Knowledge (XXG)

Intraplate volcanism

Source đź“ť

1507: 1552:
Accelerated motion on nearby normal faults, which indicates extension in the Basin and Range province, migrates east coincidentally with migration of the silicic volcanism. This is corroborated by measurements of recent deformation from GPS surveying, which finds the most intense zones of extension in the Basin and Range province in the far east and far west and little extension in the central 500 km. The Yellowstone-Eastern Snake River Plain zone, therefore, likely reflects a locus of extension that has migrated from west to east. This is further supported by analogous extension-driven silicic magmatism elsewhere in the Western United States, for example in the
1617:
indicating that the availability of melt increases with the thickness of the lithosphere. This suggests that decompression melting may contribute, as this, too, is expected to increase with lithospheric thickness. The significant increase in magmatism during the last 2 million years indicates a major increase in melt availability, implying that either a larger reservoir of pre-existing melt or an exceptionally fusible source region has become available. Petrological and geochemical evidence suggests that this source may be old metamorphosed oceanic crust in the asthenosphere, highly fusible material which would produce far greater magma volumes than mantle rocks.
1694: 1099:, to pursue other explanations for volcanic activity not easily accounted for by plate tectonics. Rather than introducing another extraneous theory, these explanations essentially expand the scope of plate tectonics in ways that can accommodate volcanic activity previously thought to be outside its remit. The key modification to the basic plate-tectonic model here is a relaxation of the assumption that plates are rigid. This implies that lithospheric extension occurs not only at spreading plate boundaries but throughout plate interiors, a phenomenon that is well supported both theoretically and empirically. 590:
it having a lower melting point), or being richer in Fe, also has a lower seismic wave speed and those effects are stronger than temperature. Thus, although unusually low wave speeds have been taken to indicate anomalously hot mantle beneath "hot spots", this interpretation is ambiguous. The most commonly cited seismic wave-speed images that are used to look for variations in regions where plumes have been proposed come from seismic tomography. This method involves using a network of seismometers to construct three-dimensional images of the variation in seismic wave speed throughout the mantle.
1417: 1375:
magmatism. The same process can also produce small-volume magmatism on or near slowly extending continental rifts. Beneath continents, the lithosphere is up to 200 km thick. If lithosphere this thick undergoes severe and persistent extension, it can rupture, and the asthenosphere can upwell to the surface, producing tens of millions of cubic kilometres of melt along axes hundreds of kilometres long. This occurred, for example, during the opening of the North Atlantic Ocean when the asthenosphere rose from base of the
788:
Hawaii is a large volcanic edifice in the center of the Pacific Ocean, far from any plate boundaries. Its regular, time-progressive chain of islands and seamounts superficially fits the plume theory well. However, it is almost unique on Earth, as nothing as extreme exists anywhere else. The second strongest candidate for a plume location is often quoted to be Iceland, but according to opponents of the plume hypothesis its massive nature can be explained by plate tectonic forces along the mid-Atlantic spreading center.
1486:
Iceland is the result of persistent extension of continental crust which was structurally resistant to continued propagation of the new oceanic ridges. As a result, continental extension continued for an exceptionally long period and has not yet given way to true ocean spreading. Melt production is similar to the adjacent mid-ocean ridges which produces oceanic crust around 10 km thick, though under Iceland, rather than forming oceanic crust, melt is emplaced into and on top of stretched continental crust.
1613:
Extension originated at a spreading ridge around 80 Ma. The plate's stress field evolved over the next 30 million years, causing the region of extension and consequent volcanism to migrate south-southeast. Around 50 Ma, the stress field stabilised and the region of extension became almost stationary. At the same time, the north-westerly motion of the Pacific Plate increased, and over the next 50 million years, the Hawaiian chain formed as the plate moved across a near-stationary region of extension.
344: 690:. Oceanic crust (and to a lesser extent, the underlying mantle) typically becomes hydrated to varying degrees on the seafloor, partly as the result of seafloor weathering, and partly in response to hydrothermal circulation near the mid-ocean-ridge crest where it was originally formed. As oceanic crust and underlying lithosphere subduct, water is released by dehydration reactions, along with water-soluble elements and trace elements. This enriched fluid rises to 714:
material. This must have been recycled in the mantle, then re-melted and incorporated in the lavas erupted. In the context of the plume hypothesis, subducted slabs are postulated to have been subducted down as far as the core-mantle boundary, and transported back up to the surface in rising plumes. In the plate hypothesis, the slabs are postulated to have been recycled at shallower depths – in the upper few hundred kilometers that make up the
888: 562: 1585:, so age variations in the lithosphere are difficult to determine with accuracy. Reconstructing the tectonic history of the Pacific Ocean more generally is problematic because earlier plates and plate boundaries, including the spreading ridge where the Emperor chain began, have been subducted. Because of these issues, geoscientists are yet to produce a fully developed theory of the system's origins which can be positively tested. 106: 845: 1523:. The belt, however, is covered with basaltic lavas that display no time progression. Being located on a continental interior, it has been studied extensively, though research has consisted largely of seismology and geochemistry aimed at locating sources deep in the mantle. These methods are not suitable for developing a plate theory, which holds that volcanism is associated with processes at shallow depths. 1708: 323: 400: 1564:
extension can be found in northwest-oriented dike-fed rift zones responsible for basalt flows. Analogy with similar volcanic activity in Iceland and on mid-ocean ridges indicates that periods of extension are brief and thus that basaltic volcanism along the Yellowstone-Eastern Snake River Plain zone occurs in short bursts of activity in between long inactive periods.
780: 22: 356:
creates diverging trends, termed mantle components. Identified mantle components are DMM (depleted mid-ocean ridge basalt (MORB) mantle), HIMU (high U/Pb-ratio mantle), EM1 (enriched mantle 1), EM2 (enriched mantle 2) and FOZO (focus zone). This geochemical signature arises from the mixing of near-surface materials such as subducted
730:, requiring the equivalent of 3 million hours of supercomputer time. Due to computational limitations, high-frequency data still could not be used, and seismic data remained unavailable from much of the seafloor. Nonetheless, vertical plumes, 400 C hotter than the surrounding rock, were visualized under many hotspots, including the 245:
a mushroom. The bulbous head of thermal plumes forms because hot material moves upward through the conduit faster than the plume itself rises through its surroundings. In the late 1980s and early 1990s, experiments with thermal models showed that as the bulbous head expands it may entrain some of the adjacent mantle into the head.
412:
relative to one another. This required that plumes were sourced from beneath the shallow asthenosphere that is thought to be flowing rapidly in response to motion of the overlying tectonic plates. There is no other known major thermal boundary layer in the deep Earth, and so the core-mantle boundary was the only candidate.
1420:
Regional map of the North East Atlantic. Bathymetry shown in colour; land topography in grey. RR: Reykjanes Ridge; KR: Kolbeinsey Ridge; JMMC: Jan Mayen Microcontinent; AR: Aegir Ridge; FI: Faroe Islands. Red lines: boundaries of the Caledonian orogen and associated thrusts, dashed where extrapolated
589:
Seismic anomalies are identified by mapping variations in wave speed as seismic waves travel through Earth. A hot mantle plume is predicted to have lower seismic wave speeds compared with similar material at a lower temperature. Mantle material containing a trace of partial melt (e.g., as a result of
305:
and breakup. This has led to the hypothesis that mantle plumes contribute to continental rifting and the formation of ocean basins. In the context of the alternative "Plate model", continental breakup is a process integral to plate tectonics, and massive volcanism occurs as a natural consequence when
244:
for the much larger postulated mantle plumes. Based on these experiments, mantle plumes are now postulated to comprise two parts: a long thin conduit connecting the top of the plume to its base, and a bulbous head that expands in size as the plume rises. The entire structure is considered to resemble
1596:
The increasing volume of melt. Over the last 50 million years, the rate of melt production has increased from a mere 0.001 km per year to 0.25 km per year, a factor of around 250. The current rate of magmatism responsible for the formation of the Big Island has been in operation for only 2
1572:
The Hawaii-Emperor volcanic system is notoriously difficult to study. It is thousands of kilometres from any major continental landmass and surrounded by deep ocean, very little of it is above sea level, and it is covered in thick basalt which obscures its deeper structure. It is situated within the
1208:
Continental breakup begins with rifting. When extension is persistent and entirely compensated by magma from asthenospheric upwelling, oceanic crust is formed, and the rift becomes a spreading plate boundary. If extension is isolated and ephemeral it is classified as intraplate. Rifting can occur in
1087:
data used to provide additional constraints on source temperatures are highly ambiguous. In addition to this, several predictions of the plume theory have proved unsuccessful at many locations purported to be underlain by mantle plumes, and there are also significant theoretical reasons to doubt the
770:
The unexpected size of the plumes leaves open the possibility that they may conduct the bulk of the Earth's 44 terawatts of internal heat flow from the core to the surface, and means that the lower mantle convects less than expected, if at all. It is possible that there is a compositional difference
1551:
The volcanoes’ silicic composition indicates a lower crustal source. If volcanism resulted from lithospheric extension, then extension along the Yellowstone-Eastern Snake River Plain zone must have migrated from west to east during the last 17 million years. There is evidence that this is the case.
1485:
Properties of the crust beneath the Greenland-Iceland-Faroe Ridge. Here the crust is mostly 30–40 km thick. Its combination of low seismic wave speed and high density defy classification as thick oceanic crust and indicate instead that it is magma-inflated continental crust. This suggests that
1350:
The rate of magma formation from decompression of the asthenosphere depends on how high the asthenosphere can rise, which in turn depends on the thickness of the lithosphere. From numerical modelling it is evident that the formation of melt in the largest flood basalts cannot be concurrent with its
1070:
theory, became the dominant explanation for apparent volcanic anomalies for the remainder of the 20th century. Testing the hypothesis, however, is beset with difficulties. A central tenet of the plume theory is that the source of melt is significantly hotter than the surrounding mantle, so the most
926:
Lithospheric extension is attributed to processes related to plate tectonics. These processes are well understood at mid-ocean ridges, where most of Earth's volcanism occurs. It is less commonly recognised that the plates themselves deform internally, and can permit volcanism in those regions where
632:" is also similar to basalts found throughout the oceans on both small and large seamounts (thought to be formed by eruptions on the sea floor that did not rise above the surface of the ocean). They are also compositionally similar to some basalts found in the interiors of the continents (e.g., the 607:
The mantle plume hypothesis predicts that domal topographic uplifts will develop when plume heads impinge on the base of the lithosphere. An uplift of this kind occurred when the north Atlantic Ocean opened about 54 million years ago. Some scientists have linked this to a mantle plume postulated to
503:
Many postulated "hot spots" are also lacking time-progressive volcanic trails, e.g., Iceland, the Galapagos, and the Azores. Mismatches between the predictions of the hypothesis and observations are commonly explained by auxiliary processes such as "mantle wind", "ridge capture", "ridge escape" and
499:
An intrinsic aspect of the plume hypothesis is that the "hot spots" and their volcanic trails have been fixed relative to one another throughout geological time. Whereas there is evidence that the chains listed above are time-progressive, it has, however, been shown that they are not fixed relative
383:
The source of mantle plumes is postulated to be the core-mantle boundary at 3,000  km depth. Because there is little material transport across the core-mantle boundary, heat transfer must occur by conduction, with adiabatic gradients above and below this boundary. The core-mantle boundary is a
367:
The processing of oceanic crust, lithosphere, and sediment through a subduction zone decouples the water-soluble trace elements (e.g., K, Rb, Th) from the immobile trace elements (e.g., Ti, Nb, Ta), concentrating the immobile elements in the oceanic slab (the water-soluble elements are added to the
1334:
There is abundant pre-existing melt throughout both the crust and the mantle. In the crust, melt is stored under active volcanoes in shallow reservoirs which are fed by deeper ones. In the asthenosphere, a small amount of partial melt is thought to provide a weak layer that acts as lubrication for
1330:
The volume of magma that is intruded and/or erupted in a given area of lithospheric extension depends on two variables: (1) the availability of pre-existing melt in the crust and mantle; and (2) the amount of additional melt supplied by decompression upwelling. The latter depends on three factors:
922:
suggests that "anomalous" volcanism results from lithospheric extension that permits melt to rise passively from the asthenosphere beneath. It is thus the conceptual inverse of the plume hypothesis because the plate hypothesis attributes volcanism to shallow, near-surface processes associated with
585:
The plume hypothesis has been tested by looking for the geophysical anomalies predicted to be associated with them. These include thermal, seismic, and elevation anomalies. Thermal anomalies are inherent in the term "hotspot". They can be measured in numerous different ways, including surface heat
1510:
Geological map of northwest USA showing Basin and Range faults and basalts and rhyolites <17 Ma. Blue lines represent approximate age contours of silicic volcanic centres across the Eastern Snake River Plain and a contemporaneous trend of oppositely propagating silicic volcanism across central
1449:
began to break up. To the north of Iceland's present location, the breakup axis propagated south along the Caledonian Suture. To the south, the breakup axis propagated north. The two axes were separated by around 100 km from east to west and 300 km from north to south. When the two axes
355:
The chemical and isotopic composition of basalts found at hotspots differs subtly from mid-ocean-ridge basalts. These basalts, also called ocean island basalts (OIBs), are analysed in their radiogenic and stable isotope compositions. In radiogenic isotope systems the originally subducted material
292:
The narrow vertical pipe, or conduit, postulated to connect the plume head to the core-mantle boundary, is viewed as providing a continuous supply of magma to a fixed location, often referred to as a "hotspot". As the overlying tectonic plate (lithosphere) moves over this hotspot, the eruption of
1616:
The increasing rate of volcanic activity in the Hawaiian-Emperor system reflects the availability of melt in the crust and mantle. The oldest volcanoes in the Emperor chain formed on young, and therefore thin, oceanic lithosphere. The size of the seamounts increases with the age of the seafloor,
537:
Unusually high He/He have been observed in some, but not all, "hot spots". In mantle plume theory, this is explained by plumes tapping a deep, primordial reservoir in the lower mantle, where the original, high He/He ratios have been preserved throughout geologic time. In the context of the Plate
430:
under Africa and under the central Pacific. It is postulated that plumes rise from their surface or their edges. Their low seismic velocities were thought to suggest that they are relatively hot, although it has recently been shown that their low wave velocities are due to high density caused by
256:
When a plume head encounters the base of the lithosphere, it is expected to flatten out against this barrier and to undergo widespread decompression melting to form large volumes of basalt magma. It may then erupt onto the surface. Numerical modelling predicts that melting and eruption will take
1603:
Continuity of the Hawaiian chain with the Emperor chain via a 60° “bend”. The latter formed over a 30-million-year period during which the volcanic centre migrated south-southeast. Migration ceased at the beginning of the Hawaiian chain. The 60° bend cannot be accounted for by a change in plate
1374:
If extension is severe and results in significant thinning of the lithosphere, the asthenosphere can rise to shallow depths, inducing decompression melting and producing larger volumes of melt. At mid-ocean ridges, where the lithosphere is thin, decompression upwelling produces a modest rate of
787:
Many different localities have been suggested to be underlain by mantle plumes, and scientists cannot agree on a definitive list. Some scientists suggest that several tens of plumes exist, whereas others suggest that there are none. The theory was really inspired by the Hawaiian volcano system.
762:
hotspots. They extended nearly vertically from the core-mantle boundary (2900 km depth) to a possible layer of shearing and bending at 1000 km. They were detectable because they were 600–800 km wide, more than three times the width expected from contemporary models. Many of these
713:
Ocean island basalts are also relatively enriched in immobile elements relative to the water-mobile elements. This, and other observations, have been interpreted as indicating that the distinct geochemical signature of ocean island basalts results from inclusion of a component of subducted slab
938:
While not denying the presence of deep mantle convection and upwelling in general, the plate hypothesis holds that these processes do not result in mantle plumes, in the sense of columnar vertical features that span most of the Earth's mantle, transport large amounts of heat, and contribute to
411:
The most prominent thermal contrast known to exist in the deep (1000 km) mantle is at the core-mantle boundary at 2900 km. Mantle plumes were originally postulated to rise from this layer because the "hot spots" that are assumed to be their surface expression were thought to be fixed
360:
and continental sediments, in the mantle source. There are two competing interpretations for this. In the context of mantle plumes, the near-surface material is postulated to have been transported down to the core-mantle boundary by subducting slabs, and to have been transported back up to the
1612:
indicates that the volcanoes are local thermal features. According to the plate theory, the Hawaiian-Emperor system formed at a region of extension in the Pacific Plate. Extension in the plate is a consequence of deformation at plate boundaries, thermal contraction, and isostatic adjustment.
1563:
That persistent basaltic volcanism results from simultaneous extension along the entire length of the Yellowstone-Eastern Snake River Plain zone is evident in GPS measurements recorded between 1987 and 2003, which record extension to both the north and south of the zone. Evidence of historic
248:
The sizes and occurrence of mushroom mantle plumes can be predicted easily by transient instability theory developed by Tan and Thorpe. The theory predicts mushroom shaped mantle plumes with heads of about 2000 km diameter that have a critical time of about 830 Myr for a core mantle
869:. The global distribution of volcanic activity at a given time reflects the contemporaneous lithospheric stress field, and changes in the spatial and temporal distribution of volcanoes reflect changes in the stress field. The main factors governing the evolution of the stress field are: 586:
flow, petrology, and seismology. Thermal anomalies produce anomalies in the speeds of seismic waves, but unfortunately so do composition and partial melt. As a result, wave speeds cannot be used simply and directly to measure temperature, but more sophisticated approaches must be taken.
467:
has been explained as a result of a fixed, deep-mantle plume rising into the upper mantle, partly melting, and causing a volcanic chain to form as the plate moves overhead relative to the fixed plume source. Other "hot spots" with time-progressive volcanic chains behind them include
4455:
Foulger, G.R.; Doré, T.; Emeleus, C.H.; Franke, D.; Geoffroy, L.; Gernigon, L.; Hey, R.; Holdsworth, R.E.; Hole, M.; Höskuldsson, A.; Julian, B.; Kusznir, N.; Martinez, F.; McCaffrey, K.J.W.; Natland, J.H.; Peace, A.L.; Petersen, K.; Schiffer, C.; Stephenson, R.; Stoker, M. (2020).
1003:
A major virtue of the plate theory is that it extends plate tectonics into a unifying account of the Earth's volcanism which dispenses with the need to invoke extraneous hypotheses designed to accommodate instances of volcanic activity which appear superficially to be exceptional.
603:
Seismic tomography images have been cited as evidence for a number of mantle plumes in Earth's mantle. There is, however, vigorous on-going discussion regarding whether the structures imaged are reliably resolved, and whether they correspond to columns of hot, rising rock.
206:. In particular, the concept that mantle plumes are fixed relative to one another, and anchored at the core-mantle boundary, would provide a natural explanation for the time-progressive chains of older volcanoes seen extending out from some such hot spots, such as the 831:
of mantle plumes from depth is not universally accepted as explaining all such volcanism. It has required progressive hypothesis-elaboration leading to variant propositions such as mini-plumes and pulsing plumes. Another hypothesis for unusual volcanic regions is the
297:
chain in the Pacific Ocean is the type example. It has recently been discovered that the volcanic locus of this chain has not been fixed over time, and it thus joined the club of the many type examples that do not exhibit the key characteristic originally proposed.
1592:
Hawaii's position in almost the exact geometric centre of the Pacific Plate, that is, at the middle point of a line dividing the western Pacific which is surrounded mainly by subduction zones and the eastern Pacific which is surrounded mainly by spreading
439:
Various lines of evidence have been cited in support of mantle plumes. There is some confusion regarding what constitutes support, as there has been a tendency to re-define the postulated characteristics of mantle plumes after observations have been made.
1543:
that broadened the crust by several kilometres. The Basin and Range province then formed via normal faulting, producing scattered volcanism with especially abundant eruptions in three east–west zones: the Yellowstone-Eastern Snake River Plain,
1134:
Changes in the configuration of plate boundaries. These can result from various processes including the formation or annihilation of plates and boundaries and slab rollback (vertical sinking of subducting slabs causing oceanward migration of
384:
strong thermal (temperature) discontinuity. The temperature of the core is approximately 1,000 degrees Celsius higher than that of the overlying mantle. Plumes are postulated to rise as the base of the mantle becomes hotter and more buoyant.
1425:
Iceland is a 1 km high, 450x300 km basaltic shield on the mid-ocean ridge in the northeast Atlantic Ocean. It comprises over 100 active or extinct volcanoes and has been extensively studied by Earth scientists for several decades.
1012:
Developed during the late 1960s and 1970s, plate tectonics provided an elegant explanation for most of the Earth's volcanic activity. At spreading boundaries where plates move apart, the asthenosphere decompresses and melts to form new
818:
Many continental flood basalt events coincide with continental rifting. This is consistent with a system that tends toward equilibrium: as matter rises in a mantle plume, other material is drawn down into the mantle, causing rifting.
1637:
in Canada are known to have caused melting and volcanism. In the impact hypothesis, it is proposed that some regions of hotspot volcanism can be triggered by certain large-body oceanic impacts which are able to penetrate the thinner
1129:
Global-scale lithospheric extension is a necessary consequence of the non-closure of plate motion circuits and is equivalent to an additional slow-spreading boundary. Extension results principally from the following three processes.
1526:
As with Iceland, volcanism in the Yellowstone-Eastern Snake River Plain region must be understood in its broader tectonic context. The tectonic history of the western United States is heavily influenced by the subduction of the
3620:
El Hachimi, H.; et al. (2011). "Morphology, internal architecture and emplacement mechanisms of lava flows from the Central Atlantic Magmatic Province (CAMP) of Argana Basin (Morocco)". In van Hinsbergen, D. J. J. (ed.).
935:. Under this hypothesis, variable volumes of magma are attributed to variations in chemical composition (large volumes of volcanism corresponding to more easily molten mantle material) rather than to temperature differences. 534:. Over time, helium in the upper atmosphere is lost into space. Thus, the Earth has become progressively depleted in helium, and He is not replaced as He is. As a result, the ratio He/He in the Earth has decreased over time. 538:
hypothesis, the high ratios are explained by preservation of old material in the shallow mantle. Ancient, high He/He ratios would be particularly easily preserved in materials lacking U or Th, so He was not added over time.
840:
from the mantle onto the Earth's surface where extension of the lithosphere permits it, attributing most volcanism to plate tectonic processes, with volcanoes far from plate boundaries resulting from intraplate extension.
1681:
Although there is strong evidence that at least two deep mantle plumes rise to the core-mantle boundary, confirmation that other hypotheses can be dismissed may require similar tomographic evidence for other hot spots.
1387:
The vast majority of volcanic provinces which are thought to be anomalous in the context of rigid plate tectonics have now been explained using the plate theory. The type examples of this kind of volcanic activity are
1650:
opposite major impact sites. Impact-induced volcanism has not been adequately studied and comprises a separate causal category of terrestrial volcanism with implications for the study of hotspots and plate tectonics.
314:, and a punctuated, intermittently dominant, mantle overturn regime driven by plume convection. This second regime, while often discontinuous, is periodically significant in mountain building and continental breakup. 1548:, and St. George volcanic zones. Compared with the others, the Yellowstone-Eastern Snake River Plain zone is considered unusual because of its time-progressive silicic volcano chain and striking geothermal features. 848:
Schematic of the plate theory. Mid-blue: lithosphere; light-blue/green: inhomogeneous upper mantle; yellow: lower mantle; orange/red: core-mantle boundary. Lithospheric extension enables pre-existing melt (red) to
1059:. Because of the perceived fixity of some volcanic sources relative to the plates, he proposed that this thermal boundary was deeper than the convecting upper mantle on which the plates ride and located it at the 1670:, seismological evidence began to converge from 2011 in support of the plume model, as concluded by James et al., "we favor a lower mantle plume as the origin for the Yellowstone hotspot." Data acquired through 1224:. The latter was possibly caused by rollback of the Alpine slab, which generated extension throughout Europe. More severe rifting occurred along the Caledonian Suture, a zone of pre-existing weakness where the 309:
The current mantle plume theory is that material and energy from Earth's interior are exchanged with the surface crust in two distinct modes: the predominant, steady state plate tectonic regime driven by upper
1235:
Some intracontinental rifts are essentially failed continental breakup axes, and some of these form triple junctions with plate boundaries. The East African Rift, for example, forms a triple junction with the
239:
The plume hypothesis was studied using laboratory experiments conducted in small fluid-filled tanks in the early 1970s. Thermal or compositional fluid-dynamical plumes produced in that way were presented as
1477:
around 400 km to the west. In the Reykjanes Ridge to the south, after around 16 million years of spreading perpendicular to the ridge strike, the direction of extension changed, and the ridge became a
5111:
Raymond, C.A.; Stock, J.M.; Cande, S.C. (2000). "Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints". In Richards, M.A.; Gordon, R.G.; van der Hilst, R.D. (eds.).
1465:
Persistence of a subaerial land-bridge from Greenland to the Faroe Islands which was broken up when the northeast Atlantic was around 1,000 km wide, older parts of which now form a shallow submarine
1063:, 3,000 km beneath the surface. He suggested that narrow convection currents rise from fixed points at this thermal boundary and form conduits which transport abnormally hot material to the surface. 612:. Current research has shown that the time-history of the uplift is probably much shorter than predicted, however. It is thus not clear how strongly this observation supports the mantle plume hypothesis. 333:, a possible mechanism for plume formation. In the third and fourth frame in the sequence, the plume forms a "mushroom cap". Note that the core is at the top of the diagram and the crust is at the bottom. 1371:. There, thick lithosphere remained intact during large-volume magmatism, so decompression upwelling on the scale required can be ruled out, implying that large volumes of magma must have pre-existed. 4101:
Anderson, D.L.; Natland, J.H. (2005). "A brief history of the plume hypothesis and its competitors: Concept and controversy". In Foulger, G.R.; Natland, J.H.; Presnall, D.C.; Anderson, D.L. (eds.).
718:. However, the plate hypothesis is inconsistent with both the geochemistry of shallow asthenosphere melts (i.e., Mid-ocean ridge basalts) and with the isotopic compositions of ocean island basalts. 4968: 1535:
beginning around 17 Ma. A change in the plate boundary from subduction to shear induced extension across the western United States. This brought about widespread volcanism, commencing with the
500:
to one another. The most remarkable example of this is the Emperor chain, the older part of the Hawaii system, which was formed by migration of volcanic activity across a geo-stationary plate.
4877:
Foulger, G.R.; Christiansen, R.L.; Anderson, D.L. (2015). "The Yellowstone "hot spot" track results from migrating basin-range extension". In Foulger, G.R.; Lustrino, M.; King, S.D. (eds.).
1515:
Yellowstone and the Eastern Snake River Plain to the west comprise a belt of large, silicic caldera volcanoes that get progressively younger to the east, culminating in the currently active
1506: 795:. These extremely rapid, large scale eruptions of basaltic magmas have periodically formed continental flood basalt provinces on land and oceanic plateaus in the ocean basins, such as the 4696: 4563: 1458:
lavas were emplaced in and on the stretched continental crust. This style of extension persists across parallel rift zones which frequently become extinct and are replaced with new ones.
596:
generated by large earthquakes enable structure below the Earth's surface to be determined along the ray path. Seismic waves that have traveled a thousand or more kilometers (also called
3868: 1033:
extensions. Several volcanic provinces, however, do not fit this simple picture and have traditionally been considered exceptional cases which require a non-plate-tectonic explanation.
600:) can be used to image large regions of Earth's mantle. They also have limited resolution, however, and only structures at least several hundred kilometers in diameter can be detected. 1355:– and released by lithospheric extension. That large volumes of magma are stored at the base of the lithosphere is evinced in observations of large magmatic provinces such as the 3701:
Renne, P.R.; Zhang, Z.C.; Richards, M.A.; Black, M.T.; Basu, A.R. (1995). "Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism".
1244:, both of which have progressed to the seafloor spreading stage. Likewise, the Mid-American Rift constitutes two arms of a triple junction along with a third which separated the 4071: 5270:
Norton, I.O. (2007). "Speculations on Cretaceous tectonic history of the northwest Pacific and a tectonic origin for the Hawaii hotspot". In Foulger, G.R.; Jurdy, D.M. (eds.).
5078:
Kuntz, M.A.; Covington, H.R.; Schorr, L.J. (1992). "An overview of basaltic volcanism of the Eastern Snake River Plain, Idaho". In Link, P.K.; Kuntz, M.A.; Piatt, L.B. (eds.).
1102:
Over the last two decades, the plate theory has developed into a cohesive research programme, attracting many adherents, and occupying researchers in several subdisciplines of
235:
the mantle plume, driven by heat exchange across the core-mantle boundary carrying heat upward in a narrow, rising column, and postulated to be independent of plate motions.
4505:
Hirano, Naoto; Takahashi, Eiichi; Yamamoto, Junji; Abe, Natsue; Ingle, S.P.; Kaneoka, I.; Hirata, T.; Kimura, J-I.; Ishii, T.; Ogawa, Y.; Machida, S.; Suyehiro, K. (2006).
553:, have been suggested to be tracers of material arising from near to the Earth's core, in basalts at oceanic islands. However, so far conclusive proof for this is lacking. 5237:
Stuart, W.D.; Foulger, G.R.; Barall, M. (2007). "Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress". In Foulger, G.R.; Jurdy, D.M. (eds.).
6219:
Vogt, P.R.; Jung, W-Y. (2007). "Origin of the Bermuda volcanoes and Bermuda Rise: History, observations, models, and puzzles". In Foulger, G., G.R.; Jurdy, D.M. (eds.).
2162:
Tan, K. K.; Thorpe, R. B. (1999). "The onset of convection driven by buoyancy caused by various modes of transient heat conduction, Part I: Transient Rayleigh numbers".
1055:. In order to account for the long-lived supply of magma that some volcanic regions seemed to require, Morgan modified the hypothesis, shifting the source to a thermal 5427:
James, David E.; Fouch, Matthew J.; Carlson, Richard W.; Roth, Jeffrey B. (May 2011). "Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track".
4199:
Foulger, G.R.; Panza, G.F.; Artemieva, I.M.; Bastow, I.E.; Cammarano, F.; Evans, J.R.; Hamilton, W.B.; Julian, B.R.; Lustrino, M.; Thybo, H.; Yanovskaya, T.B. (2013).
2190:
Tan, K.K. & Thorpe, R. B. (1999). "The onset of convection driven by buoyancy caused by various modes of transient heat conduction, Part II: the sizes of plumes".
380:
at 650 km depth. Subduction to greater depths is less certain, but there is evidence that they may sink to mid-lower-mantle depths at about 1,500  km depth.
5986:
Natland, J.H.; Winterer, E.L. (2005). "Fissure control on volcanic action in the Pacific". In Foulger, G.R.; Natland, J.H.; Presnall, D.C.; Anderson, D.L. (eds.).
2887:
Brodholt, John P.; Helffrich, George; Trampert, Jeannot (2007). "Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity".
1335:
the movement of tectonic plates. The presence of pre-existing melt means that magmatism can occur even in areas where lithospheric extension is modest such as the
915:, to propose a broad alternative based on shallow processes in the upper mantle and above, with an emphasis on plate tectonics as the driving force of magmatism. 5147:
Tarduno, J.A.; Duncan, R.A.; Scholl, D.W.; Cottrell, R.D.; Steinberger, B.; Thordarson, T.; Kerr, B.C.; Neal, C.R.; Frey, F.A.; Torii, M.; Carvallo, C. (2003).
4134:
Glen, W. (2005). "The origins and early trajectory of the mantle plume quasi-paradigm". In Foulger, G.R.; Natland, J.H.; Presnall, D.C.; Anderson, D.L. (eds.).
361:
surface by plumes. In the context of the Plate hypothesis, subducted material is mostly re-circulated in the shallow mantle and tapped from there by volcanoes.
5204:
DeLaughter, J.E.; Stein, C.A.; Stein, S. (2005). "Hotspots: A view from the swells". In Foulger, G.R.; Natland, J.H.; Presnall, D.C.; Anderson, D.L. (eds.).
3585:
Encarnacion, J.; Fleming, T.H.; Elliot, D.H.; Eales, H.V. (1996). "Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana".
1659:
In 1997 it became possible using seismic tomography to image submerging tectonic slabs penetrating from the surface all the way to the core-mantle boundary.
6182:
van Wijk, J.W.; Huismans, R.S.; Ter Voorde, M.; Cloetingh, S.A.P.L. (2001). "Melt generation at volcanic continental margins: No need for a mantle plume?".
1666:, long-period seismic body wave diffraction tomography provided evidence that a mantle plume is responsible, as had been proposed as early as 1971. For the 81:. Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of 3104: 93:
Mechanisms that have been proposed to explain intraplate volcanism include mantle plumes; non-rigid motion within tectonic plates (the plate model); and
2731: 895:
and the fate of subducted slabs. The plume hypothesis invokes deep subduction (right), while the plate hypothesis focuses on shallow subduction (left).
2730:
Nebel, Oliver; Sossi, Paolo A.; BĂ©nard, Antoine; Arculus, Richard J.; Yaxley, Gregory M.; Woodhead, Jon D.; Rhodri Davies, D.; Ruttor, Saskia (2019).
942:
Under the umbrella of the plate hypothesis, the following sub-processes, all of which can contribute to permitting surface volcanism, are recognised:
1209:
both oceanic and continental crust and ranges from minor to amounts approaching those seen at spreading boundaries. All can give rise to magmatism.
694:
the overlying mantle wedge and leads to the formation of island arc basalts. The subducting slab is depleted in these water-mobile elements (e.g.,
4246:
Anderson, D.L. (2005). "Scoring hotspots: The plume and plate paradigms". In Foulger, G.R.; Natland, J.H.; Presnall, D.C.; Anderson, D.L. (eds.).
2922:
Trampert, J.; Deschamps, F.; Resovsky, J.; Yuen, D. (2004). "Probabilistic tomography maps chemical heterogeneities throughout the lower mantle".
710:) and thus relatively enriched in elements that are not water-mobile (e.g., Ti, Nb, Ta) compared to both mid-ocean ridge and island arc basalts. 391:. This would create large volumes of magma. The plume hypothesis postulates that this melt rises to the surface and erupts to form "hot spots". 1489:
Iceland's unusual petrology and geochemistry, which is around 10% silicic and intermediate, with geochemistry similar to such flood basalts as
419:, a seismological subdivision of the Earth. It appears to be compositionally distinct from the overlying mantle, and may contain partial melt. 5710: 4183: 3654: 2822: 2400: 1894: 1845: 3162:
Montelli, R.; Nolet, G.; Dahlen, F.; Masters, G. (2006). "A catalogue of deep mantle plumes: new results from finite-frequency tomography".
3164: 207: 5901:
Lustrino, M. (2016). "(More than) fifty shades of plumes". In Calcaterra, D.; Mazzoli, S.; Petti, F.M.; Carmina, B.; Zuccari, A. (eds.).
174:
of mantle plumes has required progressive hypothesis-elaboration leading to variant propositions such as mini-plumes and pulsing plumes.
5904:
Geosciences on a Changing Planet: Learning from the Past, Exploring the Future. 88th National Congress of the Italian Geological Society
5312: 3339: 1600:
Non-movement of the volcanic centre relative to both the geomagnetic pole and geometry of the Pacific Plate for around 50 million years.
1430: 767:
under Africa and the Pacific, while some other hotspots such as Yellowstone were less clearly related to mantle features in the model.
5691: 4391: 4363: 3918: 1352: 812: 764: 423: 215: 6236: 6003: 5866: 5849:
Ivanov, A. (2007). "Evaluation of different models for the origin of the Siberian traps". In Foulger, G., G.R.; Jurdy, D.M. (eds.).
5757: 5639: 5287: 5254: 5221: 5131: 5095: 4896: 4335: 4263: 4151: 4118: 3960: 3793: 1777: 2503: 2268:
Farnetani, C. G.; Richards, M. A. (1994). "Numerical investigations of the mantle plume initiation model for flood basalt events".
2840:"Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics – A petrological and geochemical perspective" 5392:
Ji, Ying; ataf, Henri-Claude N (June 1998). "Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii".
4650:"Insights from North America's failed Midcontinent Rift into the evolution of continental rifts and passive continental margins" 1106:. It has also been the focus of several international conferences and many peer-reviewed papers and is the subject of two major 387:
Plumes are postulated to rise through the mantle and begin to partially melt on reaching shallow depths in the asthenosphere by
338: 330: 6289: 3043: 2119: 1405: 464: 1991:
French, Scott W.; Romanowicz, Barbara (2015). "Broad plumes rooted at the base of the Earth's mantle beneath major hotspots".
4648:
Stein, S.; Stein, C.A.; Elling, R.; Kley, J.; Kellerd, G.R.; Wysession, M.; Rooney, T.; Frederiksen, A.; Mouchah, R. (2018).
2507: 1282:
is the largest tectonic plate on Earth, covering about one third of Earth's surface. It undergoes considerable extension and
1232:. As extension became localised, oceanic crust began to form around 54 Ma, with diffuse extension persisting around Iceland. 2392: 1819: 1107: 633: 1400:. Iceland is the type example of a volcanic anomaly situated on a plate boundary. Yellowstone, together with the Eastern 3491:
Duncan, R.A. & Pyle, D.G. (1988). "Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary".
899:
Beginning in the early 2000s, dissatisfaction with the state of the evidence for mantle plumes and the proliferation of
293:
magma from the fixed conduit onto the surface is expected to form a chain of volcanoes that parallels plate motion. The
274: 1259:
Diverse volcanic activity resulting from lithospheric extension has occurred throughout the western United States. The
5682:
Foulger, G.R. (2007). "The 'plate' model for the genesis of melting anomalies". In Foulger, G.R.; Jurdy, D.M. (eds.).
3909:
Foulger, G.R. (2007). "The 'plate' model for the genesis of melting anomalies". In Foulger, G.R.; Jurdy, D.M. (eds.).
3360:
Courtillot, V.; Davaillie, A.; Besse, J.; Stock, J. (2003). "Three distinct types of hotspots in the Earth's mantle".
1536: 1416: 6118:"Were the Deccan flood basalts derived in part from ancient oceanic crust within the Indian continental lithosphere?" 3534:
Renne, P.R.; Basu, A.R. (1991). "Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary".
1201:), fore-arc regions (e.g., the western Pacific), and continental regions undergoing lithospheric delamination (e.g., 135:. Because the plume head partly melts on reaching shallow depths, a plume is often invoked as the cause of volcanic 1351:
emplacement. This means that melt is formed over a longer period, stored in reservoirs – most likely located at the
5041:"Intraplate deformation and microplate tectonics of the Yellowstone hot spot and surrounding western U.S. interior" 3405:
Richards, M.A.; Duncan, R.A.; Courtillot, V.E. (1989). "Flood basalts, and hotspot tracks: Plume heads and tails".
277:
in South America and Africa (formerly a single province separated by opening of the South Atlantic Ocean), and the
47: 1582: 1450:
developed to full seafloor spreading, the 100x300 km continental region between the two rifts formed the Iceland
43: 5674: 4860: 3606: 1977: 416: 6284: 3145: 2732:"Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes" 1675: 1364: 1272: 1182: 919: 261:, although many of those erupt over much shorter time scales (less than 1 million years). Examples include the 253:
of 20 mW/m, while the cycle time is about 2 Gyr. The number of mantle plumes is predicted to be about 17.
5650: 4836: 1121:, a major international forum with contributions from geoscientists working in a wide variety of specialties. 727: 526:
includes a primordial component, but it is also produced by the natural radioactive decay of elements such as
1286:
deformation due to thermal contraction of the lithosphere. Shear deformation is greatest in the area between
927:
the deformation is extensional. Well-known examples are the Basin and Range Province in the western USA, the
225:
the broad convective flow associated with plate tectonics, driven primarily by the sinking of cold plates of
2669:
Stracke, Andreas; Hofmann, Albrecht W.; Hart, Stan R. (2005). "FOZO, HIMU, and the rest of the mantle zoo".
1634: 1022: 377: 1331:(a) lithospheric thickness; (b) the amount of extension; and (c) fusibility and temperature of the source. 364:
Stable isotopes like Fe are used to track processes that the uprising material experiences during melting.
6150: 6117: 5954: 5921: 5877: 5817: 3625:. Special Publications volume 357. Vol. 357. London: Geological Society of London. pp. 167–193. 3377: 2987: 2231: 1823: 1721: 1404:
to its west, is the type example of an intra-continental volcanic anomaly. Hawaii, along with the related
1139: 473: 278: 148: 1724: â€“ Loss of the portion of the lowermost lithosphere from the tectonic plate to which it was attached 5040: 4967:
Monastero, F.C.; Katzenstein, A.M.; Miller, J.S.; Unruh, J.R.; Adams, M.C.; Richards-Dinger, K. (2005).
3284: 2814: 2164: 1699: 1574: 1186: 1043:
suggested that chains of volcanic islands form from movement of the seafloor over relatively stationary
997: 5920:
Meibom, A.; Anderson, D.L.; Sleep, N.H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L. (2003).
2459:
Storey, B.C. (1995). "The role of mantle plumes in continental breakup: Case histories from Gondwana".
4786: 4649: 4602: 2117:
Whitehead, Jr., John A.; Luther, Douglas S. (1975). "Dynamics of laboratory diapir and plume models".
6279: 6191: 6162: 6129: 6026: 5966: 5933: 5829: 5662: 5552: 5509: 5474: 5436: 5401: 5321: 5160: 5052: 4980: 4933: 4848: 4798: 4757: 4708: 4661: 4614: 4575: 4518: 4469: 4420: 4292: 4212: 4036: 3997: 3710: 3626: 3594: 3543: 3500: 3465: 3414: 3369: 3296: 3249: 3173: 3052: 2995: 2933: 2896: 2851: 2743: 2678: 2592: 2541: 2468: 2425: 2315: 2278: 2240: 2199: 2128: 2063: 2000: 1965: 1919: 1880: 1727: 1578: 1532: 1451: 1212:
Various extensional styles are seen in the northeast Atlantic. Continental rifting began in the late
1155: 1060: 751: 427: 241: 195: 6055: 3382: 1828: 1169:
Extension resulting from these processes manifests in a variety of structures including continental
608:
have caused the breakup of Eurasia and the opening of the north Atlantic, now suggested to underlie
2532:
White, William M. (2010). "Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective".
1667: 1639: 1557: 1516: 1393: 1268: 1091:
The foregoing issues have inspired a growing number of geoscientists, led by American geophysicist
629: 493: 443:
Some common and basic lines of evidence cited in support of the theory are linear volcanic chains,
302: 282: 5008:"Transtensional deformation and structural control of contiguous but independent magmatic systems" 1742: â€“ Hypothetical volcanic eruption event caused by the buildup of gas deep underneath a craton 992:
to escape to the surface. If extension is severe and thins the lithosphere to the extent that the
6294: 6207: 6090: 6077: 6042: 5804: 5763: 5618: 5500:
Kerr, Richard A. (June 2013). "Geophysical Exploration Linking Deep Earth and Backyard Geology".
5368: 5186: 5113: 4902: 4814: 4677: 4630: 4544: 4487: 4308: 4228: 4052: 3966: 3888: 3843: 3734: 3672: 3660: 3567: 3516: 3438: 3320: 3189: 3137: 2957: 2767: 2712: 2616: 2565: 2484: 2441: 2331: 2144: 2032: 1935: 1783: 912: 755: 656: 522:. Very little is produced, and little has been added to the Earth by other processes since then. 369: 5348: 4087: 659:
than mid-ocean ridge basalts. Compared to island arc basalts, ocean island basalts are lower in
469: 31: 5818:"Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated" 3785: 343: 97:. It is likely that different mechanisms accounts for different cases of intraplate volcanism. 6232: 6014: 5999: 5862: 5796: 5753: 5706: 5687: 5635: 5610: 5568: 5525: 5283: 5250: 5217: 5178: 5127: 5091: 4949: 4892: 4536: 4387: 4359: 4331: 4259: 4179: 4147: 4114: 3956: 3914: 3835: 3726: 3650: 3559: 3430: 3312: 3287:(2015-09-03). "Broad plumes rooted at the base of the Earth's mantle beneath major hotspots". 3265: 3129: 3112: 3023: 2949: 2924: 2869: 2818: 2759: 2704: 2651: 2608: 2557: 2396: 2383: 2099: 2081: 2024: 2016: 1890: 1841: 1803: 1773: 1528: 1401: 1303: 1291: 1260: 1174: 1114: 1044: 928: 900: 892: 857:
activity on Earth, even that which appears superficially to be anomalous, to the operation of
747: 735: 485: 481: 404: 311: 286: 136: 132: 114: 5740:
Foulger, G.R. (2021). "The plate theory for volcanism". In Alderton, D.; Elias, S.A. (eds.).
4200: 3943:
Foulger, G.R. (2021). "The plate theory for volcanism". In Alderton, D.; Elias, S.A. (eds.).
1469:
The instability and decoupling of spreading ridges to the north and south. To the north, the
281:
of North America. Flood basalts in the oceans are known as oceanic plateaus, and include the
6262:
mantleplumes.org - mantle-plume skeptic website managed and maintained by Gillian R. Foulger
6224: 6199: 6170: 6137: 6102: 6067: 6034: 5991: 5974: 5970: 5941: 5937: 5908: 5889: 5854: 5837: 5788: 5745: 5670: 5602: 5560: 5517: 5482: 5478: 5444: 5440: 5409: 5405: 5360: 5329: 5325: 5275: 5242: 5209: 5168: 5119: 5083: 5060: 5019: 4988: 4941: 4921: 4884: 4856: 4806: 4802: 4765: 4724: 4716: 4669: 4622: 4583: 4526: 4477: 4428: 4300: 4251: 4220: 4139: 4106: 4083: 4044: 4005: 3948: 3880: 3827: 3718: 3642: 3634: 3602: 3551: 3508: 3473: 3469: 3422: 3387: 3373: 3304: 3257: 3181: 3121: 3060: 3013: 3003: 2941: 2904: 2900: 2859: 2808: 2751: 2747: 2694: 2686: 2643: 2600: 2549: 2476: 2433: 2323: 2306: 2304:
Skilbeck, J. N.; Whitehead, J. A. (1978). "Formation of discrete islands in linear chains".
2286: 2270: 2248: 2207: 2172: 2136: 2089: 2071: 2008: 1973: 1927: 1833: 1765: 1713: 1553: 1490: 1474: 1340: 1319: 1264: 1245: 1198: 1040: 989: 874: 731: 625: 574: 477: 294: 203: 887: 6015:"Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts" 5922:"Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?" 3864: 3755: 3684: 3208:"Banana-doughnut tomography – can it reveal plumes (better than conventional ray theory)?" 2978: 2379: 1886: 1876: 1811: 1760:
Homrighausen, S.; Geldmacher, J.; Hoernle, K.; Rooney, T. (2021). "Intraplate Volcanism".
1630: 1479: 1389: 1344: 1307: 1299: 1283: 1096: 1092: 1052: 1030: 985: 908: 904: 858: 621: 489: 187: 144: 82: 78: 5462:
Schmandt, Brandon; Dueker, Kenneth; Humphreys, Eugene & Hansen, Steven (April 2012).
5305:"Antipodal Hotspots and Bipolar Catastrophes: Were Oceanic Large-body Impacts the Cause?" 5304: 5149:"The Emperor seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle" 3041:
Kurz, Mark (1999). "Dynamics of the Galapagos hotspot from helium isotope geochemistry".
726:
In 2015, based on data from 273 large earthquakes, researchers compiled a model based on
6221:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
6195: 6166: 6133: 6030: 5851:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
5833: 5684:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
5666: 5556: 5513: 5272:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
5239:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
5164: 5056: 4984: 4937: 4852: 4761: 4712: 4665: 4618: 4579: 4522: 4473: 4424: 4384:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
4296: 4216: 4040: 4001: 3911:
Plates, plumes, and planetary processes: Geological Society of America Special Paper 430
3714: 3630: 3598: 3547: 3504: 3418: 3300: 3253: 3177: 3056: 2999: 2983:"A model to explain the various paradoxes associated with mantle noble gas geochemistry" 2937: 2855: 2682: 2596: 2553: 2545: 2511: 2472: 2429: 2319: 2282: 2244: 2203: 2132: 2067: 2004: 1969: 1956:
Larson, R.L. (1991). "Latest pulse of Earth: Evidence for a mid-Cretaceous superplume".
1923: 1454:
which underwent diffuse extension and shear along several north-oriented rift axes, and
783:
An example of plume locations suggested by one recent group. Figure from Foulger (2010).
105: 5749: 5463: 4920:
Thatcher, W.; Foulger, G.R.; Julian, B.R.; Svarc, J.; Quilty, E.; Bawden, G.W. (1999).
3952: 2416:
Stein, M. & Hofmann, A.W. (1994). "Mantle plumes and episodic continental growth".
2094: 2051: 1769: 1730: â€“ Upheavals or depressions of land exhibiting long wavelengths and little folding 1663: 1545: 1540: 1397: 1056: 844: 800: 759: 743: 652: 357: 266: 183: 160: 156: 140: 6174: 6141: 5945: 5776: 5590: 5413: 3815: 3391: 3064: 2211: 2176: 1161:
Thermal contraction, which sums to the largest amount across large plates such as the
861:. According to the plate theory, the principal cause of volcanism is extension of the 6273: 6211: 5902: 5767: 5372: 4681: 4634: 4491: 4433: 4408: 4232: 3970: 3664: 3477: 3324: 3193: 3018: 2982: 2771: 2352: 2148: 2036: 1787: 1497:
which have undergone silicic assimilation of, or contamination by, continental crust.
1336: 1279: 1225: 1162: 1103: 1071:
direct test is to measure the source temperature of magmas. This is difficult as the
1014: 993: 739: 683: 593: 230: 211: 6251: 6081: 6046: 5808: 5622: 5190: 4922:"Present-day deformation across the Basin and Range Province, Western United States" 4906: 4626: 4482: 4457: 4312: 3892: 3847: 3141: 2961: 2716: 2620: 2569: 2335: 1939: 1113:
Since 2003, discussion and development of the plate theory has been fostered by the
4548: 4056: 3738: 3571: 3520: 3456:
Griffiths, R.W.; Campbell, I.H. (1990). "Stirring and structure in mantle plumes".
3442: 3207: 2647: 2488: 2445: 1643: 1626: 1494: 1368: 1295: 1241: 1194: 1080: 1072: 1067: 1026: 932: 923:
plate tectonics, rather than active processes arising at the core-mantle boundary.
866: 804: 796: 792: 715: 691: 452: 388: 326: 270: 262: 258: 152: 123: 94: 37: 5521: 4945: 4818: 3722: 3261: 3125: 2583:
Hofmann, A. W. (1997). "Mantle geochemistry: the message from oceanic volcanism".
1608:
The lack of any regional heatflow anomaly detected around the extinct islands and
1051:
cells. In the early 1970s, Wilson's idea was revived by the American geophysicist
1036:
Just prior to the development of plate tectonics in the early 1960s, the Canadian
771:
between plumes and the surrounding mantle that slows them down and broadens them.
561: 322: 6072: 5841: 5364: 3555: 3426: 85:. However, the origins of volcanic activity within plates remains controversial. 5912: 5564: 4673: 3985: 3343: 1470: 1202: 1190: 862: 687: 620:
Basalts found at oceanic islands are geochemically distinct from those found at
566: 399: 226: 6107: 5978: 5893: 5721: 5486: 5448: 5333: 4810: 3884: 3759: 2908: 2755: 2076: 1707: 6228: 6038: 5995: 5988:
Plates, plumes, and paradigms: Geological Society of America Special Paper 388
5858: 5279: 5246: 5213: 5206:
Plates, plumes, and paradigms: Geological Society of America Special Paper 388
4888: 4564:"Instability of a lithospheric step beneath western North Island, New Zealand" 4356:
Plates, plumes, and paradigms: Geological Society of America Special Paper 388
4248:
Plates, plumes, and paradigms: Geological Society of America Special Paper 388
4136:
Plates, plumes, and paradigms: Geological Society of America Special Paper 388
4110: 4103:
Plates, plumes, and paradigms: Geological Society of America Special Paper 388
2864: 2839: 2355: 2253: 2226: 1837: 1689: 1671: 1356: 1217: 1084: 1048: 1037: 1018: 828: 448: 191: 171: 128: 110: 68: 4878: 4255: 4143: 2873: 2763: 2708: 2655: 2612: 2561: 2085: 2020: 5792: 5606: 5543:
Kerr, Richard A. (April 2013). "The Deep Earth Machine Is Coming Together".
5173: 5148: 4531: 4506: 4458:"The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge" 3831: 3623:
The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history
3008: 2945: 2140: 1739: 1647: 1438: 1253: 1249: 1229: 1221: 1213: 1170: 1076: 695: 682:
These differences result from processes that occur during the subduction of
648: 597: 444: 373: 250: 164: 74: 5800: 5614: 5572: 5529: 5182: 4953: 4540: 4354:
Foulger, G.R.; Natland, J.H.; Presnall, D.C.; Anderson, D.L., eds. (2005).
4280: 4024: 3839: 3730: 3563: 3434: 3316: 3269: 3133: 2953: 2103: 2028: 1806:
Lower-mantle material properties and convection models of multiscale plumes
1021:
zones, slabs of oceanic crust sink into the mantle, dehydrate, and release
779: 3027: 2052:"Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed" 6203: 5064: 4409:"Dynamics of diffuse oceanic plate boundaries: Insensitivity to rheology" 3646: 3185: 3105:"Complex shear wave velocity structure imaged beneath Africa and Iceland" 2788:
Morgan, W. J. (1972). "Deep mantle convection plumes and plate motions".
2690: 1609: 1434: 1360: 1315: 1311: 1143: 808: 699: 676: 644: 523: 519: 513: 6256: 5087: 3308: 3079: 2012: 347:
Earth cross-section showing location of upper (3) and lower (5) mantle,
5123: 5024: 5007: 3240:
Eric Hand (2015-09-04). "Mantle plumes seen rising from Earth's core".
1733: 1646:
volcanism can be triggered by converging seismic energy focused at the
1520: 1446: 1442: 1429:
Iceland must be understood in the context of the broader structure and
1376: 1237: 1178: 1151: 1147: 854: 703: 672: 660: 609: 539: 531: 527: 6091:"Oceanic volcanism from the low-velocity zone – without mantle plumes" 4785:
Silver, P.G.; Behn, M.D.; Kelley, K.; Schmitz, M.; Savage, B. (2006).
4770: 4745: 4729: 4224: 2290: 257:
place over several million years. These eruptions have been linked to
4992: 4720: 4587: 4304: 4048: 3512: 3080:"Re-Os, Pt-Os and Hf-W isotopes and tracing the core in mantle melts" 2604: 2480: 2437: 2327: 1931: 1455: 550: 543: 199: 6054:
Peace, A.L.; Foulger, G.R.; Schiffer, C.; McCaffrey, K.J.W. (2017).
5115:
History and dynamics of plate motions: AGU Geophysical Monograph 121
4009: 3638: 2699: 2050:
Bono, Richard K.; Tarduno, John A.; Bunge, Hans-Peter (2019-07-29).
1588:
Observations that must be accounted for by any such theory include:
1461:
This model explains several distinct characteristics of the region:
1674:, a program collecting high-resolution seismic data throughout the 301:
The eruption of continental flood basalts is often associated with
5853:. Vol. 430. Geological Society of America. pp. 669–692. 5274:. Vol. 430. Geological Society of America. pp. 451–470. 3340:"CT scan of Earth links deep mantle plumes with volcanic hotspots" 1910:
Wilson, J. Tuzo (8 June 1963). "Hypothesis of earth's behaviour".
1505: 1415: 1287: 981: 886: 843: 837: 778: 570: 560: 398: 342: 321: 104: 6056:"Evolution of Labrador Sea-Baffin Bay: Plate or plume processes?" 5955:"Controls on post-Gondwana alkaline volcanism in Southern Africa" 4880:
The interdisciplinary Earth: A volume in honor of Don L. Anderson
2356:"Insight into Motion of the Hawaiian Hotspot from Paleomagnetism" 865:. Extension of the lithosphere is a function of the lithospheric 1473:
became extinct around 31-28 Ma and extension transferred to the
1275:, with small-scale volcanism distributed throughout the region. 707: 640: 639:
In major elements, ocean island basalts are typically higher in
403:
Calculated Earth's temperature vs. depth. Dashed curve: Layered
6261: 4969:"The Coso geothermal field: A nascent metamorphic core complex" 4697:"Pacific plate deformation from horizontal thermal contraction" 1118: 967:
Abrupt lateral changes in stress at structural discontinuities;
577:(in red). The crust may move relative to the plume, creating a 4746:"Genesis of flood basalts from eclogite-bearing mantle plumes" 1678:
has accelerated acceptance of a plume underlying Yellowstone.
15: 5744:(second ed.). Academic Press, Oxford. pp. 879–890. 3947:(second ed.). Academic Press, Oxford. pp. 879–890. 1216:
and was followed by catastrophic destabilisation in the late
546:, both found in subducted crust, are materials of this sort. 1408:, is the type example of an intra-oceanic volcanic anomaly. 190:
in 1971. A mantle plume is posited to exist where hot rock
5675:
10.1130/0016-7606(2002)114<1245:UMOOTY>2.0.CO;2
4861:
10.1130/0016-7606(2002)114<1245:UMOOTY>2.0.CO;2
3869:"Large igneous provinces, delamination, and fertile mantle" 3607:
10.1130/0091-7613(1996)024<0535:SEOFAK>2.3.CO;2
1978:
10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
221:
Two largely independent convective processes are proposed:
5777:"Is "hotspot" volcanism a consequence of plate tectonics?" 3816:"Is "hotspot" volcanism a consequence of plate tectonics?" 3355: 3353: 2347: 2345: 1075:
of magmas is extremely complex, rendering inferences from
5464:"Hot mantle upwelling across the 660 beneath Yellowstone" 3103:
Ritsema, J.; van Heijst, H. J.; Woodhouse, J. H. (1999).
2504:"Parallel AMR Code for Compressible MHD or HD Equations" 5878:"Why did not the Ontong Java Plateau form subaerially?" 5649:
Christiansen, R.L.; Foulger, G.R.; Evans, J.R. (2002).
4835:
Christiansen, R.L.; Foulger, G.R.; Evans, J.R. (2002).
4562:
Stern, T.; Houseman, G.; Salmon, M.; Evans, L. (2013).
1181:), continental back-arc extensional regions (e.g., the 2783: 2781: 1294:, an area replete with volcanic provinces such as the 811:, and the largest known continental flood basalt, the 273:
basalts/dolerites in South Africa and Antarctica, the
5080:
Regional Geology of Eastern Idaho and Western Wyoming
1025:
which lower the melting temperature and give rise to
6252:
Seismic-tomography image of Yellowstone mantle plume
5686:. The Geological Society of America. pp. 1–28. 4744:
Cordery, M.J.; Davies, G.F.; Campbell, I.H. (1997).
3913:. The Geological Society of America. pp. 1–28. 791:
Mantle plumes have been suggested as the source for
518:
Helium-3 is a primordial isotope that formed in the
214:
data show that mantle plumes can be associated with
6223:. Geological Society of America. pp. 553–592. 5990:. Geological Society of America. pp. 687–710. 5241:. Geological Society of America. pp. 497–506. 5208:. Geological Society of America. pp. 257–278. 5082:. Geological Society of America. pp. 227–268. 4883:. Geological Society of America. pp. 215–238. 4105:. Geological Society of America. pp. 119–145. 2225:Tan, K. K.; Thorpe, R. B.; Zhao Z., Zhidan (2011). 671:) and higher in immobile trace elements (e.g., Ti, 565:Diagram showing a cross section though the Earth's 4872: 4870: 4450: 4448: 4446: 4444: 4349: 4347: 4138:. Geological Society of America. pp. 91–117. 1271:. Back-arc extension continues to the east in the 113:generated by cooling processes in the mantle (LVZ= 5953:Moore, A.; Blenkinsop, T.; Cotterill, F. (2008). 4601:Foulger, G.R.; Schiffer, C.; Peace, A.L. (2020). 4250:. Geological Society of America. pp. 31–54. 4072:"Deep mantle convection plumes and plate motions" 2634:Zindler, A (1986-01-01). "Chemical Geodynamics". 5651:"Upper-mantle origin of the Yellowstone hotspot" 5118:. American Geophysical Union. pp. 359–375. 4837:"Upper-mantle origin of the Yellowstone hotspot" 3859: 3857: 655:, they are typically more enriched in the light 198:and rises through the Earth's mantle becoming a 163:, while others represent unusually large-volume 4830: 4828: 4377: 4375: 952:Enhanced volcanism at plate boundary junctions; 376:oceanic slabs sink as far as the bottom of the 4407:Zatman, S.; Gordon, R.G.; Mutnuri, K. (2005). 4169: 4167: 4165: 4163: 3938: 3936: 3934: 3932: 3930: 3904: 3902: 3750: 3748: 1142:of the lower crust and mantle lithosphere and 836:. This proposes shallower, passive leakage of 4603:"A new paradigm for the North Atlantic Realm" 3696: 3694: 2636:Annual Review of Earth and Planetary Sciences 2534:Annual Review of Earth and Planetary Sciences 1951: 1949: 1433:. The northeast Atlantic formed in the early 1263:are a back-arc volcanic chain extending from 647:(Ti) than mid-ocean ridge basalts at similar 8: 5907:. Geological Society of Italy. p. 235. 5006:Riley, P.; Tikoff, B.; Hildreth, W. (2012). 1539:which erupted through a 250-km-long zone of 1437:when, after an extensive period of rifting, 980:Lithospheric extension enables pre-existing 351:-layer (6), and outer (7) and inner (9) core 5703:Plates vs. plumes: A geological controversy 4176:Plates vs. plumes: A geological controversy 4088:10.1306/819A3E50-16C5-11D7-8645000102C1865D 3986:"A possible origin of the Hawaiian Islands" 2973: 2971: 1882:Plates vs. Plumes: A Geological Controversy 1177:), diffuse oceanic plate boundaries (e.g., 996:rises, then additional melt is produced by 216:Large Low Shear Velocity Provinces (LLSVPs) 159:. Some such volcanic regions lie far from 2227:"On predicting the mantle mushroom plumes" 1604:direction because no such change occurred. 1431:tectonic history of the northeast Atlantic 976:Sublithospheric melt ponding and draining. 77:that takes place away from the margins of 6106: 6071: 5634:. Cambridge: Cambridge University Press. 5172: 5023: 4769: 4728: 4530: 4481: 4432: 4382:Foulger, G.R.; Jurdy, D.M., eds. (2007). 4330:. Cambridge: Cambridge University Press. 3381: 3017: 3007: 2863: 2698: 2252: 2093: 2075: 1871: 1869: 1867: 1865: 1863: 1861: 1859: 1857: 1827: 6151:"The planet beyond the plume hypothesis" 4507:"Volcanism in response to plate flexure" 1802:Matyska, Ctirad; Yuen, David A. (2007). 1736: â€“ The formation of mountain ranges 463:The age-progressive distribution of the 4025:"Convection plumes in the lower mantle" 3235: 3233: 3231: 3229: 3227: 1816:Plates, plumes, and planetary processes 1752: 955:Small-scale sublithospheric convection; 891:An illustration of competing models of 415:The base of the mantle is known as the 407:; Solid curve: Whole mantle convection. 329:simulation of a single "finger" of the 6089:Presnall, D.; Gudfinnsson, G. (2011). 4787:"Understanding cratonic flood basalts" 4281:"Thermal plumes in the Earth's mantle" 3680: 3670: 1189:), oceanic back-arc basins (e.g., the 5775:Foulger, G.R.; Natland, J.H. (2003). 4386:. The Geological Society of America. 3814:Foulger, G.R.; Natland, J.H. (2003). 2810:Plate tectonics and crustal evolution 1482:system which later migrated eastward. 903:drove a number of geologists, led by 285:of the western Pacific Ocean and the 182:Mantle plumes were first proposed by 7: 5349:"Deep-Sinking Slabs Stir the Mantle" 5347:Kerr, Richard A. (31 January 1997). 3165:Geochemistry, Geophysics, Geosystems 2671:Geochemistry, Geophysics, Geosystems 5959:Earth and Planetary Science Letters 5926:Earth and Planetary Science Letters 5882:Earth and Planetary Science Letters 5471:Earth and Planetary Science Letters 5429:Earth and Planetary Science Letters 5394:Earth and Planetary Science Letters 5313:Earth and Planetary Science Letters 4791:Earth and Planetary Science Letters 3458:Earth and Planetary Science Letters 3362:Earth and Planetary Science Letters 2889:Earth and Planetary Science Letters 2736:Earth and Planetary Science Letters 2554:10.1146/annurev-earth-040809-152450 1083:to source temperatures unreliable. 973:Catastrophic lithospheric thinning; 6257:Large Igneous Provinces Commission 5750:10.1016/B978-0-08-102908-4.00105-3 5039:Puskas, C.M.; Smith, R.B. (2009). 4695:Kreemer, C.; Gordon, R.G. (2014). 3953:10.1016/B978-0-08-102908-4.00105-3 3792:. American Geosciences Institute. 1770:10.1016/B978-0-12-409548-9.12498-4 1353:lithosphere-asthenosphere boundary 813:Central Atlantic magmatic province 765:large low-shear-velocity provinces 424:large low-shear-velocity provinces 131:of abnormally hot rock within the 14: 4413:Geophysical Journal International 4358:. Geological Society of America. 970:Continental intraplate extension; 186:in 1963 and further developed by 4434:10.1111/j.1365-246X.2005.02622.x 1706: 1692: 1625:In addition to these processes, 1138:Vertical motions resulting from 873:Changes in the configuration of 853:The plate theory attributes all 775:Suggested mantle plume locations 504:lateral flow of plume material. 368:crust in island arc volcanoes). 318:Chemistry, heat flow and melting 20: 6149:Smith, A.D.; Lewis, C. (1999). 5722:"The plate theory of volcanism" 5045:Journal of Geophysical Research 4750:Journal of Geophysical Research 4627:10.1016/j.earscirev.2019.103038 4483:10.1016/j.earscirev.2019.102926 4201:"Caveats on tomographic images" 3796:from the original on 2019-12-07 3786:"The question of mantle plumes" 3760:"The plate theory of volcanism" 3044:Geochimica et Cosmochimica Acta 2385:Plates, plumes, and paradigms; 2120:Journal of Geophysical Research 1406:Hawaiian-Emperor seamount chain 1110:edited volumes and a textbook. 465:Hawaiian-Emperor seamount chain 208:Hawaiian–Emperor seamount chain 5303:Hagstrum, Jonathan T. (2005). 2648:10.1146/annurev.earth.14.1.493 2508:Los Alamos National Laboratory 1629:such as ones that created the 1577:, a relatively long period of 1575:Cretaceous Magnetic Quiet Zone 949:Fertility at mid-ocean ridges; 624:and volcanoes associated with 1: 6175:10.1016/S0012-8252(99)00049-5 6142:10.1016/S1342-937X(05)71112-6 5946:10.1016/S0012-821X(03)00038-4 5522:10.1126/science.340.6138.1283 5414:10.1016/S0012-821X(98)00060-0 4946:10.1126/science.283.5408.1714 3723:10.1126/science.269.5229.1413 3392:10.1016/S0012-821X(02)01048-8 3338:Robert Sanders (2015-09-02). 3262:10.1126/science.349.6252.1032 3126:10.1126/science.286.5446.1925 3065:10.1016/S0016-7037(99)00314-2 2393:Geological Society of America 2212:10.1016/S0009-2509(98)00249-8 2177:10.1016/S0009-2509(98)00248-6 1820:Geological Society of America 1108:Geological Society of America 958:Oceanic intraplate extension; 395:The lower mantle and the core 6184:Geophysical Research Letters 6073:10.12789/geocanj.2017.44.120 5842:10.1016/j.lithos.2010.12.007 5365:10.1126/science.275.5300.613 3556:10.1126/science.253.5016.176 3478:10.1016/0012-821X(90)90071-5 3427:10.1126/science.246.4926.103 2387:Volume 388 of Special papers 1655:Comparison of the hypotheses 1421:into younger Atlantic Ocean. 1379:lithosphere to the surface. 1047:in stable centres of mantle 508:Noble gas and other isotopes 5913:10.13140/RG.2.2.10244.12165 5705:. Oxford: Wiley-Blackwell. 5565:10.1126/science.340.6128.22 4674:10.1016/j.tecto.2018.07.021 4178:. Oxford: Wiley-Blackwell. 3990:Canadian Journal of Physics 1537:Columbia River Basalt Group 1008:Origins of the plate theory 961:Slab tearing and break-off; 339:Rayleigh–Taylor instability 331:Rayleigh–Taylor instability 127:is a proposed mechanism of 34:the scope of other articles 6311: 5979:10.1016/j.epsl.2008.01.007 5894:10.1016/j.epsl.2005.03.011 5487:10.1016/j.epsl.2012.03.025 5449:10.1016/j.epsl.2011.09.007 5334:10.1016/j.epsl.2005.02.020 4811:10.1016/j.epsl.2006.01.050 3885:10.2113/gselements.1.5.271 3784:Pratt, Sara (2015-12-20). 2909:10.1016/j.epsl.2007.07.054 2790:Bull. Am. Assoc. Pet. Geol 2756:10.1016/j.epsl.2019.05.037 2077:10.1038/s41467-019-11314-6 964:Shallow mantle convection; 511: 336: 6039:10.1007/s11434-009-0668-3 5996:10.1130/0-8137-2388-4.687 5214:10.1130/0-8137-2388-4.257 4111:10.1130/0-8137-2388-4.119 2865:10.1016/j.gsf.2018.03.005 2254:10.1016/j.gsf.2011.03.001 1095:and British geophysicist 275:Paraná and Etendeka traps 161:tectonic plate boundaries 6108:10.1093/petrology/egq093 6019:Chinese Science Bulletin 4256:10.1130/0-8137-2388-4.31 4144:10.1130/0-8137-2388-4.91 2807:Condie, Kent C. (1997). 1800:Based upon Figure 17 in 1676:contiguous United States 1365:Bushveld Igneous Complex 1273:Basin and Range Province 1183:Basin and Range Province 728:full waveform tomography 431:chemical heterogeneity. 5971:2008E&PSL.268..151M 5938:2003E&PSL.208..197M 5816:Hamilton, W.B. (2011). 5793:10.1126/science.1083376 5742:Encyclopedia of geology 5632:New theory of the Earth 5630:Anderson, D.L. (2007). 5607:10.1126/science.1065448 5589:Anderson, D.L. (2001). 5479:2012E&PSL.331..224S 5441:2011E&PSL.311..124J 5406:1998E&PSL.159...99J 5359:(5300). AAAS: 613–615. 5326:2005E&PSL.236...13H 5174:10.1126/science.1086442 4803:2006E&PSL.245..190S 4532:10.1126/science.1128235 4328:New theory of the Earth 4326:Anderson, D.L. (2007). 3945:Encyclopedia of geology 3832:10.1126/science.1083376 3470:1990E&PSL..99...66G 3374:2003E&PSL.205..295C 3009:10.1073/pnas.95.16.9087 2946:10.1126/science.1101996 2901:2007E&PSL.262..429B 2748:2019E&PSL.521...60N 2502:Li, Shengtai; Li, Hui. 2277:(B7): 13, 813–13, 833. 2141:10.1029/JB080i005p00705 1814:; Jurdy, D. M. (eds.). 1762:Encyclopedia of Geology 1635:Sudbury Igneous Complex 628:(island arc basalts). " 435:Evidence for the theory 167:near plate boundaries. 149:large igneous provinces 6290:Structure of the Earth 5720:Foulger, G.R. (2020). 5701:Foulger, G.R. (2010). 4174:Foulger, G.R. (2010). 2988:Proc. Natl. Acad. Sci. 1722:Delamination (geology) 1583:Earth's magnetic field 1512: 1422: 1125:Lithospheric extension 896: 850: 784: 582: 474:Chagos-Laccadive Ridge 459:Linear volcanic chains 408: 378:mantle transition zone 352: 334: 279:Columbia River basalts 118: 6229:10.1130/2007.2430(27) 6155:Earth-Science Reviews 5876:Korenaga, J. (2005). 5859:10.1130/2007.2430(31) 5280:10.1130/2007.2430(22) 5247:10.1130/2007.2430(24) 4889:10.1130/2015.2514(14) 4607:Earth-Science Reviews 4462:Earth-Science Reviews 4070:Morgan, W.J. (1972). 4023:Morgan, W.J. (1971). 3984:Wilson, J.T. (1963). 2838:Niu, Yaoling (2018). 2815:Butterworth-Heinemann 2056:Nature Communications 1838:10.1130/2007.2430(08) 1700:Earth sciences portal 1621:The impact hypothesis 1509: 1419: 1187:Western United States 1146:adjustment following 946:Continental break-up; 890: 847: 782: 564: 557:Geophysical anomalies 549:Other elements, e.g. 402: 389:decompression melting 346: 325: 289:of the Indian Ocean. 229:back into the mantle 108: 46:and help introduce a 6204:10.1029/2000GL012848 6116:Sheth, H.C. (2005). 6095:Journal of Petrology 5591:"Top-down tectonics" 5473:. 331–332: 224–236. 5065:10.1029/2008JB005940 4979:(11–12): 1534–1553. 3212:www.MantlePlumes.org 3186:10.1029/2006GC001248 3051:(23–24): 4139–4156. 2844:Geoscience Frontiers 2691:10.1029/2004gc000824 2232:Geoscience Frontiers 1728:Epeirogenic movement 1533:North American Plate 1117:(UK)-hosted website 1061:core-mantle boundary 883:Thermal contraction. 196:core-mantle boundary 6196:2001GeoRL..28.3995V 6167:1999ESRv...48..135S 6134:2005GondR...8..109S 6031:2009ChSBu..54.4148N 5834:2011Litho.123....1H 5667:2002GSAB..114.1245C 5601:(5537): 2016–2018. 5557:2013Sci...340...22K 5514:2013Sci...340.1283K 5508:(6138): 1283–1285. 5165:2003Sci...301.1064T 5159:(5636): 1064–1069. 5088:10.1130/MEM179-p227 5057:2009JGRB..114.4410P 4985:2005GSAB..117.1534M 4938:1999Sci...283.1714T 4932:(5408): 1714–1718. 4853:2002GSAB..114.1245C 4762:1997JGR...10220179C 4756:(B9): 20179–20197. 4713:2014Geo....42..847K 4666:2018Tectp.744..403S 4619:2020ESRv..20603038F 4580:2013Geo....41..423S 4523:2006Sci...313.1426H 4517:(5792): 1426–1428. 4474:2020ESRv..20602926F 4425:2005GeoJI.162..239Z 4297:1973Natur.244..398T 4217:2013TeNov..25..259F 4041:1971Natur.230...42M 4002:1963CaJPh..41..863W 3715:1995Sci...269.1413R 3709:(5229): 1413–1416. 3631:2011GSLSP.357..167H 3599:1996Geo....24..535E 3548:1991Sci...253..176R 3505:1988Natur.333..841D 3419:1989Sci...246..103R 3309:10.1038/nature14876 3301:2015Natur.525...95F 3254:2015Sci...349.1032H 3248:(6252): 1032–1033. 3178:2006GGG.....711007M 3120:(5446): 1925–1928. 3084:www.MantlePlume.org 3078:ScherstĂ©n, Anders. 3057:1999GeCoA..63.4139K 3000:1998PNAS...95.9087A 2938:2004Sci...306..853T 2856:2018AGUFM.T43A..02N 2683:2005GGG.....6.5007S 2597:1997Natur.385..219H 2546:2010AREPS..38..133W 2473:1995Natur.377..301S 2430:1994Natur.372...63S 2380:Foulger, Gillian R. 2360:www.MantlePlume.org 2320:1978Natur.272..499S 2283:1994JGR....9913813F 2245:2011GeoFr...2..223T 2204:1999ChEnS..54..239T 2133:1975JGR....80..705W 2068:2019NatCo..10.3370B 2013:10.1038/nature14876 2005:2015Natur.525...95F 1970:1991Geo....19..547L 1924:1963Natur.198..925T 1668:Yellowstone hotspot 1640:oceanic lithosphere 1558:Long Valley Caldera 1517:Yellowstone Caldera 1312:Tuamotu Archipelago 1269:Northern California 1156:melting of ice caps 939:surface volcanism. 657:rare-earth elements 630:Ocean island basalt 303:continental rifting 283:Ontong Java plateau 6101:(7–8): 1533–1546. 5124:10.1029/GM121p0359 5025:10.1130/GES00662.1 4279:Tozer, D. (1973). 3285:Barbara Romanowicz 2165:J. Chem. Eng. Sci. 1513: 1423: 1228:closed around 420 1097:Gillian R. Foulger 913:Warren B. Hamilton 897: 851: 785: 763:plumes are in the 651:(Mg) contents. In 583: 409: 370:Seismic tomography 353: 335: 119: 44:discuss this issue 6190:(20): 3995–3998. 6122:Gondwana Research 6060:Geoscience Canada 6025:(22): 4148–4160. 5787:(5621): 921–922. 5712:978-1-4443-3679-5 5661:(10): 1245–1256. 4847:(10): 1245–1256. 4771:10.1029/97JB00648 4291:(5416): 398–400. 4225:10.1111/ter.12041 4185:978-1-4443-3679-5 3826:(5621): 921–922. 3656:978-1-86239-335-6 3542:(5016): 176–179. 3499:(6176): 841–843. 3413:(4926): 103–107. 3342:. Berkeley News ( 3283:Scott W. French; 2994:(16): 9087–9092. 2932:(5697): 853–856. 2824:978-0-7506-3386-4 2591:(6613): 219–229. 2467:(6547): 301–308. 2402:978-0-8137-2388-4 2353:Sager, William W. 2314:(5653): 499–501. 2291:10.1029/94jb00649 2192:J. Chem. Eng. Sci 1918:(4884): 925–929. 1896:978-1-4051-6148-0 1847:978-0-8137-2430-0 1633:on Venus and the 1529:East Pacific Rise 1402:Snake River Plain 1292:Easter Microplate 1261:Cascade Volcanoes 1175:East African Rift 1115:Durham University 929:East African Rift 901:ad hoc hypotheses 893:crustal recycling 880:Vertical motions. 807:flood basalts of 634:Snake River Plain 598:teleseismic waves 569:(in yellow) with 482:Ninety East Ridge 405:mantle convection 312:mantle convection 287:Kerguelen Plateau 115:low-velocity zone 65: 64: 6302: 6242: 6215: 6178: 6145: 6112: 6110: 6085: 6075: 6050: 6013:Niu, Y. (2009). 6009: 5982: 5965:(1–2): 151–164. 5949: 5932:(3–4): 197–204. 5916: 5897: 5888:(3–4): 385–399. 5872: 5845: 5812: 5771: 5736: 5734: 5732: 5726:MantlePlumes.org 5716: 5697: 5678: 5645: 5626: 5577: 5576: 5540: 5534: 5533: 5497: 5491: 5490: 5468: 5459: 5453: 5452: 5435:(1–2): 124–135. 5424: 5418: 5417: 5389: 5383: 5382: 5380: 5379: 5344: 5338: 5337: 5309: 5300: 5294: 5293: 5267: 5261: 5260: 5234: 5228: 5227: 5201: 5195: 5194: 5176: 5144: 5138: 5137: 5108: 5102: 5101: 5075: 5069: 5068: 5036: 5030: 5029: 5027: 5003: 4997: 4996: 4993:10.1130/B25600.1 4964: 4958: 4957: 4917: 4911: 4910: 4874: 4865: 4864: 4832: 4823: 4822: 4797:(1–2): 190–210. 4782: 4776: 4775: 4773: 4741: 4735: 4734: 4732: 4721:10.1130/G35874.1 4692: 4686: 4685: 4645: 4639: 4638: 4598: 4592: 4591: 4588:10.1130/G34028.1 4559: 4553: 4552: 4534: 4502: 4496: 4495: 4485: 4452: 4439: 4438: 4436: 4404: 4398: 4397: 4379: 4370: 4369: 4351: 4342: 4341: 4323: 4317: 4316: 4305:10.1038/244398a0 4276: 4270: 4269: 4243: 4237: 4236: 4196: 4190: 4189: 4171: 4158: 4157: 4131: 4125: 4124: 4098: 4092: 4091: 4067: 4061: 4060: 4049:10.1038/230042a0 4020: 4014: 4013: 3981: 3975: 3974: 3940: 3925: 3924: 3906: 3897: 3896: 3861: 3852: 3851: 3811: 3805: 3804: 3802: 3801: 3781: 3775: 3774: 3772: 3770: 3764:MantlePlumes.org 3752: 3743: 3742: 3698: 3689: 3688: 3682: 3678: 3676: 3668: 3617: 3611: 3610: 3582: 3576: 3575: 3531: 3525: 3524: 3513:10.1038/333841a0 3488: 3482: 3481: 3453: 3447: 3446: 3402: 3396: 3395: 3385: 3368:(3–4): 295–308. 3357: 3348: 3347: 3335: 3329: 3328: 3280: 3274: 3273: 3237: 3222: 3221: 3219: 3218: 3204: 3198: 3197: 3159: 3153: 3152: 3150: 3144:. Archived from 3109: 3100: 3094: 3093: 3091: 3090: 3075: 3069: 3068: 3038: 3032: 3031: 3021: 3011: 2975: 2966: 2965: 2919: 2913: 2912: 2895:(3–4): 429–437. 2884: 2878: 2877: 2867: 2850:(5): 1265–1278. 2835: 2829: 2828: 2813:(4th ed.). 2804: 2798: 2797: 2785: 2776: 2775: 2727: 2721: 2720: 2702: 2666: 2660: 2659: 2631: 2625: 2624: 2605:10.1038/385219a0 2580: 2574: 2573: 2529: 2523: 2522: 2520: 2519: 2510:. Archived from 2499: 2493: 2492: 2481:10.1038/377301a0 2456: 2450: 2449: 2438:10.1038/372063a0 2413: 2407: 2406: 2376: 2370: 2369: 2367: 2366: 2349: 2340: 2339: 2328:10.1038/272499a0 2301: 2295: 2294: 2271:J. Geophys. Res. 2265: 2259: 2258: 2256: 2222: 2216: 2215: 2187: 2181: 2180: 2159: 2153: 2152: 2114: 2108: 2107: 2097: 2079: 2047: 2041: 2040: 1988: 1982: 1981: 1953: 1944: 1943: 1932:10.1038/198925a0 1907: 1901: 1900: 1873: 1852: 1851: 1831: 1798: 1792: 1791: 1757: 1716: 1714:Volcanoes portal 1711: 1710: 1702: 1697: 1696: 1695: 1554:Coso Hot Springs 1475:Kolbeinsey Ridge 1347:volcanic lines. 1265:British Columbia 1246:Amazonian Craton 1199:Papua New Guinea 1119:mantleplumes.org 1041:John Tuzo Wilson 931:valley, and the 920:plate hypothesis 875:plate boundaries 626:subduction zones 622:mid-ocean ridges 573:rising from the 478:Louisville Ridge 422:Two very broad, 295:Hawaiian Islands 60: 57: 51: 24: 23: 16: 6310: 6309: 6305: 6304: 6303: 6301: 6300: 6299: 6285:Plate tectonics 6270: 6269: 6267: 6248: 6239: 6218: 6181: 6148: 6115: 6088: 6053: 6012: 6006: 5985: 5952: 5919: 5900: 5875: 5869: 5848: 5815: 5774: 5760: 5739: 5730: 5728: 5719: 5713: 5700: 5694: 5681: 5648: 5642: 5629: 5588: 5586: 5584:Further reading 5581: 5580: 5551:(6128): 22–24. 5542: 5541: 5537: 5499: 5498: 5494: 5466: 5461: 5460: 5456: 5426: 5425: 5421: 5400:(3–4): 99–115. 5391: 5390: 5386: 5377: 5375: 5346: 5345: 5341: 5307: 5302: 5301: 5297: 5290: 5269: 5268: 5264: 5257: 5236: 5235: 5231: 5224: 5203: 5202: 5198: 5146: 5145: 5141: 5134: 5110: 5109: 5105: 5098: 5077: 5076: 5072: 5038: 5037: 5033: 5005: 5004: 5000: 4966: 4965: 4961: 4919: 4918: 4914: 4899: 4876: 4875: 4868: 4834: 4833: 4826: 4784: 4783: 4779: 4743: 4742: 4738: 4707:(10): 847–850. 4694: 4693: 4689: 4647: 4646: 4642: 4600: 4599: 4595: 4561: 4560: 4556: 4504: 4503: 4499: 4454: 4453: 4442: 4406: 4405: 4401: 4394: 4381: 4380: 4373: 4366: 4353: 4352: 4345: 4338: 4325: 4324: 4320: 4278: 4277: 4273: 4266: 4245: 4244: 4240: 4198: 4197: 4193: 4186: 4173: 4172: 4161: 4154: 4133: 4132: 4128: 4121: 4100: 4099: 4095: 4069: 4068: 4064: 4035:(5288): 42–43. 4022: 4021: 4017: 4010:10.1139/p63-094 3983: 3982: 3978: 3963: 3942: 3941: 3928: 3921: 3908: 3907: 3900: 3863: 3862: 3855: 3813: 3812: 3808: 3799: 3797: 3783: 3782: 3778: 3768: 3766: 3754: 3753: 3746: 3700: 3699: 3692: 3679: 3669: 3657: 3639:10.1144/SP357.9 3619: 3618: 3614: 3584: 3583: 3579: 3533: 3532: 3528: 3490: 3489: 3485: 3455: 3454: 3450: 3404: 3403: 3399: 3383:10.1.1.693.6042 3359: 3358: 3351: 3337: 3336: 3332: 3295:(7567): 95–99. 3282: 3281: 3277: 3239: 3238: 3225: 3216: 3214: 3206: 3205: 3201: 3161: 3160: 3156: 3148: 3107: 3102: 3101: 3097: 3088: 3086: 3077: 3076: 3072: 3040: 3039: 3035: 2979:Anderson, D. L. 2977: 2976: 2969: 2921: 2920: 2916: 2886: 2885: 2881: 2837: 2836: 2832: 2825: 2806: 2805: 2801: 2787: 2786: 2779: 2729: 2728: 2724: 2668: 2667: 2663: 2633: 2632: 2628: 2582: 2581: 2577: 2531: 2530: 2526: 2517: 2515: 2501: 2500: 2496: 2458: 2457: 2453: 2424:(6501): 63–68. 2415: 2414: 2410: 2403: 2395:. p. 195. 2378: 2377: 2373: 2364: 2362: 2351: 2350: 2343: 2303: 2302: 2298: 2267: 2266: 2262: 2224: 2223: 2219: 2189: 2188: 2184: 2161: 2160: 2156: 2116: 2115: 2111: 2049: 2048: 2044: 1999:(7567): 95–99. 1990: 1989: 1985: 1955: 1954: 1947: 1909: 1908: 1904: 1897: 1887:Wiley-Blackwell 1875: 1874: 1855: 1848: 1829:10.1.1.487.8049 1822:. p. 159. 1801: 1799: 1795: 1780: 1759: 1758: 1754: 1749: 1712: 1705: 1698: 1693: 1691: 1688: 1657: 1648:antipodal point 1623: 1579:normal polarity 1570: 1560:in California. 1504: 1441:separated from 1414: 1385: 1328: 1320:Pitcairn Island 1314:, the Fuca and 1308:Society Islands 1127: 1093:Don L. Anderson 1053:W. Jason Morgan 1010: 909:Gillian Foulger 905:Don L. Anderson 859:plate tectonics 825: 777: 724: 670: 666: 618: 559: 516: 510: 461: 451:anomalies, and 437: 426:, exist in the 397: 341: 320: 188:W. Jason Morgan 180: 103: 91: 83:plate tectonics 79:tectonic plates 61: 55: 52: 50:to the article. 41: 36:, specifically 25: 21: 12: 11: 5: 6308: 6306: 6298: 6297: 6292: 6287: 6282: 6272: 6271: 6265: 6264: 6259: 6254: 6247: 6246:External links 6244: 6237: 6161:(3): 135–182. 6128:(2): 109–127. 6004: 5867: 5758: 5711: 5693:978-0813724300 5692: 5640: 5585: 5582: 5579: 5578: 5535: 5492: 5454: 5419: 5384: 5339: 5320:(1–2): 13–27. 5295: 5288: 5262: 5255: 5229: 5222: 5196: 5139: 5132: 5103: 5096: 5070: 5051:(B4): B04410. 5031: 5018:(4): 740–751. 4998: 4959: 4912: 4897: 4866: 4824: 4777: 4736: 4687: 4654:Tectonophysics 4640: 4593: 4574:(4): 423–426. 4554: 4497: 4440: 4419:(1): 239–248. 4399: 4393:978-0813724300 4392: 4371: 4365:978-0813723884 4364: 4343: 4336: 4318: 4271: 4264: 4238: 4211:(4): 259–281. 4191: 4184: 4159: 4152: 4126: 4119: 4093: 4082:(2): 203–213. 4062: 4015: 3996:(6): 863–870. 3976: 3961: 3926: 3920:978-0813724300 3919: 3898: 3879:(5): 271–275. 3865:Anderson, D.L. 3853: 3806: 3790:EARTH Magazine 3776: 3744: 3690: 3681:|journal= 3655: 3612: 3593:(6): 535–538. 3577: 3526: 3483: 3464:(1–2): 66–78. 3448: 3397: 3349: 3330: 3275: 3223: 3199: 3154: 3151:on 2011-05-22. 3095: 3070: 3033: 2967: 2914: 2879: 2830: 2823: 2799: 2777: 2722: 2661: 2642:(1): 493–571. 2626: 2575: 2540:(1): 133–160. 2524: 2494: 2451: 2408: 2401: 2371: 2341: 2296: 2260: 2239:(2): 223–235. 2217: 2198:(2): 239–244. 2182: 2171:(2): 225–238. 2154: 2127:(5): 705–717. 2109: 2042: 1983: 1964:(6): 547–550. 1945: 1902: 1895: 1877:Foulger, G. R. 1853: 1846: 1812:Foulger, G. R. 1793: 1778: 1751: 1750: 1748: 1745: 1744: 1743: 1737: 1731: 1725: 1718: 1717: 1703: 1687: 1684: 1664:Hawaii hotspot 1656: 1653: 1622: 1619: 1606: 1605: 1601: 1598: 1597:million years. 1594: 1569: 1566: 1503: 1500: 1499: 1498: 1487: 1483: 1467: 1452:microcontinent 1413: 1410: 1384: 1381: 1327: 1324: 1167: 1166: 1159: 1136: 1126: 1123: 1057:boundary layer 1009: 1006: 978: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 885: 884: 881: 878: 824: 821: 801:Siberian Traps 776: 773: 723: 720: 668: 664: 653:trace elements 617: 614: 558: 555: 512:Main article: 509: 506: 460: 457: 436: 433: 396: 393: 319: 316: 267:Siberian traps 265:in India, the 237: 236: 233: 184:J. Tuzo Wilson 179: 176: 157:Siberian traps 133:Earth's mantle 102: 99: 90: 87: 63: 62: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 6307: 6296: 6293: 6291: 6288: 6286: 6283: 6281: 6278: 6277: 6275: 6268: 6263: 6260: 6258: 6255: 6253: 6250: 6249: 6245: 6243: 6240: 6238:9780813724300 6234: 6230: 6226: 6222: 6216: 6213: 6209: 6205: 6201: 6197: 6193: 6189: 6185: 6179: 6176: 6172: 6168: 6164: 6160: 6156: 6152: 6146: 6143: 6139: 6135: 6131: 6127: 6123: 6119: 6113: 6109: 6104: 6100: 6096: 6092: 6086: 6083: 6079: 6074: 6069: 6066:(3): 91–102. 6065: 6061: 6057: 6051: 6048: 6044: 6040: 6036: 6032: 6028: 6024: 6020: 6016: 6010: 6007: 6005:9780813723884 6001: 5997: 5993: 5989: 5983: 5980: 5976: 5972: 5968: 5964: 5960: 5956: 5950: 5947: 5943: 5939: 5935: 5931: 5927: 5923: 5917: 5914: 5910: 5906: 5905: 5898: 5895: 5891: 5887: 5883: 5879: 5873: 5870: 5868:9780813724300 5864: 5860: 5856: 5852: 5846: 5843: 5839: 5835: 5831: 5828:(1–4): 1–20. 5827: 5823: 5819: 5813: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5782: 5778: 5772: 5769: 5765: 5761: 5759:9780081029091 5755: 5751: 5747: 5743: 5737: 5727: 5723: 5717: 5714: 5708: 5704: 5698: 5695: 5689: 5685: 5679: 5676: 5672: 5668: 5664: 5660: 5656: 5652: 5646: 5643: 5641:9781139462082 5637: 5633: 5627: 5624: 5620: 5616: 5612: 5608: 5604: 5600: 5596: 5592: 5583: 5574: 5570: 5566: 5562: 5558: 5554: 5550: 5546: 5539: 5536: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5496: 5493: 5488: 5484: 5480: 5476: 5472: 5465: 5458: 5455: 5450: 5446: 5442: 5438: 5434: 5430: 5423: 5420: 5415: 5411: 5407: 5403: 5399: 5395: 5388: 5385: 5374: 5370: 5366: 5362: 5358: 5354: 5350: 5343: 5340: 5335: 5331: 5327: 5323: 5319: 5315: 5314: 5306: 5299: 5296: 5291: 5289:9780813724300 5285: 5281: 5277: 5273: 5266: 5263: 5258: 5256:9780813724300 5252: 5248: 5244: 5240: 5233: 5230: 5225: 5223:9780813723884 5219: 5215: 5211: 5207: 5200: 5197: 5192: 5188: 5184: 5180: 5175: 5170: 5166: 5162: 5158: 5154: 5150: 5143: 5140: 5135: 5133:9781118668535 5129: 5125: 5121: 5117: 5116: 5107: 5104: 5099: 5097:9780813711799 5093: 5089: 5085: 5081: 5074: 5071: 5066: 5062: 5058: 5054: 5050: 5046: 5042: 5035: 5032: 5026: 5021: 5017: 5013: 5009: 5002: 4999: 4994: 4990: 4986: 4982: 4978: 4974: 4970: 4963: 4960: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4927: 4923: 4916: 4913: 4908: 4904: 4900: 4898:9780813725147 4894: 4890: 4886: 4882: 4881: 4873: 4871: 4867: 4862: 4858: 4854: 4850: 4846: 4842: 4838: 4831: 4829: 4825: 4820: 4816: 4812: 4808: 4804: 4800: 4796: 4792: 4788: 4781: 4778: 4772: 4767: 4763: 4759: 4755: 4751: 4747: 4740: 4737: 4731: 4726: 4722: 4718: 4714: 4710: 4706: 4702: 4698: 4691: 4688: 4683: 4679: 4675: 4671: 4667: 4663: 4659: 4655: 4651: 4644: 4641: 4636: 4632: 4628: 4624: 4620: 4616: 4612: 4608: 4604: 4597: 4594: 4589: 4585: 4581: 4577: 4573: 4569: 4565: 4558: 4555: 4550: 4546: 4542: 4538: 4533: 4528: 4524: 4520: 4516: 4512: 4508: 4501: 4498: 4493: 4489: 4484: 4479: 4475: 4471: 4467: 4463: 4459: 4451: 4449: 4447: 4445: 4441: 4435: 4430: 4426: 4422: 4418: 4414: 4410: 4403: 4400: 4395: 4389: 4385: 4378: 4376: 4372: 4367: 4361: 4357: 4350: 4348: 4344: 4339: 4337:9781139462082 4333: 4329: 4322: 4319: 4314: 4310: 4306: 4302: 4298: 4294: 4290: 4286: 4282: 4275: 4272: 4267: 4265:9780813723884 4261: 4257: 4253: 4249: 4242: 4239: 4234: 4230: 4226: 4222: 4218: 4214: 4210: 4206: 4202: 4195: 4192: 4187: 4181: 4177: 4170: 4168: 4166: 4164: 4160: 4155: 4153:9780813723884 4149: 4145: 4141: 4137: 4130: 4127: 4122: 4120:9780813723884 4116: 4112: 4108: 4104: 4097: 4094: 4089: 4085: 4081: 4077: 4076:AAPG Bulletin 4073: 4066: 4063: 4058: 4054: 4050: 4046: 4042: 4038: 4034: 4030: 4026: 4019: 4016: 4011: 4007: 4003: 3999: 3995: 3991: 3987: 3980: 3977: 3972: 3968: 3964: 3962:9780081029091 3958: 3954: 3950: 3946: 3939: 3937: 3935: 3933: 3931: 3927: 3922: 3916: 3912: 3905: 3903: 3899: 3894: 3890: 3886: 3882: 3878: 3874: 3870: 3866: 3860: 3858: 3854: 3849: 3845: 3841: 3837: 3833: 3829: 3825: 3821: 3817: 3810: 3807: 3795: 3791: 3787: 3780: 3777: 3765: 3761: 3757: 3756:Foulger, G.R. 3751: 3749: 3745: 3740: 3736: 3732: 3728: 3724: 3720: 3716: 3712: 3708: 3704: 3697: 3695: 3691: 3686: 3674: 3666: 3662: 3658: 3652: 3648: 3647:11577/2574483 3644: 3640: 3636: 3632: 3628: 3624: 3616: 3613: 3608: 3604: 3600: 3596: 3592: 3588: 3581: 3578: 3573: 3569: 3565: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3530: 3527: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3487: 3484: 3479: 3475: 3471: 3467: 3463: 3459: 3452: 3449: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3408: 3401: 3398: 3393: 3389: 3384: 3379: 3375: 3371: 3367: 3363: 3356: 3354: 3350: 3345: 3341: 3334: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3294: 3290: 3286: 3279: 3276: 3271: 3267: 3263: 3259: 3255: 3251: 3247: 3243: 3236: 3234: 3232: 3230: 3228: 3224: 3213: 3209: 3203: 3200: 3195: 3191: 3187: 3183: 3179: 3175: 3171: 3167: 3166: 3158: 3155: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3119: 3115: 3114: 3106: 3099: 3096: 3085: 3081: 3074: 3071: 3066: 3062: 3058: 3054: 3050: 3046: 3045: 3037: 3034: 3029: 3025: 3020: 3015: 3010: 3005: 3001: 2997: 2993: 2990: 2989: 2984: 2980: 2974: 2972: 2968: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2926: 2918: 2915: 2910: 2906: 2902: 2898: 2894: 2890: 2883: 2880: 2875: 2871: 2866: 2861: 2857: 2853: 2849: 2845: 2841: 2834: 2831: 2826: 2820: 2817:. p. 5. 2816: 2812: 2811: 2803: 2800: 2795: 2791: 2784: 2782: 2778: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2726: 2723: 2718: 2714: 2710: 2706: 2701: 2696: 2692: 2688: 2684: 2680: 2676: 2672: 2665: 2662: 2657: 2653: 2649: 2645: 2641: 2637: 2630: 2627: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2586: 2579: 2576: 2571: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2528: 2525: 2514:on 2016-03-03 2513: 2509: 2505: 2498: 2495: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2455: 2452: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2412: 2409: 2404: 2398: 2394: 2390: 2389: 2386: 2381: 2375: 2372: 2361: 2357: 2354: 2348: 2346: 2342: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2308: 2300: 2297: 2292: 2288: 2284: 2280: 2276: 2273: 2272: 2264: 2261: 2255: 2250: 2246: 2242: 2238: 2234: 2233: 2228: 2221: 2218: 2213: 2209: 2205: 2201: 2197: 2193: 2186: 2183: 2178: 2174: 2170: 2167: 2166: 2158: 2155: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2121: 2113: 2110: 2105: 2101: 2096: 2091: 2087: 2083: 2078: 2073: 2069: 2065: 2061: 2057: 2053: 2046: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1987: 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1952: 1950: 1946: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1906: 1903: 1898: 1892: 1888: 1884: 1883: 1878: 1872: 1870: 1868: 1866: 1864: 1862: 1860: 1858: 1854: 1849: 1843: 1839: 1835: 1830: 1825: 1821: 1817: 1813: 1809: 1807: 1797: 1794: 1789: 1785: 1781: 1779:9780081029091 1775: 1771: 1767: 1763: 1756: 1753: 1746: 1741: 1738: 1735: 1732: 1729: 1726: 1723: 1720: 1719: 1715: 1709: 1704: 1701: 1690: 1685: 1683: 1679: 1677: 1673: 1669: 1665: 1660: 1654: 1652: 1649: 1645: 1641: 1636: 1632: 1631:Addams crater 1628: 1627:impact events 1620: 1618: 1614: 1611: 1602: 1599: 1595: 1591: 1590: 1589: 1586: 1584: 1580: 1576: 1567: 1565: 1561: 1559: 1555: 1549: 1547: 1542: 1538: 1534: 1530: 1524: 1522: 1519:in northwest 1518: 1508: 1501: 1496: 1492: 1488: 1484: 1481: 1476: 1472: 1468: 1464: 1463: 1462: 1459: 1457: 1453: 1448: 1444: 1440: 1436: 1432: 1427: 1418: 1411: 1409: 1407: 1403: 1399: 1395: 1391: 1382: 1380: 1378: 1372: 1370: 1366: 1362: 1358: 1354: 1348: 1346: 1342: 1338: 1332: 1325: 1323: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1280:Pacific Plate 1276: 1274: 1270: 1266: 1262: 1257: 1255: 1251: 1247: 1243: 1239: 1233: 1231: 1227: 1226:Iapetus Ocean 1223: 1219: 1215: 1210: 1206: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1164: 1160: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1132: 1131: 1124: 1122: 1120: 1116: 1111: 1109: 1105: 1104:Earth science 1100: 1098: 1094: 1089: 1086: 1082: 1078: 1074: 1069: 1064: 1062: 1058: 1054: 1050: 1046: 1042: 1039: 1034: 1032: 1028: 1027:volcanic arcs 1024: 1020: 1016: 1015:oceanic crust 1007: 1005: 1001: 999: 998:decompression 995: 994:asthenosphere 991: 987: 983: 975: 972: 969: 966: 963: 960: 957: 954: 951: 948: 945: 944: 943: 940: 936: 934: 930: 924: 921: 916: 914: 910: 906: 902: 894: 889: 882: 879: 876: 872: 871: 870: 868: 864: 860: 856: 846: 842: 839: 835: 830: 822: 820: 816: 814: 810: 806: 802: 798: 794: 793:flood basalts 789: 781: 774: 772: 768: 766: 761: 757: 753: 749: 745: 741: 737: 733: 729: 721: 719: 717: 711: 709: 705: 701: 697: 693: 689: 685: 684:oceanic crust 680: 678: 674: 662: 658: 654: 650: 646: 642: 637: 635: 631: 627: 623: 615: 613: 611: 605: 601: 599: 595: 594:Seismic waves 591: 587: 580: 576: 572: 568: 563: 556: 554: 552: 547: 545: 541: 535: 533: 529: 525: 521: 515: 507: 505: 501: 497: 495: 491: 487: 483: 479: 475: 471: 466: 458: 456: 454: 450: 446: 441: 434: 432: 429: 425: 420: 418: 413: 406: 401: 394: 392: 390: 385: 381: 379: 375: 371: 365: 362: 359: 350: 345: 340: 332: 328: 324: 317: 315: 313: 307: 304: 299: 296: 290: 288: 284: 280: 276: 272: 269:of Asia, the 268: 264: 260: 259:flood basalts 254: 252: 246: 243: 234: 232: 231:asthenosphere 228: 224: 223: 222: 219: 218:and do move. 217: 213: 212:paleomagnetic 209: 205: 204:Earth's crust 201: 197: 193: 189: 185: 177: 175: 173: 168: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 126: 125: 116: 112: 107: 100: 98: 96: 95:impact events 88: 86: 84: 80: 76: 72: 70: 59: 56:December 2022 49: 48:summary style 45: 39: 35: 33: 29:This article 27: 18: 17: 6266: 6220: 6217: 6187: 6183: 6180: 6158: 6154: 6147: 6125: 6121: 6114: 6098: 6094: 6087: 6063: 6059: 6052: 6022: 6018: 6011: 5987: 5984: 5962: 5958: 5951: 5929: 5925: 5918: 5903: 5899: 5885: 5881: 5874: 5850: 5847: 5825: 5821: 5814: 5784: 5780: 5773: 5741: 5738: 5729:. Retrieved 5725: 5718: 5702: 5699: 5683: 5680: 5658: 5655:GSA Bulletin 5654: 5647: 5631: 5628: 5598: 5594: 5587: 5548: 5544: 5538: 5505: 5501: 5495: 5470: 5457: 5432: 5428: 5422: 5397: 5393: 5387: 5376:. Retrieved 5356: 5352: 5342: 5317: 5311: 5298: 5271: 5265: 5238: 5232: 5205: 5199: 5156: 5152: 5142: 5114: 5106: 5079: 5073: 5048: 5044: 5034: 5015: 5011: 5001: 4976: 4973:GSA Bulletin 4972: 4962: 4929: 4925: 4915: 4879: 4844: 4841:GSA Bulletin 4840: 4794: 4790: 4780: 4753: 4749: 4739: 4704: 4700: 4690: 4657: 4653: 4643: 4610: 4606: 4596: 4571: 4567: 4557: 4514: 4510: 4500: 4465: 4461: 4416: 4412: 4402: 4383: 4355: 4327: 4321: 4288: 4284: 4274: 4247: 4241: 4208: 4204: 4194: 4175: 4135: 4129: 4102: 4096: 4079: 4075: 4065: 4032: 4028: 4018: 3993: 3989: 3979: 3944: 3910: 3876: 3872: 3823: 3819: 3809: 3798:. Retrieved 3789: 3779: 3767:. Retrieved 3763: 3706: 3702: 3622: 3615: 3590: 3586: 3580: 3539: 3535: 3529: 3496: 3492: 3486: 3461: 3457: 3451: 3410: 3406: 3400: 3365: 3361: 3333: 3292: 3288: 3278: 3245: 3241: 3215:. Retrieved 3211: 3202: 3169: 3163: 3157: 3146:the original 3117: 3111: 3098: 3087:. Retrieved 3083: 3073: 3048: 3042: 3036: 2991: 2986: 2929: 2923: 2917: 2892: 2888: 2882: 2847: 2843: 2833: 2809: 2802: 2793: 2789: 2739: 2735: 2725: 2674: 2670: 2664: 2639: 2635: 2629: 2588: 2584: 2578: 2537: 2533: 2527: 2516:. Retrieved 2512:the original 2497: 2464: 2460: 2454: 2421: 2417: 2411: 2388: 2384: 2374: 2363:. Retrieved 2359: 2311: 2305: 2299: 2274: 2269: 2263: 2236: 2230: 2220: 2195: 2191: 2185: 2168: 2163: 2157: 2124: 2118: 2112: 2059: 2055: 2045: 1996: 1992: 1986: 1961: 1957: 1915: 1911: 1905: 1881: 1815: 1805: 1796: 1761: 1755: 1680: 1661: 1658: 1644:flood basalt 1624: 1615: 1607: 1587: 1571: 1562: 1550: 1525: 1514: 1460: 1428: 1424: 1386: 1373: 1369:South Africa 1349: 1333: 1329: 1326:Magma source 1277: 1258: 1242:Gulf of Aden 1234: 1211: 1207: 1195:Bismarck Sea 1168: 1140:delamination 1128: 1112: 1101: 1090: 1088:hypothesis. 1081:geochemistry 1073:petrogenesis 1068:mantle plume 1065: 1038:Geophysicist 1035: 1011: 1002: 979: 941: 937: 933:Rhine Graben 925: 917: 898: 867:stress field 852: 834:plate theory 833: 826: 823:Plate theory 817: 805:Karoo-Ferrar 797:Deccan Traps 790: 786: 769: 725: 716:upper mantle 712: 692:metasomatize 681: 638: 619: 616:Geochemistry 606: 602: 592: 588: 584: 578: 548: 536: 517: 502: 498: 462: 453:geochemistry 442: 438: 428:lower mantle 421: 414: 410: 386: 382: 366: 363: 354: 348: 327:Hydrodynamic 308: 300: 291: 271:Karoo-Ferrar 263:Deccan traps 255: 247: 238: 220: 181: 169: 151:such as the 124:mantle plume 122: 120: 92: 67: 66: 53: 38:Mantle plume 30: 6280:Geodynamics 5731:10 December 4660:: 403–421. 3769:10 December 3344:UC Berkeley 3172:(11): n/a. 2062:(1): 3370. 1502:Yellowstone 1471:Aegir Ridge 1394:Yellowstone 1318:ridges and 1302:chain, the 1252:around 1.1 1203:New Zealand 1191:Manus Basin 1173:(e.g., the 1000:upwelling. 863:lithosphere 688:lithosphere 686:and mantle 567:lithosphere 494:Yellowstone 449:geophysical 445:noble gases 372:shows that 306:it starts. 227:lithosphere 210:. However, 101:Plume model 6274:Categories 5378:2013-06-13 4730:1911/77150 4613:: 103038. 4468:: 102926. 4205:Terra Nova 3800:2019-12-07 3217:2011-01-19 3089:2011-01-18 2796:: 203–213. 2677:(5): n/a. 2518:2006-09-05 2365:2011-01-10 1747:References 1672:Earthscope 1531:under the 1357:Great Dyke 1220:and early 1218:Cretaceous 1171:rift zones 1135:trenches). 1066:This, the 1049:convection 1019:subduction 829:hypothesis 756:Cape Verde 722:Seismology 337:See also: 172:hypothesis 139:, such as 129:convection 111:superplume 89:Mechanisms 69:Intraplate 32:duplicates 6295:Volcanism 6212:130262336 5768:226685034 5373:129593362 5012:Geosphere 4682:135335764 4635:213120291 4492:202195975 4233:128844177 3971:226685034 3683:ignored ( 3673:cite book 3665:129018987 3378:CiteSeerX 3325:205245093 3194:135191884 2874:1674-9871 2772:197568184 2764:0012-821X 2742:: 60–67. 2709:1525-2027 2656:0084-6597 2613:0028-0836 2562:0084-6597 2149:129327249 2086:2041-1723 2037:205245093 2021:0028-0836 1824:CiteSeerX 1788:240954389 1764:: 52–59. 1740:Verneshot 1610:seamounts 1480:transform 1439:Greenland 1304:Marquesas 1250:Laurentia 1222:Paleocene 1214:Paleozoic 1144:isostatic 1077:petrology 1023:volatiles 752:Galapagos 748:Marquesas 736:Macdonald 649:magnesium 643:(Fe) and 486:Kerguelen 374:subducted 251:heat flux 192:nucleates 165:volcanism 75:volcanism 71:volcanism 6082:54945634 6047:55429423 5809:44911298 5801:12738845 5623:19972709 5615:11557870 5573:23559231 5530:23766309 5191:15398800 5183:12881572 4954:10073932 4907:54675841 4541:16873612 4313:45568428 3893:55216047 3873:Elements 3867:(2007). 3848:44911298 3840:12738845 3794:Archived 3758:(2020). 3731:17731151 3564:17779134 3435:17837768 3317:26333468 3270:26339001 3142:46160705 3134:10583949 2981:(1998). 2962:42531670 2954:15514153 2717:59354360 2700:1912/451 2621:11405514 2570:53070176 2382:(2005). 2336:33087425 2104:31358746 2029:26333468 1940:28014204 1879:(2010). 1686:See also 1662:For the 1456:basaltic 1435:Cenozoic 1383:Examples 1377:Pangaean 1363:and the 1361:Zimbabwe 1341:Pitcairn 1337:Cameroon 1316:Pukapuka 1290:and the 1240:and the 1045:hotspots 1031:back-arc 855:volcanic 815:(CAMP). 809:Gondwana 732:Pitcairn 645:titanium 524:Helium-4 520:Big Bang 514:Helium-3 417:D″ layer 178:Concepts 137:hotspots 6192:Bibcode 6163:Bibcode 6130:Bibcode 6027:Bibcode 5967:Bibcode 5934:Bibcode 5830:Bibcode 5781:Science 5663:Bibcode 5595:Science 5553:Bibcode 5545:Science 5510:Bibcode 5502:Science 5475:Bibcode 5437:Bibcode 5402:Bibcode 5353:Science 5322:Bibcode 5161:Bibcode 5153:Science 5053:Bibcode 4981:Bibcode 4934:Bibcode 4926:Science 4849:Bibcode 4799:Bibcode 4758:Bibcode 4709:Bibcode 4701:Geology 4662:Bibcode 4615:Bibcode 4576:Bibcode 4568:Geology 4549:2261015 4519:Bibcode 4511:Science 4470:Bibcode 4421:Bibcode 4293:Bibcode 4213:Bibcode 4057:4145715 4037:Bibcode 3998:Bibcode 3820:Science 3739:1672460 3711:Bibcode 3703:Science 3627:Bibcode 3595:Bibcode 3587:Geology 3572:6374682 3544:Bibcode 3536:Science 3521:4351454 3501:Bibcode 3466:Bibcode 3443:9147772 3415:Bibcode 3407:Science 3370:Bibcode 3297:Bibcode 3250:Bibcode 3242:Science 3174:Bibcode 3113:Science 3053:Bibcode 3028:9689038 2996:Bibcode 2934:Bibcode 2925:Science 2897:Bibcode 2852:Bibcode 2744:Bibcode 2679:Bibcode 2593:Bibcode 2542:Bibcode 2489:4242617 2469:Bibcode 2446:4356576 2426:Bibcode 2316:Bibcode 2279:Bibcode 2241:Bibcode 2200:Bibcode 2129:Bibcode 2095:6662702 2064:Bibcode 2001:Bibcode 1966:Bibcode 1958:Geology 1920:Bibcode 1734:Orogeny 1593:ridges. 1581:in the 1521:Wyoming 1511:Oregon. 1447:Pangaea 1443:Eurasia 1412:Iceland 1390:Iceland 1345:Gambier 1300:Austral 1238:Red Sea 1193:in the 1185:in the 1179:Iceland 1163:Pacific 1152:orogeny 1148:erosion 1085:Seismic 984:in the 661:alumina 610:Iceland 540:Olivine 532:thorium 528:uranium 490:Tristan 470:RĂ©union 202:in the 194:at the 145:Iceland 42:Please 6235:  6210:  6080:  6045:  6002:  5865:  5822:Lithos 5807:  5799:  5766:  5756:  5709:  5690:  5638:  5621:  5613:  5571:  5528:  5371:  5286:  5253:  5220:  5189:  5181:  5130:  5094:  4952:  4905:  4895:  4819:257228 4817:  4680:  4633:  4547:  4539:  4490:  4390:  4362:  4334:  4311:  4285:Nature 4262:  4231:  4182:  4150:  4117:  4055:  4029:Nature 3969:  3959:  3917:  3891:  3846:  3838:  3737:  3729:  3663:  3653:  3570:  3562:  3519:  3493:Nature 3441:  3433:  3380:  3323:  3315:  3289:Nature 3268:  3192:  3140:  3132:  3026:  3016:  2960:  2952:  2872:  2821:  2770:  2762:  2715:  2707:  2654:  2619:  2611:  2585:Nature 2568:  2560:  2487:  2461:Nature 2444:  2418:Nature 2399:  2334:  2307:Nature 2147:  2102:  2092:  2084:  2035:  2027:  2019:  1993:Nature 1938:  1912:Nature 1893:  1844:  1826:  1786:  1776:  1642:, and 1568:Hawaii 1546:Valles 1495:Deccan 1478:ridge- 1466:ridge. 1398:Hawaii 1396:, and 1310:, the 990:mantle 911:, and 799:, the 760:Canary 758:, and 744:Tahiti 575:mantle 551:osmium 544:dunite 492:, and 480:, the 476:, the 472:, the 242:models 200:diapir 153:Deccan 147:, and 141:Hawaii 6208:S2CID 6078:S2CID 6043:S2CID 5805:S2CID 5764:S2CID 5619:S2CID 5467:(PDF) 5369:S2CID 5308:(PDF) 5187:S2CID 4903:S2CID 4815:S2CID 4678:S2CID 4631:S2CID 4545:S2CID 4488:S2CID 4309:S2CID 4229:S2CID 4053:S2CID 3967:S2CID 3889:S2CID 3844:S2CID 3735:S2CID 3661:S2CID 3568:S2CID 3517:S2CID 3439:S2CID 3321:S2CID 3190:S2CID 3149:(PDF) 3138:S2CID 3108:(PDF) 3019:21296 2958:S2CID 2768:S2CID 2713:S2CID 2617:S2CID 2566:S2CID 2485:S2CID 2442:S2CID 2332:S2CID 2145:S2CID 2033:S2CID 1936:S2CID 1810:. In 1784:S2CID 1541:dikes 1491:Karoo 1288:Samoa 1284:shear 1248:from 1154:, or 1017:. At 986:crust 849:rise. 838:magma 740:Samoa 579:track 571:magma 358:slabs 6233:ISBN 6000:ISBN 5863:ISBN 5797:PMID 5754:ISBN 5733:2020 5707:ISBN 5688:ISBN 5636:ISBN 5611:PMID 5569:PMID 5526:PMID 5284:ISBN 5251:ISBN 5218:ISBN 5179:PMID 5128:ISBN 5092:ISBN 4950:PMID 4893:ISBN 4537:PMID 4388:ISBN 4360:ISBN 4332:ISBN 4260:ISBN 4180:ISBN 4148:ISBN 4115:ISBN 3957:ISBN 3915:ISBN 3836:PMID 3771:2020 3727:PMID 3685:help 3651:ISBN 3560:PMID 3431:PMID 3313:PMID 3266:PMID 3130:PMID 3024:PMID 2950:PMID 2870:ISSN 2819:ISBN 2760:ISSN 2705:ISSN 2652:ISSN 2609:ISSN 2558:ISSN 2397:ISBN 2100:PMID 2082:ISSN 2025:PMID 2017:ISSN 1891:ISBN 1842:ISBN 1774:ISBN 1556:and 1493:and 1339:and 1306:and 1296:Cook 1278:The 1197:off 1029:and 988:and 982:melt 918:The 827:The 803:the 641:iron 542:and 530:and 484:and 170:The 155:and 6225:doi 6200:doi 6171:doi 6138:doi 6103:doi 6068:doi 6035:doi 5992:doi 5975:doi 5963:268 5942:doi 5930:208 5909:doi 5890:doi 5886:234 5855:doi 5838:doi 5826:123 5789:doi 5785:300 5746:doi 5671:doi 5659:114 5603:doi 5599:293 5561:doi 5549:340 5518:doi 5506:340 5483:doi 5445:doi 5433:311 5410:doi 5398:159 5361:doi 5357:275 5330:doi 5318:236 5276:doi 5243:doi 5210:doi 5169:doi 5157:301 5120:doi 5084:doi 5061:doi 5049:114 5020:doi 4989:doi 4977:117 4942:doi 4930:283 4885:doi 4857:doi 4845:114 4807:doi 4795:245 4766:doi 4754:102 4725:hdl 4717:doi 4670:doi 4658:744 4623:doi 4611:206 4584:doi 4527:doi 4515:313 4478:doi 4466:206 4429:doi 4417:162 4301:doi 4289:244 4252:doi 4221:doi 4140:doi 4107:doi 4084:doi 4045:doi 4033:230 4006:doi 3949:doi 3881:doi 3828:doi 3824:300 3719:doi 3707:269 3643:hdl 3635:doi 3603:doi 3552:doi 3540:253 3509:doi 3497:333 3474:doi 3423:doi 3411:246 3388:doi 3366:205 3305:doi 3293:525 3258:doi 3246:349 3182:doi 3122:doi 3118:286 3061:doi 3014:PMC 3004:doi 2942:doi 2930:306 2905:doi 2893:262 2860:doi 2752:doi 2740:521 2695:hdl 2687:doi 2644:doi 2601:doi 2589:385 2550:doi 2477:doi 2465:377 2434:doi 2422:372 2324:doi 2312:272 2287:doi 2249:doi 2208:doi 2173:doi 2137:doi 2090:PMC 2072:doi 2009:doi 1997:525 1974:doi 1928:doi 1916:198 1834:doi 1766:doi 1445:as 1367:in 1359:in 1267:to 1205:). 1079:or 679:). 663:(Al 636:). 143:or 73:is 6276:: 6231:. 6206:. 6198:. 6188:28 6186:. 6169:. 6159:48 6157:. 6153:. 6136:. 6124:. 6120:. 6099:52 6097:. 6093:. 6076:. 6064:44 6062:. 6058:. 6041:. 6033:. 6023:54 6021:. 6017:. 5998:. 5973:. 5961:. 5957:. 5940:. 5928:. 5924:. 5884:. 5880:. 5861:. 5836:. 5824:. 5820:. 5803:. 5795:. 5783:. 5779:. 5762:. 5752:. 5724:. 5669:. 5657:. 5653:. 5617:. 5609:. 5597:. 5593:. 5567:. 5559:. 5547:. 5524:. 5516:. 5504:. 5481:. 5469:. 5443:. 5431:. 5408:. 5396:. 5367:. 5355:. 5351:. 5328:. 5316:. 5310:. 5282:. 5249:. 5216:. 5185:. 5177:. 5167:. 5155:. 5151:. 5126:. 5090:. 5059:. 5047:. 5043:. 5014:. 5010:. 4987:. 4975:. 4971:. 4948:. 4940:. 4928:. 4924:. 4901:. 4891:. 4869:^ 4855:. 4843:. 4839:. 4827:^ 4813:. 4805:. 4793:. 4789:. 4764:. 4752:. 4748:. 4723:. 4715:. 4705:42 4703:. 4699:. 4676:. 4668:. 4656:. 4652:. 4629:. 4621:. 4609:. 4605:. 4582:. 4572:41 4570:. 4566:. 4543:. 4535:. 4525:. 4513:. 4509:. 4486:. 4476:. 4464:. 4460:. 4443:^ 4427:. 4415:. 4411:. 4374:^ 4346:^ 4307:. 4299:. 4287:. 4283:. 4258:. 4227:. 4219:. 4209:25 4207:. 4203:. 4162:^ 4146:. 4113:. 4080:56 4078:. 4074:. 4051:. 4043:. 4031:. 4027:. 4004:. 3994:41 3992:. 3988:. 3965:. 3955:. 3929:^ 3901:^ 3887:. 3875:. 3871:. 3856:^ 3842:. 3834:. 3822:. 3818:. 3788:. 3762:. 3747:^ 3733:. 3725:. 3717:. 3705:. 3693:^ 3677:: 3675:}} 3671:{{ 3659:. 3649:. 3641:. 3633:. 3601:. 3591:24 3589:. 3566:. 3558:. 3550:. 3538:. 3515:. 3507:. 3495:. 3472:. 3462:99 3460:. 3437:. 3429:. 3421:. 3409:. 3386:. 3376:. 3364:. 3352:^ 3346:). 3319:. 3311:. 3303:. 3291:. 3264:. 3256:. 3244:. 3226:^ 3210:. 3188:. 3180:. 3168:. 3136:. 3128:. 3116:. 3110:. 3082:. 3059:. 3049:63 3047:. 3022:. 3012:. 3002:. 2992:95 2985:. 2970:^ 2956:. 2948:. 2940:. 2928:. 2903:. 2891:. 2868:. 2858:. 2846:. 2842:. 2794:56 2792:. 2780:^ 2766:. 2758:. 2750:. 2738:. 2734:. 2711:. 2703:. 2693:. 2685:. 2673:. 2650:. 2640:14 2638:. 2615:. 2607:. 2599:. 2587:. 2564:. 2556:. 2548:. 2538:38 2536:. 2506:. 2483:. 2475:. 2463:. 2440:. 2432:. 2420:. 2391:. 2358:. 2344:^ 2330:. 2322:. 2310:. 2285:. 2275:99 2247:. 2235:. 2229:. 2206:. 2196:54 2194:. 2169:54 2143:. 2135:. 2125:80 2123:. 2098:. 2088:. 2080:. 2070:. 2060:10 2058:. 2054:. 2031:. 2023:. 2015:. 2007:. 1995:. 1972:. 1962:19 1960:. 1948:^ 1934:. 1926:. 1914:. 1889:. 1885:. 1856:^ 1840:. 1832:. 1818:. 1782:. 1772:. 1392:, 1322:. 1256:. 1254:Ga 1230:Ma 1150:, 907:, 754:, 750:, 746:, 742:, 738:, 734:, 708:Pb 706:, 704:Th 702:, 700:Rb 698:, 677:Ta 675:, 673:Nb 496:. 488:, 455:. 447:, 349:D″ 121:A 109:A 6241:. 6227:: 6214:. 6202:: 6194:: 6177:. 6173:: 6165:: 6144:. 6140:: 6132:: 6126:8 6111:. 6105:: 6084:. 6070:: 6049:. 6037:: 6029:: 6008:. 5994:: 5981:. 5977:: 5969:: 5948:. 5944:: 5936:: 5915:. 5911:: 5896:. 5892:: 5871:. 5857:: 5844:. 5840:: 5832:: 5811:. 5791:: 5770:. 5748:: 5735:. 5715:. 5696:. 5677:. 5673:: 5665:: 5644:. 5625:. 5605:: 5575:. 5563:: 5555:: 5532:. 5520:: 5512:: 5489:. 5485:: 5477:: 5451:. 5447:: 5439:: 5416:. 5412:: 5404:: 5381:. 5363:: 5336:. 5332:: 5324:: 5292:. 5278:: 5259:. 5245:: 5226:. 5212:: 5193:. 5171:: 5163:: 5136:. 5122:: 5100:. 5086:: 5067:. 5063:: 5055:: 5028:. 5022:: 5016:8 4995:. 4991:: 4983:: 4956:. 4944:: 4936:: 4909:. 4887:: 4863:. 4859:: 4851:: 4821:. 4809:: 4801:: 4774:. 4768:: 4760:: 4733:. 4727:: 4719:: 4711:: 4684:. 4672:: 4664:: 4637:. 4625:: 4617:: 4590:. 4586:: 4578:: 4551:. 4529:: 4521:: 4494:. 4480:: 4472:: 4437:. 4431:: 4423:: 4396:. 4368:. 4340:. 4315:. 4303:: 4295:: 4268:. 4254:: 4235:. 4223:: 4215:: 4188:. 4156:. 4142:: 4123:. 4109:: 4090:. 4086:: 4059:. 4047:: 4039:: 4012:. 4008:: 4000:: 3973:. 3951:: 3923:. 3895:. 3883:: 3877:1 3850:. 3830:: 3803:. 3773:. 3741:. 3721:: 3713:: 3687:) 3667:. 3645:: 3637:: 3629:: 3609:. 3605:: 3597:: 3574:. 3554:: 3546:: 3523:. 3511:: 3503:: 3480:. 3476:: 3468:: 3445:. 3425:: 3417:: 3394:. 3390:: 3372:: 3327:. 3307:: 3299:: 3272:. 3260:: 3252:: 3220:. 3196:. 3184:: 3176:: 3170:7 3124:: 3092:. 3067:. 3063:: 3055:: 3030:. 3006:: 2998:: 2964:. 2944:: 2936:: 2911:. 2907:: 2899:: 2876:. 2862:: 2854:: 2848:9 2827:. 2774:. 2754:: 2746:: 2719:. 2697:: 2689:: 2681:: 2675:6 2658:. 2646:: 2623:. 2603:: 2595:: 2572:. 2552:: 2544:: 2521:. 2491:. 2479:: 2471:: 2448:. 2436:: 2428:: 2405:. 2368:. 2338:. 2326:: 2318:: 2293:. 2289:: 2281:: 2257:. 2251:: 2243:: 2237:2 2214:. 2210:: 2202:: 2179:. 2175:: 2151:. 2139:: 2131:: 2106:. 2074:: 2066:: 2039:. 2011:: 2003:: 1980:. 1976:: 1968:: 1942:. 1930:: 1922:: 1899:. 1850:. 1836:: 1808:" 1804:" 1790:. 1768:: 1343:- 1298:- 1165:. 1158:. 877:. 696:K 669:3 667:O 665:2 581:. 117:) 58:) 54:( 40:.

Index

duplicates
Mantle plume
discuss this issue
summary style
Intraplate
volcanism
tectonic plates
plate tectonics
impact events

superplume
low-velocity zone
mantle plume
convection
Earth's mantle
hotspots
Hawaii
Iceland
large igneous provinces
Deccan
Siberian traps
tectonic plate boundaries
volcanism
hypothesis
J. Tuzo Wilson
W. Jason Morgan
nucleates
core-mantle boundary
diapir
Earth's crust

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑