Knowledge

Inversive distance

Source đź“ť

436:
for two disjoint circles is a finite cyclic sequence of additional circles, each of which is tangent to the two given circles and to its two neighbors in the chain. Steiner's porism states that if two circles have a Steiner chain, they have infinitely many such chains. The chain is allowed to wrap
645:, in which specified pairs of circles are tangent to each other. Although less is known about the existence of inversive distance circle packings than for tangent circle packings, it is known that, when they exist, they can be uniquely specified (up to Möbius transformations) by a given 358:
Although transforming the inversive distance in this way makes the distance formula more complicated, and prevents its application to crossing pairs of circles, it has the advantage that (like the usual distance for points on a line) the distance becomes additive for circles in a
592: 661:
at their vertices. However, for manifolds with spherical geometry, these packings are no longer unique. In turn, inversive-distance circle packings have been used to construct approximations to
353: 230: 601:
will support a Steiner chain. More generally, an arbitrary pair of disjoint circles can be approximated arbitrarily closely by pairs of circles that support Steiner chains whose
457:
whose numerator is the number of circles in the chain and whose denominator is the number of times it wraps around. All chains for the same two circles have the same value of
495: 381: 309: 76: 619: 515: 475: 455: 401: 289: 148: 128: 108: 695:
Bowers, Philip L.; Hurdal, Monica K. (2003), "Planar conformal mappings of piecewise flat surfaces", in Hege, Hans-Christian; Polthier, Konrad (eds.),
47:. One pair of circles can be transformed to another pair by a Möbius transformation if and only if both pairs have the same inversive distance. 851: 982: 843: 58:
of the set of circles in the inversive plane preserves the inversive distance between pairs of circles at some chosen fixed distance
523: 823: 786: 733: 641:) have a given inversive distance with respect to each other. This concept generalizes the circle packings described by the 317: 156: 51: 1061: 31:, regardless of whether the circles cross each other, are tangent to each other, or are disjoint from each other. 622: 268: 835: 44: 637:: a collection of circles such that a specified subset of pairs of circles (corresponding to the edges of a 650: 642: 980:
Ma, Jiming; Schlenker, Jean-Marc (2012), "Non-rigidity of spherical inversive distance circle packings",
264:(Some authors define the absolute inversive distance as the absolute value of the inversive distance.) 646: 477:. If the inversive distance between the two circles (after taking the inverse hyperbolic cosine) is 403:
as the inversive distance) one of their three pairwise distances will be the sum of the other two.
991: 962: 936: 763: 40: 20: 1034: 847: 662: 360: 271:
of the value given above, rather than the value itself. That is, rather than using the number
480: 366: 294: 61: 1001: 946: 901: 879: 857: 839: 795: 745: 700: 416: 257:
a value of −1 for two circles that are tangent to each other, one inside of the other,
1015: 958: 913: 809: 759: 712: 1011: 954: 909: 861: 805: 755: 708: 598: 87: 784:
Lester, J. A. (1991), "A Beckman-Quarles type theorem for Coxeter's inversive distance",
242:
a value of 1 for two circles that are tangent to each other and both outside each other,
1038: 827: 658: 634: 604: 500: 460: 440: 386: 274: 133: 113: 93: 1055: 966: 767: 437:
more than once around the two circles, and can be characterized by a rational number
433: 633:
The inversive distance has been used to define the concept of an inversive-distance
638: 896:
Bowers, Philip L.; Stephenson, Kenneth (2004), "8.2 Inversive distance packings",
78:, then it must be a Möbius transformation that preserves all inversive distances. 883: 704: 249: 900:, Memoirs of the American Mathematical Society, vol. 170, pp. 78–82, 653:
can be generalized broadly, to Euclidean or hyperbolic metrics on triangulated
1006: 1043: 950: 150:
between their centers, the inversive distance can be defined by the formula
55: 800: 654: 291:
as the inversive distance, the distance is instead defined as the number
905: 750: 597:
Conversely, every two disjoint circles for which this formula gives a
411:
It is also possible to define the inversive distance for circles on a
412: 28: 363:. That is, if three circles belong to a common pencil, then (using 996: 941: 260:
and a value less than −1 when one circle contains the other.
245:
a value between −1 and 1 for two circles that intersect,
874:
Deza, Michel Marie; Deza, Elena (2014), "Inversive distance",
649:
and set of Euclidean or hyperbolic inversive distances. This
587:{\displaystyle p={\frac {\pi }{\sin ^{-1}\tanh(\delta /2)}}.} 39:
The inversive distance remains unchanged if the circles are
927:
Luo, Feng (2011), "Rigidity of polyhedral surfaces, III",
699:, Mathematics and Visualization, Springer, pp. 3–34, 248:
a value of 0 for two circles that intersect each other at
625:
to the value of this formula for the given two circles.
898:
Uniformizing dessins and BelyÄ­ maps via circle packing
607: 526: 503: 483: 463: 443: 389: 369: 320: 297: 277: 159: 136: 116: 96: 64: 348:{\displaystyle \delta =\operatorname {arcosh} (I).} 225:{\displaystyle I={\frac {d^{2}-r^{2}-R^{2}}{2rR}}.} 613: 586: 509: 489: 469: 449: 395: 375: 347: 303: 283: 224: 142: 122: 102: 70: 27:is a way of measuring the "distance" between two 239:a value greater than 1 for two disjoint circles, 267:Some authors modify this formula by taking the 8: 54:holds true for the inversive distance: if a 1005: 995: 940: 799: 749: 606: 567: 543: 533: 525: 502: 482: 462: 442: 388: 368: 319: 296: 276: 199: 186: 173: 166: 158: 135: 115: 95: 63: 878:(3rd ed.), Springer, p. 369, 674: 738:Annali di Matematica Pura ed Applicata 728: 726: 724: 722: 983:Discrete & Computational Geometry 7: 779: 777: 690: 688: 686: 684: 682: 680: 678: 844:Mathematical Association of America 14: 697:Visualization and Mathematics III 787:Canadian Mathematical Bulletin 736:(1966), "Inversive distance", 575: 561: 339: 333: 1: 16:Concept in inversive geometry 884:10.1007/978-3-662-44342-2_19 517:can be found by the formula 705:10.1007/978-3-662-05105-4_1 1078: 1007:10.1007/s00454-012-9399-3 876:Encyclopedia of Distances 269:inverse hyperbolic cosine 836:New Mathematical Library 415:, or for circles in the 951:10.2140/gt.2011.15.2299 929:Geometry & Topology 623:rational approximations 490:{\displaystyle \delta } 376:{\displaystyle \delta } 304:{\displaystyle \delta } 86:For two circles in the 71:{\displaystyle \delta } 52:Beckman–Quarles theorem 801:10.4153/CMB-1991-079-6 643:circle packing theorem 615: 588: 511: 491: 471: 451: 397: 377: 349: 305: 285: 226: 144: 124: 104: 72: 43:, or transformed by a 616: 589: 512: 492: 472: 452: 398: 378: 350: 311:obeying the equation 306: 286: 227: 145: 125: 105: 73: 45:Möbius transformation 1039:"Inversive Distance" 846:, pp. 123–124, 647:maximal planar graph 605: 524: 501: 481: 461: 441: 387: 367: 318: 295: 275: 235:This formula gives: 157: 134: 114: 94: 62: 407:In other geometries 50:An analogue of the 1062:Inversive geometry 1035:Weisstein, Eric W. 832:Geometry Revisited 751:10.1007/BF02413734 663:conformal mappings 611: 584: 507: 487: 467: 447: 393: 373: 345: 301: 281: 222: 140: 120: 100: 68: 25:inversive distance 21:inversive geometry 906:10.1090/memo/0805 853:978-0-88385-619-2 734:Coxeter, H. S. M. 651:rigidity property 614:{\displaystyle p} 579: 510:{\displaystyle p} 470:{\displaystyle p} 450:{\displaystyle p} 396:{\displaystyle I} 361:pencil of circles 284:{\displaystyle I} 217: 143:{\displaystyle d} 123:{\displaystyle R} 103:{\displaystyle r} 1069: 1048: 1047: 1020: 1018: 1009: 999: 977: 971: 969: 944: 935:(4): 2299–2319, 924: 918: 916: 893: 887: 886: 871: 865: 864: 840:Washington, D.C. 838:, vol. 19, 820: 814: 812: 803: 781: 772: 770: 753: 730: 717: 715: 692: 620: 618: 617: 612: 593: 591: 590: 585: 580: 578: 571: 551: 550: 534: 516: 514: 513: 508: 496: 494: 493: 488: 476: 474: 473: 468: 456: 454: 453: 448: 417:hyperbolic plane 402: 400: 399: 394: 382: 380: 379: 374: 354: 352: 351: 346: 310: 308: 307: 302: 290: 288: 287: 282: 231: 229: 228: 223: 218: 216: 205: 204: 203: 191: 190: 178: 177: 167: 149: 147: 146: 141: 129: 127: 126: 121: 109: 107: 106: 101: 82:Distance formula 77: 75: 74: 69: 1077: 1076: 1072: 1071: 1070: 1068: 1067: 1066: 1052: 1051: 1033: 1032: 1029: 1024: 1023: 979: 978: 974: 926: 925: 921: 895: 894: 890: 873: 872: 868: 854: 824:Coxeter, H.S.M. 822: 821: 817: 783: 782: 775: 732: 731: 720: 694: 693: 676: 671: 659:angular defects 631: 629:Circle packings 603: 602: 599:rational number 539: 538: 522: 521: 499: 498: 479: 478: 459: 458: 439: 438: 430: 425: 409: 385: 384: 365: 364: 316: 315: 293: 292: 273: 272: 206: 195: 182: 169: 168: 155: 154: 132: 131: 130:, and distance 112: 111: 92: 91: 88:Euclidean plane 84: 60: 59: 37: 17: 12: 11: 5: 1075: 1073: 1065: 1064: 1054: 1053: 1050: 1049: 1028: 1027:External links 1025: 1022: 1021: 990:(3): 610–617, 972: 919: 888: 866: 852: 828:Greitzer, S.L. 815: 794:(4): 492–498, 773: 718: 673: 672: 670: 667: 635:circle packing 630: 627: 610: 595: 594: 583: 577: 574: 570: 566: 563: 560: 557: 554: 549: 546: 542: 537: 532: 529: 506: 486: 466: 446: 429: 428:Steiner chains 426: 424: 421: 408: 405: 392: 372: 356: 355: 344: 341: 338: 335: 332: 329: 326: 323: 300: 280: 262: 261: 258: 255: 254: 253: 243: 240: 233: 232: 221: 215: 212: 209: 202: 198: 194: 189: 185: 181: 176: 172: 165: 162: 139: 119: 99: 83: 80: 67: 36: 33: 15: 13: 10: 9: 6: 4: 3: 2: 1074: 1063: 1060: 1059: 1057: 1046: 1045: 1040: 1036: 1031: 1030: 1026: 1017: 1013: 1008: 1003: 998: 993: 989: 985: 984: 976: 973: 968: 964: 960: 956: 952: 948: 943: 938: 934: 930: 923: 920: 915: 911: 907: 903: 899: 892: 889: 885: 881: 877: 870: 867: 863: 859: 855: 849: 845: 841: 837: 833: 829: 825: 819: 816: 811: 807: 802: 797: 793: 789: 788: 780: 778: 774: 769: 765: 761: 757: 752: 747: 743: 739: 735: 729: 727: 725: 723: 719: 714: 710: 706: 702: 698: 691: 689: 687: 685: 683: 681: 679: 675: 668: 666: 664: 660: 656: 652: 648: 644: 640: 636: 628: 626: 624: 608: 600: 581: 572: 568: 564: 558: 555: 552: 547: 544: 540: 535: 530: 527: 520: 519: 518: 504: 484: 464: 444: 435: 434:Steiner chain 427: 422: 420: 418: 414: 406: 404: 390: 370: 362: 342: 336: 330: 327: 324: 321: 314: 313: 312: 298: 278: 270: 265: 259: 256: 251: 247: 246: 244: 241: 238: 237: 236: 219: 213: 210: 207: 200: 196: 192: 187: 183: 179: 174: 170: 163: 160: 153: 152: 151: 137: 117: 97: 89: 81: 79: 65: 57: 53: 48: 46: 42: 34: 32: 30: 26: 22: 1042: 987: 981: 975: 932: 928: 922: 897: 891: 875: 869: 831: 818: 791: 785: 741: 737: 696: 639:planar graph 632: 596: 431: 423:Applications 410: 383:in place of 357: 266: 263: 250:right angles 234: 85: 49: 38: 24: 18: 621:values are 90:with radii 862:0166.16402 669:References 35:Properties 1044:MathWorld 997:1105.1469 967:119609724 942:1010.3284 768:186215958 744:: 73–83, 655:manifolds 565:δ 559:⁡ 553:⁡ 545:− 536:π 485:δ 371:δ 331:⁡ 322:δ 299:δ 193:− 180:− 66:δ 56:bijection 1056:Category 830:(1967), 41:inverted 1016:2891251 959:2862158 914:2053391 810:1136651 760:0203568 713:2046999 497:, then 29:circles 1014:  965:  957:  912:  860:  850:  808:  766:  758:  711:  413:sphere 328:arcosh 23:, the 992:arXiv 963:S2CID 937:arXiv 764:S2CID 657:with 848:ISBN 556:tanh 110:and 1002:doi 947:doi 902:doi 880:doi 858:Zbl 796:doi 746:doi 701:doi 541:sin 19:In 1058:: 1041:, 1037:, 1012:MR 1010:, 1000:, 988:47 986:, 961:, 955:MR 953:, 945:, 933:15 931:, 910:MR 908:, 856:, 842:: 834:, 826:; 806:MR 804:, 792:34 790:, 776:^ 762:, 756:MR 754:, 742:71 740:, 721:^ 709:MR 707:, 677:^ 665:. 432:A 419:. 1019:. 1004:: 994:: 970:. 949:: 939:: 917:. 904:: 882:: 813:. 798:: 771:. 748:: 716:. 703:: 609:p 582:. 576:) 573:2 569:/ 562:( 548:1 531:= 528:p 505:p 465:p 445:p 391:I 343:. 340:) 337:I 334:( 325:= 279:I 252:, 220:. 214:R 211:r 208:2 201:2 197:R 188:2 184:r 175:2 171:d 164:= 161:I 138:d 118:R 98:r

Index

inversive geometry
circles
inverted
Möbius transformation
Beckman–Quarles theorem
bijection
Euclidean plane
right angles
inverse hyperbolic cosine
pencil of circles
sphere
hyperbolic plane
Steiner chain
rational number
rational approximations
circle packing
planar graph
circle packing theorem
maximal planar graph
rigidity property
manifolds
angular defects
conformal mappings






Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑