Knowledge (XXG)

Jordan algebra

Source 📝

2072:
of a linear Jordan algebra are used as axioms to define a quadratic Jordan algebra over a field of arbitrary characteristic. There is a uniform description of finite-dimensional simple quadratic Jordan algebras, independent of characteristic: in characteristic not equal to 2 the theory of quadratic
1567:
is played by JBW algebras. These turn out to be JB algebras which, as Banach spaces, are the dual spaces of Banach spaces. Much of the structure theory of von Neumann algebras can be carried over to JBW algebras. In particular the JBW factors—those with center reduced to
1538: 1543:
These axioms guarantee that the Jordan algebra is formally real, so that, if a sum of squares of terms is zero, those terms must be zero. The complexifications of JB algebras are called Jordan C*-algebras or JB*-algebras. They have been used extensively in
1035:
squares can only vanish if each one vanishes individually. In 1932, Jordan attempted to axiomatize quantum theory by saying that the algebra of observables of any quantum system should be a formally real algebra that is commutative
375:. It was soon shown that the algebras were not useful in this context, however they have since found many applications in mathematics. The algebras were originally called "r-number systems", but were renamed "Jordan algebras" by 553:
is special. Related to this, Macdonald's theorem states that any polynomial in three variables, having degree one in one of the variables, and which vanishes in every special Jordan algebra, vanishes in every Jordan algebra.
1337:
classified infinite-dimensional simple (and prime non-degenerate) Jordan algebras. They are either of Hermitian or Clifford type. In particular, the only exceptional simple Jordan algebras are finite-dimensional
1953: 1385: 1067:
ones, which are not themselves direct sums in a nontrivial way. In finite dimensions, the simple formally real Jordan algebras come in four infinite families, together with one exceptional case:
1592:
A Jordan ring is a generalization of Jordan algebras, requiring only that the Jordan ring be over a general ring rather than a field. Alternatively one can define a Jordan ring as a commutative
471: 299: 1153: 661: 1830: 1676: 145: 1556:
to infinite dimensions. Not all JB algebras can be realized as Jordan algebras of self-adjoint operators on a Hilbert space, exactly as in finite dimensions. The exceptional
221: 1790: 1636: 2280: 811: 749: 2014: 540: 1987: 1757: 1730: 1703: 354: 71: 327: 2097: 1580:. Of these the spin factors can be constructed very simply from real Hilbert spaces. All other JWB factors are either the self-adjoint part of a 2894: 2846: 2748: 2722: 2684: 838:
this is the only simple exceptional Jordan algebra up to isomorphism, it is often referred to as "the" exceptional Jordan algebra. Over the
1838: 3024: 2979: 2778: 2481: 1533:{\displaystyle \displaystyle {\|a\circ b\|\leq \|a\|\cdot \|b\|,\,\,\,\|a^{2}\|=\|a\|^{2},\,\,\,\|a^{2}\|\leq \|a^{2}+b^{2}\|.}} 309:. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element 2938: 2920: 2456: 2436: 2971: 2815: 2473: 851: 2810: 2064:
Quadratic Jordan algebras are a generalization of (linear) Jordan algebras introduced by Kevin McCrimmon (
420: 2047: 226: 1576:, all JWB factors can be realised as Jordan algebras of self-adjoint operators on a Hilbert space closed in the 2069: 2059: 1553: 1372: 1178:
The Jordan algebra of 3×3 self-adjoint octonionic matrices, as above (an exceptional Jordan algebra called the
1113: 1016: 571: 403: 1261:
is finite-dimensional over a field of characteristic not 2, this implies that it is a direct sum of subspaces
1361: 1351: 372: 2039: 1577: 28: 2328: 2275: 1376: 376: 35: 2424: 1795: 1641: 604: 82: 2376: 1958:
Jordan simple superalgebras over an algebraically closed field of characteristic 0 were classified by
2598: 2087: 1308: 187: 31: 2805: 2498:
Jordan, Pascual (1933), "Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik",
1765: 1611: 2955: 2082: 1593: 1581: 1564: 1199: 392: 174: 2963: 2616: 2536: 2406: 2353: 2307: 1195: 767: 2933:, CBMS Regional Conference Series in Mathematics, vol. 67, American Mathematical Society, 2550:(1977), "Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras", 708: 2975: 2934: 2916: 2890: 2842: 2774: 2744: 2718: 2680: 2642: 2567: 2477: 2452: 2432: 2345: 2299: 2050:
not equal to 2 the theory of J-structures is essentially the same as that of Jordan algebras.
2043: 1357: 181: 1584:
or its fixed point subalgebra under a period 2 *-antiautomorphism of the von Neumann factor.
2985: 2882: 2860: 2834: 2792: 2754: 2698: 2672: 2650: 2632: 2606: 2559: 2528: 2512: 2388: 2337: 2289: 2150: 1992: 1545: 828: 546: 495: 20: 2904: 2856: 2788: 2694: 2628: 2579: 2491: 2402: 2365: 2319: 2138: 1965: 1735: 1708: 1681: 332: 44: 3008: 2989: 2900: 2878: 2864: 2852: 2830: 2796: 2784: 2758: 2702: 2690: 2668: 2654: 2624: 2586: 2575: 2487: 2465: 2398: 2361: 2315: 835: 2472:, American Mathematical Society Colloquium Publications, vol. 39, Providence, R.I.: 2602: 1572:—are completely understood in terms of von Neumann algebras. Apart from the exceptional 2822: 2770: 2737: 2102: 1573: 1557: 1339: 1194:
complex matrices as algebras of observables. However, the spin factors play a role in
1179: 821: 695: 550: 360: 312: 2637: 2294: 3018: 2516: 2416: 1334: 2970:, Colloquium Publications, vol. 44, With a preface by J. Tits, Providence, RI: 2372: 1605: 1012: 839: 699: 688: 2729: 2706: 2410: 2393: 1052:
are unambiguously defined). He proved that any such algebra is a Jordan algebra.
2872: 2662: 1063:. Every formally real Jordan algebra can be written as a direct sum of so-called 2959: 2092: 2031: 2025: 1549: 895: 691: 485: 74: 1044:) and power-associative (the associative law holds for products involving only 816:
is a 27 dimensional, exceptional Jordan algebra (it is exceptional because the
2886: 2838: 2563: 2547: 2519:(1934), "On an algebraic generalization of the quantum mechanical formalism", 1368: 368: 16:
Not-necessarily-associative commutative algebra satisfying (𝑥𝑦)𝑥²=𝑥(𝑦𝑥²)
2571: 2349: 2303: 1302:
for totally real Jordan algebras. It was later studied in full generality by
1059:
classified the finite-dimensional formally real Jordan algebras, also called
996:
defines a derivation. In many important examples, the structure algebra of H(
223:
is independent of how we parenthesize this expression. They also imply that
1186:
Of these possibilities, so far it appears that nature makes use only of the
825: 2646: 2611: 842:
there are three isomorphism classes of simple exceptional Jordan algebras.
663:
Thus the set of all elements fixed by the involution (sometimes called the
2765:
Zhevlakov, K.A.; Slin'ko, A.M.; Shestakov, I.P.; Shirshov, A.I. (1982) .
817: 758: 1962:. They include several families and some exceptional algebras, notably 1027:
A (possibly nonassociative) algebra over the real numbers is said to be
3002: 2540: 2446: 2357: 2311: 1298:) of the three eigenspaces. This decomposition was first considered by 2155: 1832:
becomes a Jordan superalgebra with respect to the graded Jordan brace
1161:
where the right-hand side is defined using the usual inner product on
410:
using the with same underlying addition and a new multiplication, the
2620: 2532: 2341: 2326:
Albert, A. Adrian (1947), "A structure theory for Jordan algebras",
2931:
Jordan algebras in analysis, operator theory, and quantum mechanics
2676: 1948:{\displaystyle \{x_{i},y_{j}\}=x_{i}y_{j}+(-1)^{ij}y_{j}x_{i}\ .} 968:
A simple example is provided by the Hermitian Jordan algebras H(
173:, particularly to avoid confusion with the product of a related 2451:, Monographs and Studies in Mathematics, vol. 21, Pitman, 2127:, pp. 35–36, specifically remark before (56) and theorem 8 2042:
and axioms taking the Jordan inversion as basic operation and
383:), who began the systematic study of general Jordan algebras. 2431:, Oxford Mathematical Monographs, Oxford University Press, 2073:
Jordan algebras reduces to that of linear Jordan algebras.
1198:, and all the formally real Jordan algebras are related to 492:, whose product (Lie bracket) is defined by the commutator 2877:, Springer Monographs in Mathematics, Berlin, New York: 2278:(1946), "On Jordan algebras of linear transformations", 1608:
were introduced by Kac, Kantor and Kaplansky; these are
367:) in an effort to formalize the notion of an algebra of 1371:
are JB algebras, which in finite dimensions are called
1299: 1056: 820:
are not associative). This was the first example of an
476:
These Jordan algebras and their subalgebras are called
395:
is a Jordan algebra if and only if it is commutative.
607: 549:–Cohn theorem states that any Jordan algebra with two 1995: 1968: 1841: 1798: 1768: 1738: 1711: 1684: 1644: 1614: 1389: 1388: 1116: 770: 711: 498: 423: 335: 315: 229: 190: 85: 47: 2915:, North-Holland Mathematics Studies, vol. 104, 2871:
Springer, Tonny A.; Veldkamp, Ferdinand D. (2000) ,
1011:
Derivation and structure algebras also form part of
2230: 2736: 2377:"The Octonions, 3: Projective Octonionic Geometry" 2008: 1981: 1947: 1824: 1784: 1751: 1724: 1697: 1670: 1630: 1532: 1147: 805: 757:2. The set of 3×3 self-adjoint matrices over the 743: 655: 534: 465: 348: 321: 293: 215: 139: 65: 2913:Symmetric Banach manifolds and Jordan C∗-algebras 2874:Octonions, Jordan algebras and exceptional groups 2281:Transactions of the American Mathematical Society 2470:Structure and representations of Jordan algebras 2196: 2500:Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. I 2120: 2118: 1055:Not every Jordan algebra is formally real, but 1375:. The norm on the real Jordan algebra must be 2381:Bulletin of the American Mathematical Society 2245: 2038:to develop a theory of Jordan algebras using 1101:self-adjoint quaternionic matrices. as above. 949:) can be made into a Lie algebra, called the 8: 2589:(1966), "A general theory of Jordan rings", 2192: 2190: 1868: 1842: 1522: 1496: 1490: 1477: 1462: 1455: 1449: 1436: 1427: 1421: 1415: 1409: 1403: 1391: 1142: 1130: 824:. Its automorphism group is the exceptional 466:{\displaystyle x\circ y={\frac {xy+yx}{2}}.} 1031:if it satisfies the property that a sum of 294:{\displaystyle x^{m}(x^{n}y)=x^{n}(x^{m}y)} 2739:An introduction to nonassociative algebras 2139:"Nazis, émigrés, and abstract mathematics" 937:) is a derivation. Thus the direct sum of 329:, the operations of multiplying by powers 180:The axioms imply that a Jordan algebra is 2715:Algebraic Structures of Symmetric Domains 2636: 2610: 2392: 2293: 2258: 2208: 2181: 2169: 2154: 2065: 2000: 1994: 1973: 1967: 1933: 1923: 1910: 1888: 1878: 1862: 1849: 1840: 1816: 1803: 1797: 1774: 1770: 1769: 1767: 1743: 1737: 1716: 1710: 1689: 1683: 1662: 1649: 1643: 1620: 1616: 1615: 1613: 1516: 1503: 1484: 1476: 1475: 1474: 1465: 1443: 1435: 1434: 1433: 1390: 1387: 1148:{\displaystyle x^{2}=\langle x,x\rangle } 1121: 1115: 792: 769: 733: 710: 606: 497: 436: 422: 340: 334: 314: 279: 266: 247: 234: 228: 195: 189: 84: 46: 2124: 2035: 1732:has a "Lie-like" product with values in 1090:self-adjoint complex matrices, as above. 484:. This construction is analogous to the 2240: 2235: 2114: 1300:Jordan, von Neumann & Wigner (1934) 1104:The Jordan algebra freely generated by 1057:Jordan, von Neumann & Wigner (1934) 905:). The Jordan identity implies that if 406:2), one can construct a Jordan algebra 2445:Hanche-Olsen, H.; Størmer, E. (1984), 1303: 1230:is the operation of multiplication by 380: 364: 3009:Jordan-Banach and Jordan-Lie algebras 2068:). The fundamental identities of the 1257:are 0, 1/2, 1. If the Jordan algebra 1214:is an idempotent in a Jordan algebra 1079:self-adjoint real matrices, as above. 7: 2827:Jordan algebras and algebraic groups 1329:Infinite-dimensional Jordan algebras 570:) is an associative algebra with an 165:in a Jordan algebra is also denoted 1959: 1596:that respects the Jordan identity. 1249: − 1) = 0 359:Jordan algebras were introduced by 2667:, Universitext, Berlin, New York: 656:{\textstyle \sigma (xy+yx)=xy+yx.} 14: 2767:Rings that are nearly associative 2295:10.1090/S0002-9947-1946-0016759-3 1825:{\displaystyle A_{0}\oplus A_{1}} 1671:{\displaystyle J_{0}\oplus J_{1}} 1324:Special kinds and generalizations 846:Derivations and structure algebra 140:{\displaystyle (xy)(xx)=x(y(xx))} 2098:Kantor–Koecher–Tits construction 1316:relative to the idempotent  1048:, so that powers of any element 917:, then the endomorphism sending 38:satisfies the following axioms: 2231:Hanche-Olsen & Størmer 1984 1563:The Jordan algebra analogue of 754:form a special Jordan algebra. 671:, which is sometimes denoted H( 667:elements) form a subalgebra of 216:{\displaystyle x^{n}=x\cdots x} 2743:, Courier Dover Publications, 2717:, Princeton University Press, 1907: 1897: 1785:{\displaystyle \mathbb {Z} /2} 1631:{\displaystyle \mathbb {Z} /2} 1552:Jordan algebraic treatment of 1165:. This is sometimes called a 789: 771: 730: 712: 629: 611: 511: 499: 398:Given any associative algebra 288: 272: 256: 240: 134: 131: 122: 116: 107: 98: 95: 86: 1: 2972:American Mathematical Society 2591:Proc. Natl. Acad. Sci. U.S.A. 2474:American Mathematical Society 2394:10.1090/S0273-0979-01-00934-X 1023:Formally real Jordan algebras 702:matrices with multiplication 2735:Schafer, Richard D. (1996), 2197:Springer & Veldkamp 2000 1792:-graded associative algebra 976:). In this case any element 761:, again with multiplication 157:The product of two elements 2829:, Classics in Mathematics, 2811:Encyclopedia of Mathematics 2429:Analysis on symmetric cones 1560:is the common obstruction. 1360:has been extended to cover 1342:, which have dimension 27. 1253:so the only eigenvalues of 482:exceptional Jordan algebras 3041: 2664:A taste of Jordan algebras 2057: 2023: 1349: 894:). The derivations form a 806:{\displaystyle (xy+yx)/2,} 301:for all positive integers 2887:10.1007/978-3-662-12622-6 2839:10.1007/978-3-642-61970-0 2661:McCrimmon, Kevin (2004), 2564:10.1080/00927877708822224 2552:Communications in Algebra 2383:. Bull. Amer. Math. Soc. 2246:Faraut & Koranyi 1994 2137:Dahn, Ryan (2023-01-01). 2054:Quadratic Jordan algebras 2046:as a basic relation. In 1554:bounded symmetric domains 1373:Euclidean Jordan algebras 1061:Euclidean Jordan algebras 744:{\displaystyle (xy+yx)/2} 558:Hermitian Jordan algebras 377:Abraham Adrian Albert 3025:Non-associative algebras 2448:Jordan operator algebras 2070:quadratic representation 2060:Quadratic Jordan algebra 1705:is a Jordan algebra and 1379:and satisfy the axioms: 1362:Jordan operator algebras 1346:Jordan operator algebras 1017:Freudenthal magic square 2968:The book of involutions 2804:Slin'ko, A.M. (2001) , 2040:linear algebraic groups 1352:Jordan operator algebra 1169:or a Jordan algebra of 480:, while all others are 478:special Jordan algebras 387:Special Jordan algebras 373:quantum electrodynamics 2713:Ichiro Satake (1980), 2612:10.1073/pnas.56.4.1072 2010: 2009:{\displaystyle K_{10}} 1983: 1949: 1826: 1786: 1753: 1726: 1699: 1672: 1632: 1578:weak operator topology 1534: 1245: − 1)( 1149: 1093:The Jordan algebra of 1082:The Jordan algebra of 1071:The Jordan algebra of 1015:' construction of the 807: 745: 657: 536: 535:{\displaystyle =xy-yx} 467: 350: 323: 295: 217: 141: 67: 29:nonassociative algebra 2521:Annals of Mathematics 2329:Annals of Mathematics 2011: 1984: 1982:{\displaystyle K_{3}} 1950: 1827: 1787: 1754: 1752:{\displaystyle J_{0}} 1727: 1725:{\displaystyle J_{1}} 1700: 1698:{\displaystyle J_{0}} 1673: 1633: 1535: 1150: 808: 746: 658: 537: 468: 391:Notice first that an 351: 349:{\displaystyle x^{n}} 324: 296: 218: 142: 68: 66:{\displaystyle xy=yx} 2956:Merkurjev, Alexander 2929:Upmeier, H. (1987), 2911:Upmeier, H. (1985), 2088:Jordan triple system 1993: 1966: 1839: 1796: 1766: 1736: 1709: 1682: 1642: 1612: 1600:Jordan superalgebras 1565:von Neumann algebras 1386: 1367:The counterparts of 1309:Peirce decomposition 1206:Peirce decomposition 1114: 854:of a Jordan algebra 768: 709: 605: 496: 421: 333: 313: 227: 188: 83: 45: 2964:Tignol, Jean-Pierre 2603:1966PNAS...56.1072M 2417:Online HTML version 2199:, §5.8, p. 153 2083:Freudenthal algebra 1594:nonassociative ring 1200:projective geometry 1108:with the relations 858:is an endomorphism 393:associative algebra 175:associative algebra 2954:Knus, Max-Albert; 2823:Springer, Tonny A. 2034:was introduced by 2006: 1979: 1945: 1822: 1782: 1749: 1722: 1695: 1668: 1628: 1582:von Neumann factor 1530: 1529: 1196:special relativity 1145: 803: 741: 653: 532: 463: 361:Pascual Jordan 346: 319: 291: 213: 137: 63: 2896:978-3-540-66337-9 2848:978-3-540-63632-8 2750:978-0-486-68813-8 2724:978-0-691-08271-4 2686:978-0-387-95447-9 2558:(13): 1375–1400, 2332:, Second Series, 2276:Albert, A. Adrian 2156:10.1063/PT.3.5158 1941: 1638:-graded algebras 1358:operator algebras 951:structure algebra 834:. Since over the 458: 322:{\displaystyle x} 182:power-associative 3032: 2992: 2943: 2925: 2907: 2867: 2818: 2806:"Jordan algebra" 2800: 2761: 2742: 2727: 2709: 2657: 2640: 2614: 2597:(4): 1072–1079, 2587:McCrimmon, Kevin 2582: 2543: 2507: 2494: 2466:Jacobson, Nathan 2461: 2441: 2414: 2396: 2368: 2322: 2297: 2262: 2256: 2250: 2225: 2219: 2206: 2200: 2194: 2185: 2179: 2173: 2167: 2161: 2160: 2158: 2134: 2128: 2122: 2015: 2013: 2012: 2007: 2005: 2004: 1988: 1986: 1985: 1980: 1978: 1977: 1954: 1952: 1951: 1946: 1939: 1938: 1937: 1928: 1927: 1918: 1917: 1893: 1892: 1883: 1882: 1867: 1866: 1854: 1853: 1831: 1829: 1828: 1823: 1821: 1820: 1808: 1807: 1791: 1789: 1788: 1783: 1778: 1773: 1758: 1756: 1755: 1750: 1748: 1747: 1731: 1729: 1728: 1723: 1721: 1720: 1704: 1702: 1701: 1696: 1694: 1693: 1677: 1675: 1674: 1669: 1667: 1666: 1654: 1653: 1637: 1635: 1634: 1629: 1624: 1619: 1546:complex geometry 1539: 1537: 1536: 1531: 1528: 1521: 1520: 1508: 1507: 1489: 1488: 1470: 1469: 1448: 1447: 1154: 1152: 1151: 1146: 1126: 1125: 913:are elements of 812: 810: 809: 804: 796: 750: 748: 747: 742: 737: 662: 660: 659: 654: 601:it follows that 541: 539: 538: 533: 472: 470: 469: 464: 459: 454: 437: 355: 353: 352: 347: 345: 344: 328: 326: 325: 320: 300: 298: 297: 292: 284: 283: 271: 270: 252: 251: 239: 238: 222: 220: 219: 214: 200: 199: 152: 151: 146: 144: 143: 138: 72: 70: 69: 64: 21:abstract algebra 3040: 3039: 3035: 3034: 3033: 3031: 3030: 3029: 3015: 3014: 2999: 2982: 2953: 2950: 2948:Further reading 2941: 2928: 2923: 2910: 2897: 2879:Springer-Verlag 2870: 2849: 2831:Springer-Verlag 2821: 2803: 2781: 2764: 2751: 2734: 2725: 2712: 2687: 2669:Springer-Verlag 2660: 2585: 2546: 2533:10.2307/1968117 2513:von Neumann, J. 2510: 2497: 2484: 2464: 2459: 2444: 2439: 2422: 2371: 2342:10.2307/1969128 2325: 2274: 2271: 2266: 2265: 2261:, pp. 9–10 2257: 2253: 2226: 2222: 2207: 2203: 2195: 2188: 2180: 2176: 2168: 2164: 2136: 2135: 2131: 2123: 2116: 2111: 2079: 2062: 2056: 2036:Springer (1998) 2030:The concept of 2028: 2022: 1996: 1991: 1990: 1969: 1964: 1963: 1929: 1919: 1906: 1884: 1874: 1858: 1845: 1837: 1836: 1812: 1799: 1794: 1793: 1764: 1763: 1739: 1734: 1733: 1712: 1707: 1706: 1685: 1680: 1679: 1658: 1645: 1640: 1639: 1610: 1609: 1602: 1590: 1512: 1499: 1480: 1461: 1439: 1384: 1383: 1354: 1348: 1340:Albert algebras 1331: 1326: 1306:and called the 1293: 1282: 1271: 1208: 1117: 1112: 1111: 1025: 848: 836:complex numbers 832: 766: 765: 707: 706: 685: 603: 602: 560: 494: 493: 438: 419: 418: 389: 336: 331: 330: 311: 310: 275: 262: 243: 230: 225: 224: 191: 186: 185: 184:, meaning that 150:Jordan identity 149: 148: 81: 80: 43: 42: 17: 12: 11: 5: 3038: 3036: 3028: 3027: 3017: 3016: 3013: 3012: 3006: 3003:Jordan algebra 2998: 2997:External links 2995: 2994: 2993: 2980: 2949: 2946: 2945: 2944: 2939: 2926: 2921: 2908: 2895: 2868: 2847: 2819: 2801: 2779: 2771:Academic Press 2762: 2749: 2732: 2723: 2710: 2685: 2677:10.1007/b97489 2658: 2583: 2544: 2508: 2495: 2482: 2462: 2457: 2442: 2437: 2420: 2387:(2): 145–205. 2369: 2336:(3): 546–567, 2323: 2288:(3): 524–555, 2270: 2267: 2264: 2263: 2259:McCrimmon 2004 2251: 2249: 2248: 2243: 2238: 2233: 2220: 2211:, pp. 99 2209:McCrimmon 2004 2201: 2186: 2182:McCrimmon 2004 2174: 2170:McCrimmon 2004 2162: 2129: 2113: 2112: 2110: 2107: 2106: 2105: 2103:Scorza variety 2100: 2095: 2090: 2085: 2078: 2075: 2058:Main article: 2055: 2052: 2048:characteristic 2044:Hua's identity 2024:Main article: 2021: 2018: 2003: 1999: 1976: 1972: 1956: 1955: 1944: 1936: 1932: 1926: 1922: 1916: 1913: 1909: 1905: 1902: 1899: 1896: 1891: 1887: 1881: 1877: 1873: 1870: 1865: 1861: 1857: 1852: 1848: 1844: 1819: 1815: 1811: 1806: 1802: 1781: 1777: 1772: 1746: 1742: 1719: 1715: 1692: 1688: 1665: 1661: 1657: 1652: 1648: 1627: 1623: 1618: 1601: 1598: 1589: 1586: 1574:Albert algebra 1558:Albert algebra 1541: 1540: 1527: 1524: 1519: 1515: 1511: 1506: 1502: 1498: 1495: 1492: 1487: 1483: 1479: 1473: 1468: 1464: 1460: 1457: 1454: 1451: 1446: 1442: 1438: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1356:The theory of 1350:Main article: 1347: 1344: 1330: 1327: 1325: 1322: 1291: 1287:) ⊕  1280: 1276:) ⊕  1269: 1251: 1250: 1207: 1204: 1184: 1183: 1180:Albert algebra 1175: 1174: 1158: 1157: 1156: 1155: 1144: 1141: 1138: 1135: 1132: 1129: 1124: 1120: 1102: 1091: 1080: 1024: 1021: 847: 844: 830: 822:Albert algebra 814: 813: 802: 799: 795: 791: 788: 785: 782: 779: 776: 773: 752: 751: 740: 736: 732: 729: 726: 723: 720: 717: 714: 687:1. The set of 684: 681: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 559: 556: 531: 528: 525: 522: 519: 516: 513: 510: 507: 504: 501: 488:associated to 474: 473: 462: 457: 453: 450: 447: 444: 441: 435: 432: 429: 426: 412:Jordan product 404:characteristic 388: 385: 343: 339: 318: 290: 287: 282: 278: 274: 269: 265: 261: 258: 255: 250: 246: 242: 237: 233: 212: 209: 206: 203: 198: 194: 155: 154: 136: 133: 130: 127: 124: 121: 118: 115: 112: 109: 106: 103: 100: 97: 94: 91: 88: 78: 62: 59: 56: 53: 50: 36:multiplication 25:Jordan algebra 15: 13: 10: 9: 6: 4: 3: 2: 3037: 3026: 3023: 3022: 3020: 3011:at PlanetMath 3010: 3007: 3005:at PlanetMath 3004: 3001: 3000: 2996: 2991: 2987: 2983: 2981:0-8218-0904-0 2977: 2973: 2969: 2965: 2961: 2957: 2952: 2951: 2947: 2942: 2936: 2932: 2927: 2924: 2918: 2914: 2909: 2906: 2902: 2898: 2892: 2888: 2884: 2880: 2876: 2875: 2869: 2866: 2862: 2858: 2854: 2850: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2817: 2813: 2812: 2807: 2802: 2798: 2794: 2790: 2786: 2782: 2780:0-12-779850-1 2776: 2772: 2768: 2763: 2760: 2756: 2752: 2746: 2741: 2740: 2733: 2731: 2726: 2720: 2716: 2711: 2708: 2704: 2700: 2696: 2692: 2688: 2682: 2678: 2674: 2670: 2666: 2665: 2659: 2656: 2652: 2648: 2644: 2639: 2634: 2630: 2626: 2622: 2618: 2613: 2608: 2604: 2600: 2596: 2592: 2588: 2584: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2548:Kac, Victor G 2545: 2542: 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2509: 2505: 2501: 2496: 2493: 2489: 2485: 2483:9780821831793 2479: 2475: 2471: 2467: 2463: 2460: 2454: 2450: 2449: 2443: 2440: 2434: 2430: 2426: 2421: 2418: 2412: 2408: 2404: 2400: 2395: 2390: 2386: 2382: 2378: 2374: 2373:Baez, John C. 2370: 2367: 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2330: 2324: 2321: 2317: 2313: 2309: 2305: 2301: 2296: 2291: 2287: 2283: 2282: 2277: 2273: 2272: 2268: 2260: 2255: 2252: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2228: 2224: 2221: 2218: 2214: 2210: 2205: 2202: 2198: 2193: 2191: 2187: 2183: 2178: 2175: 2172:, p. 100 2171: 2166: 2163: 2157: 2152: 2148: 2144: 2143:Physics Today 2140: 2133: 2130: 2126: 2125:Jacobson 1968 2121: 2119: 2115: 2108: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2080: 2076: 2074: 2071: 2067: 2061: 2053: 2051: 2049: 2045: 2041: 2037: 2033: 2027: 2019: 2017: 2001: 1997: 1974: 1970: 1961: 1942: 1934: 1930: 1924: 1920: 1914: 1911: 1903: 1900: 1894: 1889: 1885: 1879: 1875: 1871: 1863: 1859: 1855: 1850: 1846: 1835: 1834: 1833: 1817: 1813: 1809: 1804: 1800: 1779: 1775: 1760: 1744: 1740: 1717: 1713: 1690: 1686: 1663: 1659: 1655: 1650: 1646: 1625: 1621: 1607: 1606:superalgebras 1599: 1597: 1595: 1587: 1585: 1583: 1579: 1575: 1571: 1566: 1561: 1559: 1555: 1551: 1547: 1525: 1517: 1513: 1509: 1504: 1500: 1493: 1485: 1481: 1471: 1466: 1458: 1452: 1444: 1440: 1430: 1424: 1418: 1412: 1406: 1400: 1397: 1394: 1382: 1381: 1380: 1378: 1374: 1370: 1365: 1363: 1359: 1353: 1345: 1343: 1341: 1336: 1335:Efim Zelmanov 1328: 1323: 1321: 1319: 1315: 1311: 1310: 1305: 1304:Albert (1947) 1301: 1297: 1290: 1286: 1279: 1275: 1268: 1265: =  1264: 1260: 1256: 1248: 1244: 1240: 1237: 1236: 1235: 1233: 1229: 1225: 1222: =  1221: 1217: 1213: 1205: 1203: 1201: 1197: 1193: 1189: 1181: 1177: 1176: 1172: 1171:Clifford type 1168: 1164: 1160: 1159: 1139: 1136: 1133: 1127: 1122: 1118: 1110: 1109: 1107: 1103: 1100: 1096: 1092: 1089: 1085: 1081: 1078: 1074: 1070: 1069: 1068: 1066: 1062: 1058: 1053: 1051: 1047: 1043: 1039: 1034: 1030: 1029:formally real 1022: 1020: 1018: 1014: 1009: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 966: 964: 960: 956: 952: 948: 944: 940: 936: 932: 928: 924: 920: 916: 912: 908: 904: 900: 897: 893: 889: 885: 881: 877: 873: 869: 865: 861: 857: 853: 845: 843: 841: 837: 833: 827: 823: 819: 800: 797: 793: 786: 783: 780: 777: 774: 764: 763: 762: 760: 755: 738: 734: 727: 724: 721: 718: 715: 705: 704: 703: 701: 697: 693: 690: 682: 680: 678: 674: 670: 666: 650: 647: 644: 641: 638: 635: 632: 626: 623: 620: 617: 614: 608: 600: 596: 592: 588: 584: 580: 576: 573: 569: 565: 557: 555: 552: 548: 543: 529: 526: 523: 520: 517: 514: 508: 505: 502: 491: 487: 483: 479: 460: 455: 451: 448: 445: 442: 439: 433: 430: 427: 424: 417: 416: 415: 413: 409: 405: 401: 396: 394: 386: 384: 382: 378: 374: 370: 366: 362: 357: 356:all commute. 341: 337: 316: 308: 304: 285: 280: 276: 267: 263: 259: 253: 248: 244: 235: 231: 210: 207: 204: 201: 196: 192: 183: 178: 176: 172: 168: 164: 160: 128: 125: 119: 113: 110: 104: 101: 92: 89: 79: 76: 60: 57: 54: 51: 48: 41: 40: 39: 37: 33: 30: 26: 22: 2967: 2960:Rost, Markus 2930: 2912: 2873: 2826: 2809: 2766: 2738: 2714: 2663: 2594: 2590: 2555: 2551: 2527:(1): 29–64, 2524: 2520: 2511:Jordan, P.; 2503: 2499: 2469: 2447: 2428: 2423:Faraut, J.; 2384: 2380: 2333: 2327: 2285: 2279: 2254: 2241:Upmeier 1987 2236:Upmeier 1985 2223: 2216: 2212: 2204: 2184:, p. 99 2177: 2165: 2149:(1): 44–50. 2146: 2142: 2132: 2063: 2029: 2020:J-structures 1957: 1761: 1603: 1591: 1588:Jordan rings 1569: 1562: 1542: 1366: 1355: 1332: 1317: 1313: 1307: 1295: 1288: 1284: 1277: 1273: 1266: 1262: 1258: 1254: 1252: 1246: 1242: 1238: 1231: 1227: 1223: 1219: 1215: 1211: 1209: 1191: 1187: 1185: 1170: 1166: 1162: 1105: 1098: 1094: 1087: 1083: 1076: 1072: 1064: 1060: 1054: 1049: 1045: 1041: 1037: 1032: 1028: 1026: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 967: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 849: 840:real numbers 815: 756: 753: 700:quaternionic 689:self-adjoint 686: 676: 672: 668: 664: 598: 594: 590: 586: 582: 578: 574: 567: 563: 561: 544: 489: 481: 477: 475: 414:defined by: 411: 407: 399: 397: 390: 358: 306: 302: 179: 170: 166: 162: 158: 156: 32:over a field 24: 18: 2425:Koranyi, A. 2093:Jordan pair 2032:J-structure 2026:J-structure 1369:C*-algebras 1167:spin factor 896:Lie algebra 486:Lie algebra 369:observables 75:commutative 2990:0955.16001 2940:082180717X 2922:0444876510 2865:1024.17018 2797:0487.17001 2759:0145.25601 2703:1044.17001 2655:0139.25502 2517:Wigner, E. 2458:0273086197 2438:0198534779 2269:References 1960:Kac (1977) 1548:to extend 866:such that 852:derivation 577:, then if 572:involution 551:generators 2825:(1998) , 2816:EMS Press 2572:0092-7872 2506:: 209–217 2468:(2008) , 2350:0003-486X 2304:0002-9947 1901:− 1810:⊕ 1656:⊕ 1550:Koecher's 1523:‖ 1497:‖ 1494:≤ 1491:‖ 1478:‖ 1463:‖ 1456:‖ 1450:‖ 1437:‖ 1428:‖ 1422:‖ 1419:⋅ 1416:‖ 1410:‖ 1407:≤ 1404:‖ 1398:∘ 1392:‖ 1333:In 1979, 1143:⟩ 1131:⟨ 992:)=− 826:Lie group 818:octonions 759:octonions 665:hermitian 609:σ 524:− 428:∘ 208:⋯ 3019:Category 2966:(1998), 2647:16591377 2427:(1994), 2375:(2002). 2077:See also 1377:complete 929:)− 683:Examples 547:Shirshov 402:(not of 2905:1763974 2857:1490836 2789:0518614 2695:2014924 2629:0202783 2599:Bibcode 2580:0498755 2541:1968117 2492:0251099 2403:1886087 2366:0021546 2358:1969128 2320:0016759 2312:1990270 1604:Jordan 1234:, then 696:complex 379: ( 363: ( 2988:  2978:  2937:  2919:  2903:  2893:  2863:  2855:  2845:  2795:  2787:  2777:  2757:  2747:  2730:Review 2721:  2707:Errata 2701:  2693:  2683:  2653:  2645:  2638:220000 2635:  2627:  2619:  2578:  2570:  2539:  2490:  2480:  2455:  2435:  2411:586512 2409:  2401:  2364:  2356:  2348:  2318:  2310:  2302:  2217:et seq 2215:, 235 2213:et seq 1940:  1678:where 1226:) and 1065:simple 1002:σ 986:σ 974:σ 677:σ 591:σ 579:σ 575:σ 568:σ 34:whose 2621:57792 2617:JSTOR 2537:JSTOR 2407:S2CID 2354:JSTOR 2308:JSTOR 2227:See: 2109:Notes 1004:) is 984:with 698:, or 27:is a 2976:ISBN 2935:ISBN 2917:ISBN 2891:ISBN 2843:ISBN 2775:ISBN 2745:ISBN 2719:ISBN 2681:ISBN 2643:PMID 2568:ISSN 2478:ISBN 2453:ISBN 2433:ISBN 2346:ISSN 2300:ISSN 2066:1966 1989:and 1762:Any 1013:Tits 941:and 909:and 874:) = 692:real 597:) = 589:and 585:) = 562:If ( 545:The 381:1946 365:1933 305:and 161:and 77:law) 23:, a 2986:Zbl 2883:doi 2861:Zbl 2835:doi 2793:Zbl 2755:Zbl 2699:Zbl 2673:doi 2651:Zbl 2633:PMC 2607:doi 2560:doi 2529:doi 2389:doi 2338:doi 2290:doi 2151:doi 1312:of 1281:1/2 1210:If 980:of 965:). 959:str 953:of 943:der 921:to 899:der 862:of 679:). 371:in 19:In 3021:: 2984:, 2974:, 2962:; 2958:; 2901:MR 2899:, 2889:, 2881:, 2859:, 2853:MR 2851:, 2841:, 2833:, 2814:, 2808:, 2791:. 2785:MR 2783:. 2773:. 2769:. 2753:, 2728:. 2705:, 2697:, 2691:MR 2689:, 2679:, 2671:, 2649:, 2641:, 2631:, 2625:MR 2623:, 2615:, 2605:, 2595:56 2593:, 2576:MR 2574:, 2566:, 2554:, 2535:, 2525:35 2523:, 2515:; 2504:41 2502:, 2488:MR 2486:, 2476:, 2415:. 2405:. 2399:MR 2397:. 2385:39 2379:. 2362:MR 2360:, 2352:, 2344:, 2334:48 2316:MR 2314:, 2306:, 2298:, 2286:59 2284:, 2189:^ 2147:76 2145:. 2141:. 2117:^ 2016:. 2002:10 1759:. 1364:. 1320:. 1241:(2 1202:. 1182:). 1042:yx 1040:= 1038:xy 1019:. 1008:. 957:, 935:xz 927:yz 888:xD 872:xy 850:A 694:, 566:, 542:. 177:. 169:∘ 153:). 2885:: 2837:: 2799:. 2675:: 2609:: 2601:: 2562:: 2556:5 2531:: 2419:. 2413:. 2391:: 2340:: 2292:: 2159:. 2153:: 1998:K 1975:3 1971:K 1943:. 1935:i 1931:x 1925:j 1921:y 1915:j 1912:i 1908:) 1904:1 1898:( 1895:+ 1890:j 1886:y 1880:i 1876:x 1872:= 1869:} 1864:j 1860:y 1856:, 1851:i 1847:x 1843:{ 1818:1 1814:A 1805:0 1801:A 1780:2 1776:/ 1771:Z 1745:0 1741:J 1718:1 1714:J 1691:0 1687:J 1664:1 1660:J 1651:0 1647:J 1626:2 1622:/ 1617:Z 1570:R 1526:. 1518:2 1514:b 1510:+ 1505:2 1501:a 1486:2 1482:a 1472:, 1467:2 1459:a 1453:= 1445:2 1441:a 1431:, 1425:b 1413:a 1401:b 1395:a 1318:e 1314:A 1296:e 1294:( 1292:1 1289:A 1285:e 1283:( 1278:A 1274:e 1272:( 1270:0 1267:A 1263:A 1259:A 1255:R 1247:R 1243:R 1239:R 1232:e 1228:R 1224:e 1220:e 1218:( 1216:A 1212:e 1192:n 1190:× 1188:n 1173:. 1163:R 1140:x 1137:, 1134:x 1128:= 1123:2 1119:x 1106:R 1099:n 1097:× 1095:n 1088:n 1086:× 1084:n 1077:n 1075:× 1073:n 1050:x 1046:x 1036:( 1033:n 1006:A 1000:, 998:A 994:x 990:x 988:( 982:A 978:x 972:, 970:A 963:A 961:( 955:A 947:A 945:( 939:A 933:( 931:y 925:( 923:x 919:z 915:A 911:y 907:x 903:A 901:( 892:y 890:( 886:+ 884:y 882:) 880:x 878:( 876:D 870:( 868:D 864:A 860:D 856:A 831:4 829:F 801:, 798:2 794:/ 790:) 787:x 784:y 781:+ 778:y 775:x 772:( 739:2 735:/ 731:) 728:x 725:y 722:+ 719:y 716:x 713:( 675:, 673:A 669:A 651:. 648:x 645:y 642:+ 639:y 636:x 633:= 630:) 627:x 624:y 621:+ 618:y 615:x 612:( 599:y 595:y 593:( 587:x 583:x 581:( 564:A 530:x 527:y 521:y 518:x 515:= 512:] 509:y 506:, 503:x 500:[ 490:A 461:. 456:2 452:x 449:y 446:+ 443:y 440:x 434:= 431:y 425:x 408:A 400:A 342:n 338:x 317:x 307:n 303:m 289:) 286:y 281:m 277:x 273:( 268:n 264:x 260:= 257:) 254:y 249:n 245:x 241:( 236:m 232:x 211:x 205:x 202:= 197:n 193:x 171:y 167:x 163:y 159:x 147:( 135:) 132:) 129:x 126:x 123:( 120:y 117:( 114:x 111:= 108:) 105:x 102:x 99:( 96:) 93:y 90:x 87:( 73:( 61:x 58:y 55:= 52:y 49:x

Index

abstract algebra
nonassociative algebra
over a field
multiplication
commutative
associative algebra
power-associative
Pascual Jordan
1933
observables
quantum electrodynamics
Abraham Adrian Albert
1946
associative algebra
characteristic
Lie algebra
Shirshov
generators
involution
self-adjoint
real
complex
quaternionic
octonions
octonions
Albert algebra
Lie group
F4
complex numbers
real numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.