Knowledge

Isolobal principle

Source 📝

400: 202: 218: 245:
Any sort of saturated molecule can be the starting point for generating isolobal fragments. The molecule's bonding and nonbonding molecular orbitals (MOs) should be filled and the antibonding MOs empty. With each consecutive generation of an isolobal fragment, electrons are removed from the bonding
246:
orbitals and a frontier orbital is created. The frontier orbitals are at a higher energy level than the bonding and nonbonding MOs. Each frontier orbital contains one electron. For example, consider Figure 5, which shows the production of frontier orbitals in tetrahedral and octahedral molecules.
197:
complex because Mo has obtained an additional electron making it d. To remedy this, Mo can be exchanged for Mn, which would form a neutral d complex in this case, as shown in Figure 3. This trend can continue until only one ligand is left coordinated to the metal center.
168:
starting point must be d. Removal of a ligand is analogous to the removal of hydrogen of methane in the previous example resulting in a frontier orbital, which points toward the removed ligand. Cleaving the bond between the metal center and one ligand results in a
136:
as the frontier orbital points in the direction of the missing hydrogen atom. Further removal of hydrogen results in the formation of a second frontier orbital. This process can be repeated until only one bond remains to the molecule's central atom.
250: 132:(MOs) are filled and all antibonding MOs are empty. For example, methane is a simple molecule from which to form a main group fragment. The removal of a hydrogen atom from methane generates a methyl radical. The molecule retains its 228:
Isolobal fragments of tetrahedral and octahedral molecules can be related. Structures with the same number of frontier orbitals are isolobal to one another. For example, the methane with two hydrogen atoms removed,
410:
The analogy applies to other shapes besides tetrahedral and octahedral geometries. The derivations used in octahedral geometry are valid for most other geometries. The exception is square-planar because
272:
involved in bonding becomes a nonbonding singly occupied frontier orbital. The frontier orbital’s increased energy level is also shown in the figure. Similarly when starting with a metal complex such as
856: 208:
Production of a frontier orbital in an octahedral complex. Since the process is not charge producing, the metal center must change from d Mo to d Mn to retain the neutral charge.
90:
and structure. A graphic representation of isolobal structures, with the isolobal pairs connected through a double-headed arrow with half an orbital below, is found in Figure 1.
415:
typically abide by the 16-electron rule. Assuming ligands act as two-electron donors the metal center in square-planar molecules is d. To relate an octahedral fragment, ML
297:
The isolobal analogy can also be used with isoelectronic fragments having the same coordination number, which allows charged species to be considered. For example, Re(CO)
289:
The isolobal analogy has applications beyond simple octahedral complexes. It can be used with a variety of ligands, charged species and non-octahedral complexes.
112:. In his Nobel Prize lecture, Hoffmann stressed that the isolobal analogy is a useful, yet simple, model and thus is bound to fail in certain instances. 646: 689: 462: 704: 94: 312:
In a similar sense, the addition or removal of electrons from two isolobal fragments results in two new isolobal fragments. Since Re(CO)
79: 796: 75: 952: 831: 826: 791: 74:
of a lesser-known species from that of a better-known species if the two molecular fragments have similar frontier orbitals, the
487:
In reference 10 of his Nobel Prize acceptance speech, Hoffmann states that the term "isolobal" was introduced in reference 1e, "
841: 836: 821: 724: 846: 639: 141: 897: 902: 454: 181:
radical complex. In order to satisfy the zero-charge criteria the metal center must be changed. For example, a MoL
714: 120:
To begin to generate an isolobal fragment, the molecule needs to follow certain criteria. Molecules based around
786: 750: 655: 632: 149: 105: 31: 931: 816: 185:
complex is d and neutral. However, removing a ligand to form the first frontier orbital would result in a
153: 71: 851: 412: 806: 669: 926: 745: 719: 674: 740: 133: 129: 121: 59: 47: 525: 921: 892: 882: 811: 421:, where M has a d electron configuration to a square planar analogous fragment, the formula ML 887: 781: 684: 679: 502: 470: 431:
Further examples of the isolobal analogy in various shapes and forms are shown in figure 8.
87: 63: 43: 760: 755: 490: 269: 877: 776: 699: 450: 55: 946: 872: 109: 83: 51: 581: 70:
in them are similar – not identical, but similar." One can predict the bonding and
256:
Molecular orbital diagram depiction of frontier orbitals in methane and a basic ML
801: 529: 341:
Figure 7: Isolobal relationship between octahedral and square planar complexes.
399: 217: 93: 27:
Method of predicting the bonding properties of certain organometallic compounds
161: 125: 913: 709: 624: 474: 455:"Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture)" 201: 493:; Hoffmann, R. (1976). "Comparative bonding study of conical fragments". 67: 506: 17: 249: 157: 309:. Any 17-electron metal complex would be isolobal in this example. 526:"The Nobel Prize in Chemistry 1981: Kenichi Fukui, Roald Hoffmann" 398: 248: 216: 200: 92: 628: 237:
complex formed from an octahedral starting complex (Figure 4).
104:
For his work on the isolobal analogy, Hoffmann was awarded the
584:; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F. (2006). 224:
Isolobal fragments of tetrahedral and octahedral geometries.
428:
where M has a d electron configuration should be followed.
857:
Arene complexes of univalent gallium, indium, and thallium
277:, the dsp hybrid orbitals are affected. Furthermore, the t 58:
described molecular fragments as isolobal "if the number,
213:
Relationship between tetrahedral and octahedral fragments
406:
Examples of non-basic shapes in the isolobal analogy.
911: 865: 769: 733: 662: 339: 614:Douglas, B.; McDaniel, D.; Alexander, J. (1994). 264:As seen above, when a fragment is formed from CH 62:properties, approximate energy and shape of the 42:) is a strategy used to relate the structure of 305:and therefore, and are also isolobal with CH 640: 8: 164:). Consequently, the metal center for the ML 82:(LUMO). Isolobal compounds are analogues to 741:Oxidative addition / reductive elimination 647: 633: 625: 616:Concepts and Models of Inorganic Chemistry 445: 443: 281:nonbonding metal orbitals are unaltered. 690:Polyhedral skeletal electron pair theory 86:compounds that share the same number of 54:properties of organometallic compounds. 50:molecular fragments in order to predict 439: 148:, can be created in a similar fashion. 552:Modern Approaches to Inorganic Bonding 599:Miessler, G. L.; Tarr, D. A. (2008). 100:Basic example of the isolobal analogy 7: 797:Transition metal fullerene complexes 80:lowest unoccupied molecular orbital 832:Transition metal carbyne complexes 827:Transition metal carbene complexes 792:Transition metal indenyl complexes 603:(3rd ed.). Pearson Education. 116:Construction of isolobal fragments 76:highest occupied molecular orbital 25: 842:Transition metal alkyne complexes 837:Transition metal alkene complexes 618:(3rd ed.). Wiley & Sons. 847:Transition-metal allyl complexes 156:, have no net charge, and their 128:when all bonding and nonbonding 822:Transition metal acyl complexes 160:should be two electron donors ( 569:. Wiley-VCH. pp. 172–176. 108:in 1981, which he shared with 1: 152:should initially satisfy the 565:Gispert, Joan Ribas (2008). 38:(more formally known as the 898:Shell higher olefin process 705:Dewar–Chatt–Duncanson model 489:Elian, M.; Chen, M. M.-L.; 969: 787:Cyclopentadienyl complexes 751:β-hydride elimination 725:Metal–ligand multiple bond 150:Transition metal complexes 140:The isolobal fragments of 852:Transition metal carbides 550:Department of Chemistry. 285:Extensions of the analogy 953:Organometallic chemistry 656:Organometallic chemistry 336:Non-octahedral complexes 106:Nobel Prize in Chemistry 32:organometallic chemistry 817:Half sandwich compounds 413:square-planar complexes 293:Isoelectronic fragments 932:Bioinorganic chemistry 567:Coordination Chemistry 475:10.1002/anie.198207113 407: 261: 225: 209: 154:eighteen electron rule 101: 903:Ziegler–Natta process 807:Metal tetranorbornyls 554:. University of Hull. 463:Angew. Chem. Int. Ed. 402: 252: 233:is isolobal to a d ML 220: 204: 96: 912:Related branches of 670:Crystal field theory 320:, is isolobal with 241:MO theory dependence 142:octahedral complexes 927:Inorganic chemistry 746:Migratory insertion 720:Agostic interaction 675:Ligand field theory 601:Inorganic Chemistry 586:Inorganic Chemistry 507:10.1021/ic50159a034 342: 316:is isolobal with CH 301:is isolobal with CH 124:should satisfy the 122:main group elements 812:Sandwich compounds 770:Types of compounds 695:Isolobal principle 408: 340: 262: 226: 210: 134:molecular geometry 130:molecular orbitals 102: 66:and the number of 36:isolobal principle 940: 939: 922:Organic chemistry 893:Olefin metathesis 883:Grignard reaction 782:Grignard reagents 397: 396: 144:, such as type ML 88:valence electrons 64:frontier orbitals 16:(Redirected from 960: 888:Monsanto process 685:d electron count 680:18-electron rule 649: 642: 635: 626: 620: 619: 611: 605: 604: 596: 590: 589: 577: 571: 570: 562: 556: 555: 547: 541: 540: 538: 536: 522: 516: 513:concept is older 511:", but that the 510: 501:(5): 1148–1155. 491:Mingos, D. M. P. 485: 479: 478: 459: 447: 343: 331: 330: 329: 268:, one of the sp 196: 195: 194: 180: 179: 178: 40:isolobal analogy 21: 968: 967: 963: 962: 961: 959: 958: 957: 943: 942: 941: 936: 907: 861: 777:Gilman reagents 765: 761:Carbometalation 756:Transmetalation 729: 658: 653: 623: 613: 612: 608: 598: 597: 593: 580:Shriver, D.F.; 579: 578: 574: 564: 563: 559: 549: 548: 544: 534: 532: 524: 523: 519: 488: 486: 482: 469:(10): 711–724. 457: 449: 448: 441: 437: 427: 420: 393: 389: 383: 372: 364: 357: 353: 347: 338: 328: 325: 324: 323: 321: 319: 315: 308: 304: 300: 295: 287: 280: 276: 270:hybrid orbitals 267: 259: 243: 236: 232: 215: 193: 190: 189: 188: 186: 184: 177: 174: 173: 172: 170: 167: 147: 118: 78:(HOMO) and the 28: 23: 22: 15: 12: 11: 5: 966: 964: 956: 955: 945: 944: 938: 937: 935: 934: 929: 924: 918: 916: 909: 908: 906: 905: 900: 895: 890: 885: 880: 878:Cativa process 875: 869: 867: 863: 862: 860: 859: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 773: 771: 767: 766: 764: 763: 758: 753: 748: 743: 737: 735: 731: 730: 728: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 666: 664: 660: 659: 654: 652: 651: 644: 637: 629: 622: 621: 606: 591: 572: 557: 542: 530:nobelprize.org 517: 480: 438: 436: 433: 422: 416: 395: 394: 391: 387: 384: 381: 377: 376: 373: 370: 366: 365: 359: 354: 349: 337: 334: 326: 317: 313: 306: 302: 298: 294: 291: 286: 283: 278: 274: 265: 257: 242: 239: 234: 230: 214: 211: 191: 182: 175: 165: 145: 117: 114: 56:Roald Hoffmann 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 965: 954: 951: 950: 948: 933: 930: 928: 925: 923: 920: 919: 917: 915: 910: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 873:Carbonylation 871: 870: 868: 864: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 774: 772: 768: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 738: 736: 732: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 700:π backbonding 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 667: 665: 661: 657: 650: 645: 643: 638: 636: 631: 630: 627: 617: 610: 607: 602: 595: 592: 587: 583: 576: 573: 568: 561: 558: 553: 546: 543: 531: 527: 521: 518: 514: 508: 504: 500: 496: 492: 484: 481: 476: 472: 468: 465: 464: 456: 452: 446: 444: 440: 434: 432: 429: 425: 419: 414: 405: 401: 385: 379: 378: 374: 368: 367: 362: 356:Square-planar 355: 352: 345: 344: 335: 333: 310: 292: 290: 284: 282: 271: 260:metal complex 255: 251: 247: 240: 238: 223: 219: 212: 207: 203: 199: 163: 159: 155: 151: 143: 138: 135: 131: 127: 123: 115: 113: 111: 110:Kenichi Fukui 107: 99: 95: 91: 89: 85: 84:isoelectronic 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 866:Applications 802:Metallocenes 694: 615: 609: 600: 594: 585: 575: 566: 560: 551: 545: 535:December 22, 533:. Retrieved 520: 512: 498: 494: 483: 466: 461: 451:Hoffmann, R. 430: 423: 417: 409: 403: 360: 350: 311: 296: 288: 263: 253: 244: 227: 221: 205: 139: 119: 103: 97: 39: 35: 29: 715:spin states 495:Inorg. Chem 162:Lewis bases 663:Principles 588:. Freeman. 582:Atkins, P. 435:References 346:Octahedral 126:octet rule 72:reactivity 914:chemistry 734:Reactions 710:Hapticity 404:Figure 8: 380:d: Os(CO) 369:d: Mo(CO) 254:Figure 5: 222:Figure 4: 206:Figure 3: 98:Figure 1: 68:electrons 48:inorganic 947:Category 453:(1982). 386:d: Ni(PR 60:symmetry 18:Isolobal 158:ligands 52:bonding 44:organic 34:, the 458:(PDF) 537:2010 375:d: 273:d-ML 46:and 503:doi 471:doi 187:MoL 30:In 949:: 528:. 499:15 497:. 467:21 460:. 442:^ 426:−2 363:−2 358:ML 348:ML 332:. 322:CH 279:2g 229:CH 171:ML 648:e 641:t 634:v 539:. 515:. 509:. 505:: 477:. 473:: 424:n 418:n 392:2 390:) 388:3 382:4 371:5 361:n 351:n 327:3 318:3 314:5 307:3 303:3 299:5 275:6 266:4 258:6 235:4 231:2 192:5 183:6 176:5 166:6 146:6 20:)

Index

Isolobal
organometallic chemistry
organic
inorganic
bonding
Roald Hoffmann
symmetry
frontier orbitals
electrons
reactivity
highest occupied molecular orbital
lowest unoccupied molecular orbital
isoelectronic
valence electrons

Nobel Prize in Chemistry
Kenichi Fukui
main group elements
octet rule
molecular orbitals
molecular geometry
octahedral complexes
Transition metal complexes
eighteen electron rule
ligands
Lewis bases



hybrid orbitals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.