Knowledge

Inverse mean curvature flow

Source 📝

368:
In 1990, Claus Gerhardt showed that this situation is characteristic of the more general case of mean-convex star-shaped smooth hypersurfaces of Euclidean space. In particular, for any such initial data, the inverse mean curvature flow exists for all positive time and consists only of mean-convex and
673:
As a consequence of Huisken and Ilmanen's extension of Geroch's monotonicity, they were able to use the Hawking mass to interpolate between the surface area of an "outermost" minimal surface and the ADM mass of an asymptotically flat three-dimensional Riemannian manifold of nonnegative scalar
1015: 369:
star-shaped smooth hypersurfaces. Moreover the surface area grows exponentially, and after a rescaling that fixes the surface area, the surfaces converge smoothly to a round sphere. The geometric estimates in Gerhardt's work follow from the
183: 529: 624:. However, the elliptic and weak setting gives a broader context, as such boundaries can have irregularities and can jump discontinuously, which is impossible in the usual inverse mean curvature flow. 908: 903: 808: 373:; the asymptotic roundness then becomes a consequence of the Krylov-Safonov theorem. In addition, Gerhardt's methods apply simultaneously to more general curvature-based hypersurface flows. 360: 864: 727: 1085: 895: 107: 767: 747: 1172: 666:
increases. In the simpler case of a smooth inverse mean curvature flow, this amounts to a local calculation and was shown in the 1970s by the physicist
433: 441: 670:. In Huisken and Ilmanen's setting, it is more nontrivial due to the possible irregularities and discontinuities of the surfaces involved. 1291: 1226: 1128: 620:} moves through the hypersurfaces arising in a inverse mean curvature flow, with the initial condition given by the boundary of 376:
As is typical of geometric flows, IMCF solutions in more general situations often have finite-time singularities, meaning that
1337: 867: 1010:{\displaystyle {\begin{aligned}{\frac {\text{d}}{{\text{d}}t}}r(t)=&{\frac {r(t)}{m}},\\r(0)=&r_{0}.\end{aligned}}} 675: 50: 248:
has mean curvature which is nowhere zero, then there exists a unique inverse mean curvature flow whose "initial data" is
1287: 772: 365:
So a family of concentric round hyperspheres forms an inverse mean curvature flow when the radii grow exponentially.
46: 820: 304: 1332: 1021: 813:
Due to the rotational symmetry of the sphere (or in general, due to the invariance of mean curvature under
697: 547: 22: 1030: 1181: 571: 1286:. Second Session of the Centro Internazionale Matematico Estivo (Cetraro, Italy, June 15–22, 1996). 397: 1278:; Polden, Alexander (1999). "Geometric evolution equations for hypersurfaces". In Hildebrandt, S.; 409: 298:. As such, such a family of concentric spheres forms an inverse mean curvature flow if and only if 42: 1197: 54: 26: 370: 562:
which is asymptotically flat or asymptotically conic, and for any precompact and open subset
178:{\displaystyle {\frac {\partial F}{\partial t}}={\frac {-\mathbf {H} }{|\mathbf {H} |^{2}}},} 1311: 1295: 1263: 1245: 1235: 1205: 1189: 1155: 1137: 636: 550:. Huisken and Ilmanen proved that for any complete and connected smooth Riemannian manifold 1307: 1259: 1151: 873: 1315: 1303: 1275: 1267: 1255: 1250: 1217: 1209: 1159: 1147: 413: 265: 221: 73: 690:
A simple example of inverse mean curvature flow is given by a family of concentric round
260:
A simple example of inverse mean curvature flow is given by a family of concentric round
1185: 1279: 1193: 752: 732: 401: 195: 34: 1326: 1201: 1167: 667: 543: 640: 691: 417: 405: 261: 38: 1240: 1221: 1142: 1123: 639:, Huisken and Ilmanen showed that a certain geometric quantity known as the 814: 1299: 1222:"The inverse mean curvature flow and the Riemannian Penrose inequality" 590:; moreover such a function is uniquely determined on the complement of 524:{\displaystyle \operatorname {div} _{g}{\frac {du}{|du|_{g}}}=|du|_{g}} 420:
replaced the IMCF equation, for hypersurfaces in a Riemannian manifold
79:, an inverse mean curvature flow consists of an open interval 1284:
Calculus of Variations and Geometric Evolution Problems
582:
which is a positive weak solution on the complement of
1033: 906: 876: 823: 775: 755: 735: 700: 444: 307: 110: 574:, there is a proper and locally Lipschitz function 1079: 1009: 889: 858: 802: 761: 741: 721: 523: 354: 177: 49:. It has been used to prove a certain case of the 803:{\displaystyle H={\frac {m}{r}}\in \mathbb {R} } 1124:"Flow of nonconvex hypersurfaces into spheres" 674:curvature. This settled a certain case of the 396:Following the seminal works of Yun Gang Chen, 1020:The solution of this ODE (obtained, e.g., by 60:Formally, given a pseudo-Riemannian manifold 8: 817:) the inverse mean curvature flow equation 1173:Annals of the New York Academy of Sciences 682:Example: inverse mean curvature flow of a 662:}, and is monotonically non-decreasing as 1249: 1239: 1141: 1067: 1063: 1053: 1032: 994: 945: 917: 911: 907: 905: 881: 875: 859:{\displaystyle \partial _{t}F=H^{-1}\nu } 844: 828: 822: 796: 795: 782: 774: 754: 734: 707: 703: 702: 699: 515: 510: 498: 486: 481: 469: 458: 449: 443: 328: 306: 163: 158: 152: 147: 140: 134: 111: 109: 380:often cannot be taken to be of the form 355:{\displaystyle r'(t)={\frac {r(t)}{n}}.} 1097: 546:of this equation can be specified by a 268:. If the dimension of such a sphere is 434:elliptic partial differential equation 7: 392:Huisken and Ilmanen's weak solutions 643:can be defined for the boundary of 255: 1194:10.1111/j.1749-6632.1973.tb41445.x 870:, for an initial sphere of radius 825: 722:{\displaystyle \mathbb {R} ^{m+1}} 236:, and if a given smooth immersion 122: 114: 31:inverse mean curvature flow (IMCF) 14: 1080:{\displaystyle r(t)=r_{0}e^{t/m}} 1227:Journal of Differential Geometry 1129:Journal of Differential Geometry 153: 141: 1251:11858/00-001M-0000-0013-5581-4 1043: 1037: 982: 976: 957: 951: 937: 931: 868:ordinary differential equation 749:-dimensional sphere of radius 511: 499: 482: 470: 391: 340: 334: 322: 316: 256:Gerhardt's convergence theorem 159: 148: 21:In the mathematical fields of 1: 1170:(1973). "Energy extraction". 676:Riemannian Penrose inequality 400:, and Shun'ichi Goto, and of 276:, then its mean curvature is 51:Riemannian Penrose inequality 1288:Lecture Notes in Mathematics 586:and which is nonpositive on 1113:Huisken and Polden, page 59 729:. The mean curvature of an 601:increases, the boundary of 570:whose boundary is a smooth 534:for a real-valued function 1354: 1290:. Vol. 1713. Berlin: 53:, which is of interest in 47:pseudo-Riemannian manifold 631:is three-dimensional and 627:In the special case that 1122:Gerhardt, Claus (1990). 1220:; Ilmanen, Tom (2001). 1022:separation of variables 1241:10.4310/jdg/1090349447 1143:10.4310/jdg/1214445048 1081: 1011: 891: 860: 804: 763: 743: 723: 525: 356: 179: 1338:Differential geometry 1082: 1012: 892: 890:{\displaystyle r_{0}} 861: 805: 764: 744: 724: 597:The idea is that, as 548:variational principle 526: 357: 196:mean curvature vector 180: 23:differential geometry 1031: 904: 874: 821: 773: 753: 733: 698: 686:-dimensional spheres 572:embedded submanifold 442: 305: 108: 1186:1973NYASA.224..108G 410:mean curvature flow 1300:10.1007/BFb0092667 1294:. pp. 45–84. 1104:Huisken and Polden 1077: 1007: 1005: 887: 856: 800: 759: 739: 719: 521: 352: 272:and its radius is 216:is Riemannian, if 175: 55:general relativity 27:geometric analysis 964: 926: 920: 915: 790: 762:{\displaystyle r} 742:{\displaystyle m} 493: 371:maximum principle 347: 198:of the immersion 170: 129: 83:and a smooth map 1345: 1319: 1276:Huisken, Gerhard 1271: 1253: 1243: 1218:Huisken, Gerhard 1213: 1163: 1145: 1114: 1111: 1105: 1102: 1086: 1084: 1083: 1078: 1076: 1075: 1071: 1058: 1057: 1016: 1014: 1013: 1008: 1006: 999: 998: 965: 960: 946: 927: 925: 921: 918: 913: 912: 896: 894: 893: 888: 886: 885: 865: 863: 862: 857: 852: 851: 833: 832: 809: 807: 806: 801: 799: 791: 783: 768: 766: 765: 760: 748: 746: 745: 740: 728: 726: 725: 720: 718: 717: 706: 685: 665: 661: 637:scalar curvature 635:has nonnegative 634: 630: 623: 619: 600: 593: 589: 585: 581: 577: 569: 565: 561: 541: 537: 530: 528: 527: 522: 520: 519: 514: 502: 494: 492: 491: 490: 485: 473: 467: 459: 454: 453: 431: 387: 379: 361: 359: 358: 353: 348: 343: 329: 315: 297: 296: 294: 293: 288: 285: 275: 271: 251: 247: 243: 239: 235: 219: 215: 208: 193: 184: 182: 181: 176: 171: 169: 168: 167: 162: 156: 151: 145: 144: 135: 130: 128: 120: 112: 100: 96: 86: 82: 78: 71: 1353: 1352: 1348: 1347: 1346: 1344: 1343: 1342: 1323: 1322: 1274: 1216: 1166: 1121: 1118: 1117: 1112: 1108: 1103: 1099: 1094: 1059: 1049: 1029: 1028: 1004: 1003: 990: 988: 970: 969: 947: 943: 916: 902: 901: 877: 872: 871: 866:reduces to the 840: 824: 819: 818: 771: 770: 751: 750: 731: 730: 701: 696: 695: 688: 683: 663: 644: 632: 628: 621: 602: 598: 591: 587: 583: 579: 575: 567: 563: 551: 539: 535: 509: 480: 468: 460: 445: 440: 439: 421: 414:Gerhard Huisken 394: 381: 377: 330: 308: 303: 302: 289: 286: 281: 280: 278: 277: 273: 269: 266:Euclidean space 258: 249: 245: 241: 237: 225: 217: 213: 199: 189: 157: 146: 136: 121: 113: 106: 105: 98: 88: 84: 80: 76: 74:smooth manifold 61: 19: 12: 11: 5: 1351: 1349: 1341: 1340: 1335: 1333:Geometric flow 1325: 1324: 1321: 1320: 1272: 1234:(3): 353–437. 1214: 1180:(1): 108–117. 1168:Geroch, Robert 1164: 1136:(1): 299–314. 1116: 1115: 1106: 1096: 1095: 1093: 1090: 1089: 1088: 1074: 1070: 1066: 1062: 1056: 1052: 1048: 1045: 1042: 1039: 1036: 1018: 1017: 1002: 997: 993: 989: 987: 984: 981: 978: 975: 972: 971: 968: 963: 959: 956: 953: 950: 944: 942: 939: 936: 933: 930: 924: 910: 909: 884: 880: 855: 850: 847: 843: 839: 836: 831: 827: 798: 794: 789: 786: 781: 778: 758: 738: 716: 713: 710: 705: 687: 680: 544:Weak solutions 532: 531: 518: 513: 508: 505: 501: 497: 489: 484: 479: 476: 472: 466: 463: 457: 452: 448: 402:Lawrence Evans 398:Yoshikazu Giga 393: 390: 363: 362: 351: 346: 342: 339: 336: 333: 327: 324: 321: 318: 314: 311: 257: 254: 186: 185: 174: 166: 161: 155: 150: 143: 139: 133: 127: 124: 119: 116: 35:geometric flow 18:Geometric flow 17: 13: 10: 9: 6: 4: 3: 2: 1350: 1339: 1336: 1334: 1331: 1330: 1328: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1252: 1247: 1242: 1237: 1233: 1229: 1228: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1174: 1169: 1165: 1161: 1157: 1153: 1149: 1144: 1139: 1135: 1131: 1130: 1125: 1120: 1119: 1110: 1107: 1101: 1098: 1091: 1072: 1068: 1064: 1060: 1054: 1050: 1046: 1040: 1034: 1027: 1026: 1025: 1023: 1000: 995: 991: 985: 979: 973: 966: 961: 954: 948: 940: 934: 928: 922: 900: 899: 898: 882: 878: 869: 853: 848: 845: 841: 837: 834: 829: 816: 811: 792: 787: 784: 779: 776: 756: 736: 714: 711: 708: 693: 681: 679: 677: 671: 669: 668:Robert Geroch 660: 656: 652: 648: 642: 638: 625: 618: 614: 610: 606: 595: 573: 559: 555: 549: 545: 516: 506: 503: 495: 487: 477: 474: 464: 461: 455: 450: 446: 438: 437: 436: 435: 429: 425: 419: 415: 411: 407: 403: 399: 389: 385: 374: 372: 366: 349: 344: 337: 331: 325: 319: 312: 309: 301: 300: 299: 292: 284: 267: 263: 253: 233: 229: 223: 210: 206: 202: 197: 192: 172: 164: 137: 131: 125: 117: 104: 103: 102: 95: 91: 75: 69: 65: 58: 56: 52: 48: 44: 40: 36: 32: 28: 24: 16: 1283: 1231: 1225: 1177: 1171: 1133: 1127: 1109: 1100: 1019: 812: 692:hyperspheres 689: 672: 658: 654: 650: 646: 641:Hawking mass 626: 616: 612: 608: 604: 596: 557: 553: 533: 427: 423: 395: 383: 375: 367: 364: 290: 282: 262:hyperspheres 259: 231: 227: 211: 204: 200: 190: 187: 93: 89: 67: 63: 59: 39:submanifolds 30: 20: 15: 418:Tom Ilmanen 406:Joel Spruck 1327:Categories 1316:0942.35047 1280:Struwe, M. 1268:1055.53052 1210:0942.53509 1160:0708.53045 1092:References 815:isometries 101:such that 43:Riemannian 1202:222086296 854:ν 846:− 826:∂ 793:∈ 456:⁡ 432:, by the 138:− 123:∂ 115:∂ 1292:Springer 1282:(eds.). 649: : 607: : 313:′ 230:) = dim( 1308:1731639 1260:1916951 1182:Bibcode 1152:1064876 657:) < 615:) < 408:on the 295:⁠ 279:⁠ 194:is the 1314:  1306:  1266:  1258:  1208:  1200:  1158:  1150:  1024:) is 222:closed 188:where 72:and a 1198:S2CID 244:into 234:) + 1 224:with 97:into 87:from 41:of a 33:is a 416:and 404:and 386:, ∞) 226:dim( 207:, ⋅) 25:and 1312:Zbl 1296:doi 1264:Zbl 1246:hdl 1236:doi 1206:Zbl 1190:doi 1178:224 1156:Zbl 1138:doi 810:. 769:is 694:in 578:on 566:of 538:on 447:div 264:in 240:of 220:is 212:If 45:or 37:of 1329:: 1310:. 1304:MR 1302:. 1262:. 1256:MR 1254:. 1244:. 1232:59 1230:. 1224:. 1204:. 1196:. 1188:. 1176:. 1154:. 1148:MR 1146:. 1134:32 1132:. 1126:. 897:, 678:. 594:. 556:, 542:. 426:, 412:, 388:. 252:. 209:. 92:× 66:, 57:. 29:, 1318:. 1298:: 1270:. 1248:: 1238:: 1212:. 1192:: 1184:: 1162:. 1140:: 1087:. 1073:m 1069:/ 1065:t 1061:e 1055:0 1051:r 1047:= 1044:) 1041:t 1038:( 1035:r 1001:. 996:0 992:r 986:= 983:) 980:0 977:( 974:r 967:, 962:m 958:) 955:t 952:( 949:r 941:= 938:) 935:t 932:( 929:r 923:t 919:d 914:d 883:0 879:r 849:1 842:H 838:= 835:F 830:t 797:R 788:r 785:m 780:= 777:H 757:r 737:m 715:1 712:+ 709:m 704:R 684:m 664:t 659:t 655:x 653:( 651:u 647:x 645:{ 633:g 629:M 622:U 617:t 613:x 611:( 609:u 605:x 603:{ 599:t 592:U 588:U 584:U 580:M 576:u 568:M 564:U 560:) 558:g 554:M 552:( 540:M 536:u 517:g 512:| 507:u 504:d 500:| 496:= 488:g 483:| 478:u 475:d 471:| 465:u 462:d 451:g 430:) 428:g 424:M 422:( 384:a 382:( 378:I 350:. 345:n 341:) 338:t 335:( 332:r 326:= 323:) 320:t 317:( 310:r 291:r 287:/ 283:n 274:r 270:n 250:f 246:M 242:S 238:f 232:S 228:M 218:S 214:g 205:t 203:( 201:F 191:H 173:, 165:2 160:| 154:H 149:| 142:H 132:= 126:t 118:F 99:M 94:S 90:I 85:F 81:I 77:S 70:) 68:g 64:M 62:(

Index

differential geometry
geometric analysis
geometric flow
submanifolds
Riemannian
pseudo-Riemannian manifold
Riemannian Penrose inequality
general relativity
smooth manifold
mean curvature vector
closed
hyperspheres
Euclidean space
maximum principle
Yoshikazu Giga
Lawrence Evans
Joel Spruck
mean curvature flow
Gerhard Huisken
Tom Ilmanen
elliptic partial differential equation
Weak solutions
variational principle
embedded submanifold
scalar curvature
Hawking mass
Robert Geroch
Riemannian Penrose inequality
hyperspheres
isometries

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.