513: 1501: 1497: 1493: 1489: 1482: 1479: 1466: 1462: 1458: 1454: 1447: 1444: 1437: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1407:Erasure codes 1405: 1403: 1400: 1398: 1395: 1394: 1390: 1386: 1370: 1350: 1347: 1342: 1339: 1336: 1332: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1304: 1300: 1297: 1294: 1292: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1264: 1261: 1259: 1256: 1254: 1250: 1247: 1244: 1241: 1239: 1236: 1234: 1230: 1227: 1225: 1221: 1220:Gallager code 1217: 1214: 1212: 1209: 1206: 1203: 1201: 1198: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1179:Hadamard code 1177: 1175: 1171: 1168: 1165: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1130: 1127: 1124: 1121: 1119: 1116: 1114: 1111: 1110: 1105: 1101: 1098: 1097: 1094: 1090: 1087: 1086: 1083: 1080: 1077: 1076: 1073: 1070: 1069: 1065: 1062: 1058: 1057: 1054: 1050: 1047: 1046: 1043: 1040: 1037: 1036: 1032: 1029: 1028: 1024: 1021: 1020: 1014: 1009: 1006: 1003: 1000: 997: 994: 993: 992: 989: 986: 982: 973: 971: 969: 960: 958: 951: 949: 945: 939: 937: 933: 926: 924: 920: 918: 909: 907: 900: 898: 896: 892: 888: 880: 876: 872: 869: 866: 863: 860: 859: 858: 855: 853: 848: 846: 842: 837: 835: 831: 826: 822: 818: 809: 803: 795: 793: 791: 786: 783: 781: 776: 772: 770: 766: 759: 755: 747: 745: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 698: 696: 692: 691:Shannon limit 688: 683: 675: 673: 671: 667: 664: 660: 656: 652: 648: 644: 640: 635: 633: 629: 624: 622: 618: 613: 605: 603: 601: 597: 593: 588: 585: 579: 571: 569: 565: 561: 557: 552: 544: 542: 540: 536: 532: 528: 523: 521: 516: 514: 513:finite fields 509: 507: 503: 502:soft-decision 499: 498:hard-decision 494: 492: 488: 484: 479: 477: 476:Hamming codes 473: 469: 465: 461: 457: 453: 452:compact discs 449: 440: 439:exponentially 436: 432: 429: 425: 424: 423: 421: 417: 409: 406:A continuous 404: 397: 392: 387: 383: 375: 373: 371: 367: 363: 359: 355: 346: 343: 342:Shannon limit 339: 335: 331: 328: 324: 323: 322: 315: 313: 310: 302: 299: 298: 297: 289: 286: 285: 281: 278: 277: 273: 270: 269: 265: 262: 261: 257: 254: 253: 249: 246: 245: 241: 238: 237: 233: 230: 229: 225: 222: 221: 218: 216: 211: 209: 205: 204: 198: 190: 188: 186: 181: 177: 173: 167: 165: 162: 158: 153: 151: 147: 144:implements a 143: 139: 134: 132: 128: 123: 121: 116: 114: 110: 105: 103: 99: 98:detect errors 95: 91: 87: 83: 78: 76: 72: 68: 64: 60: 56: 52: 51:coding theory 48: 44: 40: 33: 19: 2706:. Retrieved 2647: 2624: 2588: 2570:Plenum Press 2565: 2529: 2493:1721.1/79676 2475: 2465: 2447: 2443: 2437: 2385:(1): 11003. 2382: 2378: 2368: 2356:. Retrieved 2352: 2342: 2329: 2323: 2311: 2268: 2262: 2256: 2229: 2225: 2219: 2194: 2188: 2182: 2169: 2163: 2154: 2145: 2122: 2058: 2048: 2015: 2011: 2001: 1956: 1946: 1925: 1913:. Retrieved 1909: 1899: 1881: 1861: 1834: 1824: 1797: 1791: 1778: 1765: 1759: 1747:. Retrieved 1743: 1733: 1714: 1708: 1698: 1690: 1677: 1668: 1623: 1584: 1578: 1548:Cirrus Logic 1543: 1537: 1511: 1504:. Retrieved 1500:the original 1495: 1491: 1481: 1469:. Retrieved 1465:the original 1460: 1456: 1446: 1299:Tornado code 1238:m of n codes 1189:Hamming code 1053:Hamming(7,4) 990: 977: 970:structures. 964: 956: 947: 946: 943: 935: 934: 931: 922: 921: 913: 905: 904: 884: 856: 852:factor graph 849: 838: 814: 796:Interleaving 787: 784: 773: 761: 741: 738:Power Vision 737: 733: 708:and sold by 699: 693:. Predating 687:Turbo coding 685: 651:IEEE 802.11n 647:IEEE 802.16e 636: 632:Reed–Solomon 625: 615: 589: 584:concatenated 583: 581: 566: 562: 558: 554: 524: 517: 510: 501: 497: 495: 480: 445: 413: 396:Hamming code 354:channel code 351: 338:cliff effect 333: 319: 306: 295: 212: 207: 201: 194: 168: 157:mass storage 154: 135: 124: 117: 106: 93: 89: 85: 79: 62: 58: 54: 36: 2538:Elsevier BV 2018:(1): 1–16. 1749:20 December 1606:10945/46756 1591:: 147–160. 1422:Linear code 1263:Raptor code 1249:Online code 1160:Golay codes 1155:Group codes 1135:Berger code 1129:Barker code 841:turbo codes 702:CDMA2000 1x 676:Turbo codes 659:G.hn/G.9960 416:block codes 18:Interleaver 2677:2004-11-29 2671:2007-02-16 2392:1705.09334 2332:(V1.1.1). 2330:En 302 755 2278:cs/0601048 2232:: 42–122. 2172:(V1.2.1). 2170:En 302 307 1937:2311.00558 1587:(2). USA: 1438:References 1312:Turbo code 1289:, such as 1170:Goppa code 1099:8 (TECFED) 845:LDPC codes 695:LDPC codes 682:Turbo code 549:See also: 520:LDPC codes 483:NAND flash 382:Block code 203:systematic 197:redundancy 185:polar code 2593:MIT Press 2242:CiteSeerX 2103:ignored ( 2093:cite book 2085:263865692 2032:0004-5411 1915:9 January 1492:Crosslink 1457:Crosslink 1402:Code rate 1348:− 1340:− 1211:Long code 1102:extended 891:diversity 885:In multi- 825:code word 792:lengths. 592:Voyager 2 120:multicast 82:redundant 39:computing 2732:Category 2615:87-21889 2556:76-41296 2429:28887480 2040:14617710 1993:10585919 1870:Archived 1717:: 1–12. 1642:Archived 1631:Archived 1615:61141773 1589:AT&T 1391:See also 1123:BCH code 1113:AN codes 1091:perfect 1022:Distance 722:Qualcomm 706:Qualcomm 2708:5 March 2420:5591216 2397:Bibcode 2283:Bibcode 2234:Bibcode 2211:9289140 1506:5 March 1471:5 March 1229:LT code 1033:Parity 1008:OpenAir 901:Example 887:carrier 718:1xEV-DO 600:Galileo 129:and in 2658:  2635:  2613:  2603:  2576:  2554:  2544:  2500:  2427:  2417:  2358:3 June 2301:  2244:  2209:  2133:  2083:  2073:  2038:  2030:  1991:  1981:  1849:  1744:USENIX 1670:flash. 1613:  1554:  1383:, see 1061:SECDED 996:AFF3CT 821:bursts 730:Sprint 714:Sprint 639:DVB-S2 598:. The 596:Uranus 474:, and 458:, and 336:– the 191:Method 174:. The 127:modems 49:, and 2387:arXiv 2299:S2CID 2273:arXiv 2207:S2CID 2081:S2CID 2036:S2CID 1989:S2CID 1961:arXiv 1932:arXiv 1788:(PDF) 1687:(PDF) 1611:S2CID 1025:Code 983:in a 668:(see 643:WiMAX 525:Most 464:Golay 376:Types 348:data. 332:This 61:) or 2710:2006 2656:ISBN 2633:ISBN 2611:LCCN 2601:ISBN 2574:ISBN 2552:LCCN 2542:ISBN 2498:ISBN 2425:PMID 2360:2010 2334:ETSI 2174:ETSI 2131:ISBN 2105:help 2071:ISBN 2028:ISSN 1979:ISBN 1917:2024 1847:ISBN 1772:, UK 1751:2018 1715:2008 1552:ISBN 1508:2006 1473:2006 1002:IT++ 843:and 756:and 740:and 666:MBMS 663:3GPP 506:BCJR 456:DVDs 418:and 384:and 287:011 279:101 271:110 263:111 255:100 247:010 239:001 231:000 2488:hdl 2480:doi 2452:doi 2415:PMC 2405:doi 2303:660 2291:doi 2230:122 2199:doi 2063:doi 2020:doi 1971:doi 1839:doi 1810:hdl 1802:doi 1719:doi 1601:hdl 1593:doi 1059:4 ( 672:). 653:), 468:BCH 366:ARQ 178:of 161:ECC 94:ECC 88:or 69:in 59:FEC 37:In 2734:: 2654:. 2631:. 2609:. 2599:. 2591:. 2572:. 2550:. 2540:. 2536:/ 2524:; 2496:. 2486:. 2474:. 2448:11 2446:, 2423:. 2413:. 2403:. 2395:. 2381:. 2377:. 2351:. 2297:. 2289:. 2281:. 2269:53 2267:. 2240:. 2228:. 2205:. 2195:95 2193:. 2129:. 2125:. 2113:^ 2097:: 2095:}} 2091:{{ 2079:. 2069:. 2057:. 2034:. 2026:. 2016:55 2014:. 2010:. 1987:. 1977:. 1969:. 1955:. 1908:. 1845:. 1833:. 1808:. 1798:27 1796:. 1790:. 1768:, 1742:. 1713:. 1707:. 1653:^ 1609:. 1599:. 1585:29 1583:. 1566:^ 1550:. 1519:^ 1510:. 1494:. 1490:. 1459:. 1455:. 950:: 938:: 925:: 919:. 908:: 836:. 771:. 728:, 712:, 478:. 470:, 466:, 454:, 422:. 290:1 282:1 274:1 258:0 250:0 242:0 210:. 133:. 122:. 115:. 77:. 53:, 45:, 41:, 2712:. 2664:. 2641:. 2617:. 2582:. 2558:. 2506:. 2490:: 2482:: 2454:: 2431:. 2407:: 2399:: 2389:: 2383:7 2362:. 2305:. 2293:: 2285:: 2275:: 2250:. 2236:: 2213:. 2201:: 2157:. 2139:. 2107:) 2087:. 2065:: 2042:. 2022:: 1995:. 1973:: 1963:: 1940:. 1934:: 1919:. 1893:. 1855:. 1841:: 1818:. 1812:: 1804:: 1753:. 1727:. 1721:: 1617:. 1603:: 1595:: 1560:. 1531:. 1496:3 1475:. 1461:3 1371:n 1351:1 1343:1 1337:n 1333:2 1063:) 804:. 645:( 344:. 92:( 57:( 34:. 20:)

Index

Interleaver
optical interleaver
computing
telecommunication
information theory
coding theory
controlling errors
data transmission
communication channels
redundant
detect errors
reverse channel
Richard Hamming
Hamming (7,4) code
multicast
modems
cellular networks
analog-to-digital conversion
Viterbi decoder
soft-decision algorithm
bit-error rate
mass storage
ECC
computer memory
signal-to-noise ratio
noisy-channel coding theorem
Claude Shannon
polar code
redundancy
systematic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑