Knowledge

Iron oxide cycle

Source 📝

874: 17: 358: 436: 86: 869:{\displaystyle {\begin{cases}{\ce {M^{II}Fe2^{III}O4 + 3Al2O3 -> M^{II}Al2^{III}O4 + 2Fe^{II}Al2^{III}O4 + 1/2O2}}&{\ce {(Reduction)}}\\{\ce {M^{II}Al2^{III}O4 + 2Fe^{II}Al2^{III}O4 + H2O -> M^{II}Fe2^{III}O4 + 3Al2O3 + H2}}&{\ce {(Oxidation)}}\end{cases}}} 902:
The disadvantages of the ferrite cycles are: similar reduction and melting temperature of the spinels (except for the hercynite cycle as aluminates have very high melting temperatures), and slow rates of the oxidation, or
353:{\displaystyle {\begin{cases}{\ce {M^{II}Fe2^{III}O4 -> M^{II}O + 2Fe^{II}O + 1/2O2}}&{\ce {(Reduction)}}\\{\ce {M^{II}O + 2Fe^{II}O + H2O -> M^{II}Fe2^{III}O4 + H2}}&{\ce {(Oxidation)}}\end{cases}}} 426:
Like the traditional iron oxide cycle, the hercynite is based on the oxidation and reduction of iron atoms. However unlike the traditional cycle, the ferrite material reacts with a second metal oxide,
895:
The advantages of the ferrite cycles are: they have lower reduction temperatures than other 2-step systems, no metallic gasses are produced, high specific H
402:
temperature which produces the original ferrite material in addition to hydrogen gas. The temperature level is realized by using geothermal heat from
916: 991: 961: 1033: 1053: 1048: 1003:
Sheffe, Jonathan; Jianhua Li; Alan W. Weimer (2010). "A spinel ferrite/hercynite water-splitting redox cycle".
941: 921: 415: 41: 445: 95: 936: 926: 45: 899:
production capacity, non-toxicity of the elements used and abundance of the constituent elements.
53: 968: 931: 407: 25: 1012: 430:, rather than simply decomposing. The reactions take place via the following two reactions: 904: 73: 60:
and depending on the reaction conditions, dopant metals and support material forms either
887:). This leads to lower radiation losses, which scale as temperature to the fourth power. 427: 1042: 386:
The endothermic reduction step (1) is carried out at high temperatures greater than
1016: 992:
Sentech 2008-Analysis of geothermally produced hydrogen on the big island of Hawaii
57: 80:
steps. The steps of solar hydrogen production by iron based two-step cycle are:
16: 61: 411: 391: 372: 879:
The reduction step of the hercynite reaction takes place at temperature ~
52:
ions, particularly the reduction and oxidation between Fe and Fe. The
368: 364: 403: 380: 77: 15: 376: 49: 398:. The oxidative water splitting step (2) occurs at a lower ~ 862: 346: 48:. It is based on the reduction and subsequent oxidation of 1034:
Solar hydrogen from iron oxide based thermochemical cycles
840: 824: 811: 791: 747: 731: 686: 627: 603: 558: 517: 504: 484: 324: 308: 264: 194: 134: 363:
Where M can by any number of metals, often Fe itself,
439: 89: 883:lower than the traditional water splitting cycle ( 868: 352: 8: 394:cycle" is capable of temperatures as low as 20:Simplified diagram of the iron oxide cycle 847: 846: 839: 834: 823: 818: 810: 805: 800: 790: 785: 775: 770: 760: 746: 741: 730: 725: 715: 710: 700: 695: 685: 680: 670: 665: 655: 650: 634: 633: 626: 621: 602: 597: 587: 582: 572: 567: 557: 552: 542: 537: 527: 516: 511: 503: 498: 493: 483: 478: 468: 463: 453: 448: 440: 438: 331: 330: 323: 318: 307: 302: 292: 287: 277: 263: 258: 242: 237: 222: 217: 201: 200: 193: 188: 164: 159: 144: 133: 128: 118: 113: 103: 98: 90: 88: 56:, or iron oxide, begins in the form of a 1005:International Journal of Hydrogen Energy 917:Cerium(IV) oxide-cerium(III) oxide cycle 953: 7: 14: 40:/FeO) is the original two-step 1017:10.1016/j.ijhydene.2010.01.140 854: 848: 753: 641: 635: 520: 338: 332: 270: 208: 202: 137: 1: 891:Advantages and disadvantages 72:The thermochemical two-step 1070: 870: 354: 64:or different spinels. 21: 942:Zinc zinc-oxide cycle 922:Copper-chlorine cycle 871: 355: 44:proposed for use for 19: 437: 416:solar thermal energy 87: 42:thermochemical cycle 1054:Hydrogen production 937:Sulfur-iodine cycle 927:Hybrid sulfur cycle 842: 826: 813: 793: 780: 749: 733: 720: 688: 675: 629: 605: 592: 560: 547: 519: 506: 486: 473: 326: 310: 297: 266: 196: 136: 123: 68:Process description 46:hydrogen production 1049:Chemical reactions 866: 861: 830: 814: 801: 781: 766: 737: 721: 706: 676: 661: 617: 593: 578: 548: 533: 507: 494: 474: 459: 350: 345: 314: 298: 283: 254: 184: 124: 109: 26:chemical reactions 22: 853: 833: 817: 804: 784: 778: 769: 763: 759: 752: 740: 724: 718: 709: 703: 699: 679: 673: 664: 658: 654: 640: 620: 616: 596: 590: 581: 575: 571: 551: 545: 536: 530: 526: 510: 497: 477: 471: 462: 456: 452: 408:solar power tower 337: 317: 301: 295: 286: 280: 276: 269: 257: 250: 245: 241: 230: 225: 221: 207: 187: 183: 172: 167: 163: 152: 147: 143: 127: 121: 112: 106: 102: 76:process uses two 1061: 1021: 1020: 1011:(8): 3333–3340. 1000: 994: 989: 983: 982: 980: 979: 973: 967:. Archived from 966: 958: 886: 882: 875: 873: 872: 867: 865: 864: 858: 857: 851: 843: 841: 838: 831: 825: 822: 815: 812: 809: 802: 792: 789: 782: 779: 776: 774: 767: 765: 764: 761: 757: 750: 748: 745: 738: 732: 729: 722: 719: 716: 714: 707: 705: 704: 701: 697: 687: 684: 677: 674: 671: 669: 662: 660: 659: 656: 652: 645: 644: 638: 630: 628: 625: 618: 609: 604: 601: 594: 591: 588: 586: 579: 577: 576: 573: 569: 559: 556: 549: 546: 543: 541: 534: 532: 531: 528: 524: 518: 515: 508: 505: 502: 495: 485: 482: 475: 472: 469: 467: 460: 458: 457: 454: 450: 401: 397: 389: 359: 357: 356: 351: 349: 348: 342: 341: 335: 327: 325: 322: 315: 309: 306: 299: 296: 293: 291: 284: 282: 281: 278: 274: 267: 265: 262: 255: 248: 247: 246: 243: 239: 228: 227: 226: 223: 219: 212: 211: 205: 197: 195: 192: 185: 176: 170: 169: 168: 165: 161: 150: 149: 148: 145: 141: 135: 132: 125: 122: 119: 117: 110: 108: 107: 104: 100: 30:iron oxide cycle 1069: 1068: 1064: 1063: 1062: 1060: 1059: 1058: 1039: 1038: 1030: 1025: 1024: 1002: 1001: 997: 990: 986: 977: 975: 971: 964: 960: 959: 955: 950: 913: 905:water splitting 898: 893: 884: 880: 860: 859: 844: 756: 696: 651: 647: 646: 631: 568: 523: 449: 441: 435: 434: 424: 422:Hercynite cycle 414:to collect the 399: 395: 387: 344: 343: 328: 273: 238: 218: 214: 213: 198: 160: 140: 99: 91: 85: 84: 74:water splitting 70: 39: 35: 12: 11: 5: 1067: 1065: 1057: 1056: 1051: 1041: 1040: 1037: 1036: 1029: 1028:External links 1026: 1023: 1022: 995: 984: 962:"Project PD10" 952: 951: 949: 946: 945: 944: 939: 934: 929: 924: 919: 912: 909: 896: 892: 889: 877: 876: 863: 856: 850: 845: 837: 829: 821: 808: 799: 796: 788: 773: 755: 744: 736: 728: 713: 694: 691: 683: 668: 649: 648: 643: 637: 632: 624: 615: 612: 608: 600: 585: 566: 563: 555: 540: 522: 514: 501: 492: 489: 481: 466: 447: 446: 444: 428:aluminum oxide 423: 420: 390:, though the " 361: 360: 347: 340: 334: 329: 321: 313: 305: 290: 272: 261: 253: 236: 233: 216: 215: 210: 204: 199: 191: 182: 179: 175: 158: 155: 139: 131: 116: 97: 96: 94: 69: 66: 37: 33: 13: 10: 9: 6: 4: 3: 2: 1066: 1055: 1052: 1050: 1047: 1046: 1044: 1035: 1032: 1031: 1027: 1018: 1014: 1010: 1006: 999: 996: 993: 988: 985: 974:on 2009-02-05 970: 963: 957: 954: 947: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 918: 915: 914: 910: 908: 906: 900: 890: 888: 835: 827: 819: 806: 797: 794: 786: 771: 742: 734: 726: 711: 692: 689: 681: 666: 622: 613: 610: 606: 598: 583: 564: 561: 553: 538: 512: 499: 490: 487: 479: 464: 442: 433: 432: 431: 429: 421: 419: 417: 413: 410:and a set of 409: 405: 393: 384: 382: 378: 374: 370: 366: 319: 311: 303: 288: 259: 251: 234: 231: 189: 180: 177: 173: 156: 153: 129: 114: 92: 83: 82: 81: 79: 75: 67: 65: 63: 59: 55: 51: 47: 43: 31: 27: 18: 1008: 1004: 998: 987: 976:. Retrieved 969:the original 956: 907:, reaction. 901: 894: 885:1200 °C 878: 425: 400:1000 °C 396:1200 °C 388:1400 °C 385: 362: 71: 29: 23: 881:200 °C 1043:Categories 978:2008-12-19 948:References 932:Hydrosol-2 412:heliostats 383:thereof. 852:Oxidation 754:⟶ 639:Reduction 521:⟶ 392:Hercynite 336:Oxidation 271:⟶ 206:Reduction 138:⟶ 911:See also 381:mixtures 62:Wüstites 54:ferrites 58:spinel 28:, the 972:(PDF) 965:(PDF) 406:or a 404:magma 78:redox 50:iron 24:For 1013:doi 777:III 717:III 672:III 589:III 544:III 470:III 379:or 294:III 120:III 32:(Fe 1045:: 1009:35 1007:. 803:Al 768:Fe 762:II 708:Al 702:II 698:Fe 663:Al 657:II 580:Al 574:II 570:Fe 535:Al 529:II 496:Al 461:Fe 455:II 418:. 377:Zn 375:, 373:Mn 371:, 369:Ni 367:, 365:Co 285:Fe 279:II 244:II 240:Fe 224:II 166:II 162:Fe 146:II 111:Fe 105:II 1019:. 1015:: 981:. 897:2 855:) 849:( 836:2 832:H 828:+ 820:3 816:O 807:2 798:3 795:+ 787:4 783:O 772:2 758:M 751:O 743:2 739:H 735:+ 727:4 723:O 712:2 693:2 690:+ 682:4 678:O 667:2 653:M 642:) 636:( 623:2 619:O 614:2 611:1 607:+ 599:4 595:O 584:2 565:2 562:+ 554:4 550:O 539:2 525:M 513:3 509:O 500:2 491:3 488:+ 480:4 476:O 465:2 451:M 443:{ 339:) 333:( 320:2 316:H 312:+ 304:4 300:O 289:2 275:M 268:O 260:2 256:H 252:+ 249:O 235:2 232:+ 229:O 220:M 209:) 203:( 190:2 186:O 181:2 178:1 174:+ 171:O 157:2 154:+ 151:O 142:M 130:4 126:O 115:2 101:M 93:{ 38:4 36:O 34:3

Index


chemical reactions
thermochemical cycle
hydrogen production
iron
ferrites
spinel
Wüstites
water splitting
redox
Co
Ni
Mn
Zn
mixtures
Hercynite
magma
solar power tower
heliostats
solar thermal energy
aluminum oxide
water splitting
Cerium(IV) oxide-cerium(III) oxide cycle
Copper-chlorine cycle
Hybrid sulfur cycle
Hydrosol-2
Sulfur-iodine cycle
Zinc zinc-oxide cycle
"Project PD10"
the original

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.