Knowledge (XXG)

Kähler manifold

Source 📝

4132: 6013:: every smooth projective variety with ample canonical bundle has a Kähler–Einstein metric (with constant negative Ricci curvature), and every Calabi–Yau manifold has a Kähler–Einstein metric (with zero Ricci curvature). These results are important for the classification of algebraic varieties, with applications such as the 5886:
showed that a compact complex surface has a Kähler metric if and only if its first Betti number is even. An alternative proof of this result which does not require the hard case-by-case study using the classification of compact complex surfaces was provided independently by Buchdahl and Lamari. Thus
5891:
shows, however, that this fails in dimensions at least 3. In more detail, the example is a 1-parameter family of smooth compact complex 3-folds such that most fibers are Kähler (and even projective), but one fiber is not Kähler. Thus a compact Kähler manifold can be diffeomorphic to a non-Kähler
2948: 3975: 3458:. The identities form the basis of the analytical toolkit on Kähler manifolds, and combined with Hodge theory are fundamental in proving many important properties of Kähler manifolds and their cohomology. In particular the Kähler identities are critical in proving the 3964: 6223:
For holomorphic maps between Hermitian manifolds, the holomorphic sectional curvature is not strong enough to control the target curvature term appearing in the Schwarz lemma second-order estimate. This motivated the consideration of the
6211:
A remarkable feature of complex geometry is that holomorphic sectional curvature decreases on complex submanifolds. (The same goes for a more general concept, holomorphic bisectional curvature.) For example, every complex submanifold of
1134: 4813: 591: 4354: 5856:-lemma, and in particular agree when the manifold is Kähler. In general the kernel of the natural map from Bott–Chern cohomology to Dolbeault cohomology contains information about the failure of the manifold to be Kähler. 2780: 4231: 3385: 2128: 80:
refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like
3136: 1777: 5114: 5745:
is an integral differential form) is also called the Hodge form, and the Kähler metric at this time is called the Hodge metric. The compact Kähler manifolds with Hodge metric are also called Hodge manifolds.
2846: 2530: 4127:{\displaystyle \Delta _{\bar {\partial }}={\bar {\partial }}{\bar {\partial }}^{*}+{\bar {\partial }}^{*}{\bar {\partial }},\ \ \ \ \Delta _{\partial }=\partial \partial ^{*}+\partial ^{*}\partial .} 5491: 3688: 816: 6640: 1211: 6133:
is a Hermitian manifold with a Hermitian metric of negative holomorphic sectional curvature (bounded above by a negative constant), then it is Brody hyperbolic (i.e., every holomorphic map
5356: 2408: 6101:
The holomorphic sectional curvature is intimately related to the complex geometry of the underlying complex manifold. It is an elementary consequence of the Ahlfors Schwarz lemma that if
3325: 1815: 5854: 5812: 5779: 5212: 3265:
As a consequence of the strong interaction between the smooth, complex, and Riemannian structures on a Kähler manifold, there are natural identities between the various operators on the
3011: 2460: 2225: 1904: 2564: 3591: 2319: 5000: 4678: 1458: 1361: 4954: 4517: 274: 5420: 4388: 3420: 6159: 5863:
are not projective. One may ask whether every compact Kähler manifold can at least be deformed (by continuously varying the complex structure) to a smooth projective variety.
4480: 1048: 959: 5270: 1663: 1292: 3456: 2838: 2348: 681: 6202: 6131: 5297: 2266: 1938: 159: 4905: 2622: 3865: 7850: 2662: 1561: 4572: 4451: 3053:
class. In a sense, this means that the geometry of a complex subspace is bounded in terms of its topology. (This fails completely for real submanifolds.) Explicitly,
2483: 2368: 2172: 1863: 1314: 724: 496: 405: 209: 3708: 2428: 4604: 4550: 3857: 3739: 2642: 2148: 2038: 1839: 1719: 5859:
Every compact complex curve is projective, but in complex dimension at least 2, there are many compact Kähler manifolds that are not projective; for example, most
7452: 1053: 2694: 2596: 1525: 1419: 456: 5138: 5024: 4856: 4836: 4698: 4627: 4431: 4411: 4254: 4155: 3830: 3810: 3790: 3763: 3611: 3532: 3508: 3287: 2058: 2018: 1998: 1978: 1958: 1683: 1601: 1581: 1498: 1478: 1396: 1254: 1234: 1019: 999: 979: 930: 903: 883: 863: 839: 748: 701: 654: 634: 614: 476: 429: 379: 356: 325: 301: 182: 2977: 2814: 2723: 5547:
The "Kähler package" is a collection of further restrictions on the cohomology of compact Kähler manifolds, building on Hodge theory. The results include the
6036: 4714: 504: 6020:
By contrast, not every smooth Fano variety has a Kähler–Einstein metric (which would have constant positive Ricci curvature). However, Xiuxiong Chen,
5937:
Although Ricci curvature is defined for any Riemannian manifold, it plays a special role in Kähler geometry: the Ricci curvature of a Kähler manifold
4262: 2728: 6003:), respectively. By the Kodaira embedding theorem, Fano manifolds and manifolds with ample canonical bundle are automatically projective varieties. 5516:
of a compact Kähler manifold is even, by Hodge symmetry. This is not true for compact complex manifolds in general, as shown by the example of the
4167: 3330: 2063: 7375: 7228: 7069: 7032: 6959: 6838: 6793: 5882:
One can also ask for a characterization of compact Kähler manifolds among all compact complex manifolds. In complex dimension 2, Kodaira and
5875:
found, however, that this fails in dimensions at least 4. She constructed a compact Kähler manifold of complex dimension 4 that is not even
3063: 1731: 82: 5029: 2943:{\displaystyle {\mathcal {K}}_{}:=\{\varphi :X\to \mathbb {R} {\text{ smooth}}\mid \omega +i\partial {\bar {\partial }}\varphi >0\}.} 1869: 408: 7445: 6922: 7817: 7352: 2953:
If two Kähler potentials differ by a constant, then they define the same Kähler metric, so the space of Kähler metrics in the class
6228:, introduced by Xiaokui Yang and Fangyang Zheng. This also appears in the work of Man-Chun Lee and Jeffrey Streets under the name 2488: 5556: 3475: 5991:, depending on whether the Einstein constant λ is positive, zero, or negative. Kähler manifolds of those three types are called 8047: 7782: 5868: 6281:. Conversely, every Riemann surface is Kähler since the Kähler form of any Hermitian metric is closed for dimensional reasons. 8409: 118:
Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view:
5425: 5901: 5607:
arises as the fundamental group of some compact complex manifold of dimension 3. (Conversely, the fundamental group of any
3021:
Kähler metrics in a given class simultaneously, and this perspective in the study of existence results for Kähler metrics.
86: 8635: 7989: 7495: 7438: 7410: 7367: 6777: 6423: 7759: 5871:
implies that every compact Kähler manifold of complex dimension 2 can indeed be deformed to a smooth projective variety.
5623:
characterizes smooth complex projective varieties among all compact Kähler manifolds. Namely, a compact complex manifold
5574:, is wide open. Hodge theory gives many restrictions on the possible Kähler groups. The simplest restriction is that the 3616: 8650: 8434: 7490: 6204:
is a compact Kähler manifold with a Kähler metric of positive holomorphic sectional curvature, Yang Xiaokui showed that
6035:
In situations where there cannot exist a Kähler–Einstein metric, it is possible to study mild generalizations including
5548: 3467: 8014: 6821:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 4, 3269:
of Kähler manifolds which do not hold for arbitrary complex manifolds. These identities relate the exterior derivative
756: 8640: 7405: 6615: 1142: 7640: 6014: 7086:
Kodaira, K. (1954). "On Kahler Varieties of Restricted Type an Intrinsic Characterization of Algebraic Varieties)".
5714:
with a hermitian metric whose curvature form ω is positive (since ω is then a Kähler form that represents the first
8645: 7935: 7587: 7202: 6943: 5302: 2624:, and by the Poincaré lemma any Kähler form will locally be cohomologous to zero. Thus the local Kähler potential 6078:
means the sectional curvature restricted to complex lines in the tangent space. This behaves more simply, in that
5817: 3295: 1785: 8274: 8229: 6377: 6331: 6040: 5827: 5785: 5752: 5620: 5146: 4705: 4633:
gives an interpretation of the splitting above which does not depend on the choice of Kähler metric. Namely, the
4520: 3459: 3266: 2982: 2433: 2198: 1877: 1818: 1722: 727: 2535: 8454: 8374: 8189: 8123: 7485: 6285: 6241: 5604: 5560: 3537: 3463: 8334: 7956: 7930: 7671: 6292: 6017:
for varieties with ample canonical bundle and the Beauville–Bogomolov decomposition for Calabi–Yau manifolds.
5996: 2373: 2271: 4959: 8594: 8404: 8118: 7961: 7802: 7560: 7502: 6418: 6413: 6381: 6376:, with holomorphic sectional curvature equal to −1. A natural generalization of the ball is provided by the 6043:. When a Kähler–Einstein metric can exist, these broader generalizations are automatically Kähler–Einstein. 5704: 304: 185: 162: 6094:
Kähler metric with holomorphic sectional curvature equal to −1. (With this metric, the ball is also called
4639: 1431: 1322: 8359: 8100: 7906: 7797: 7769: 7592: 6278: 6074:) varies between 1/4 and 1 at every point. For a Hermitian manifold (for example, a Kähler manifold), the 5593: 5552: 4910: 4485: 3471: 3042: 220: 8509: 7845: 7812: 7676: 7518: 5361: 8214: 8154: 8095: 8062: 8057: 7855: 7553: 7548: 7543: 7528: 6273:
SO(2), which is equal to the unitary group U(1).) In particular, an oriented Riemannian 2-manifold is a
4362: 3393: 61: 37: 8384: 6338:. The natural Kähler metric on a Hermitian symmetric space of compact type has sectional curvature ≥ 0. 6136: 5888: 6310:
that preserve the standard Hermitian form. The Fubini–Study metric is the unique Riemannian metric on
4456: 2174:. There is no comparable way of describing a general Riemannian metric in terms of a single function. 1024: 935: 8599: 7597: 7582: 7538: 7400: 7267: 7061: 6951: 5821: 5223: 4158: 3260: 1606: 1259: 3428: 2819: 8514: 8399: 8052: 7951: 7577: 7049: 6898: 6428: 6342: 6091: 6056: 5927: 5876: 3711: 3479: 3290: 3244: 3240: 1376: 127: 57: 53: 5824:
of a compact complex manifolds, and they are isomorphic if and only if the manifold satisfies the
3959:{\displaystyle d=\partial +{\bar {\partial }},\ \ \ \ d^{*}=\partial ^{*}+{\bar {\partial }}^{*},} 659: 8559: 8479: 8379: 8339: 8219: 8184: 8019: 7896: 7792: 7533: 7329: 7311: 7291: 7257: 7206: 7185: 7167: 7103: 7005: 6175: 6104: 6083: 5923: 5275: 3014: 2239: 2191: 1911: 1686: 1317: 842: 382: 359: 132: 107: 99: 8269: 7302:
Yang, Xiaokui; Zheng, Fangyang (2018). "On real bisectional curvature for Hermitian manifolds".
5592:
cannot be the fundamental group of a compact Kähler manifold.) Extensions of the theory such as
4868: 2601: 6082:
has holomorphic sectional curvature equal to 1 everywhere. At the other extreme, the open unit
6028:–Donaldson conjecture: a smooth Fano variety has a Kähler–Einstein metric if and only if it is 5665:. (Because a positive multiple of a Kähler form is a Kähler form, it is equivalent to say that 8524: 8429: 8264: 8174: 8144: 7940: 7835: 7787: 7681: 7371: 7348: 7342: 7224: 7158:
Lee, Man-Chun; Streets, Jeffrey (2021). "Complex Manifolds with Negative Curvature Operator".
7065: 7028: 7016: 6955: 6939: 6918: 6834: 6789: 6354: 6010: 5988: 5931: 5567: 3050: 2647: 2328: 1873: 1530: 385: 65: 4557: 4436: 3182:. These volumes are always positive, which expresses a strong positivity of the Kähler class 2465: 2353: 2157: 1848: 1299: 1129:{\textstyle h_{ab}=({\frac {\partial }{\partial z_{a}}},{\frac {\partial }{\partial z_{b}}})} 709: 481: 390: 194: 8534: 8469: 8439: 8319: 8259: 8224: 8169: 8159: 8139: 8072: 8024: 7982: 7887: 7880: 7873: 7866: 7859: 7777: 7567: 7475: 7321: 7275: 7216: 7177: 7146: 7128: 7095: 6997: 6989: 6910: 6886: 6868: 6826: 6781: 6166: 5976: 5864: 3742: 3693: 2413: 909: 730:. A Kähler manifold can also be viewed as a Riemannian manifold, with the Riemannian metric 336: 49: 7385: 7287: 7238: 7142: 7079: 7042: 6969: 6932: 6882: 6848: 6803: 4577: 4523: 3835: 3717: 2627: 2133: 2023: 1824: 1704: 8614: 8569: 8519: 8504: 8494: 8389: 8354: 8179: 7749: 7523: 7381: 7283: 7234: 7150: 7138: 7075: 7038: 7024: 7001: 6965: 6928: 6906: 6890: 6878: 6844: 6822: 6799: 6274: 6255: 6021: 5911: 5608: 5600: 1698: 189: 8459: 6977: 6770:
Amorós, Jaume; Burger, Marc; Corlette, Kevin; Kotschick, Dieter; Toledo, Domingo (1996),
69: 7271: 2667: 2569: 1507: 1401: 438: 8589: 8584: 8544: 8484: 8474: 8394: 8314: 8304: 8299: 8294: 8209: 8204: 8199: 8164: 8149: 8077: 7754: 7617: 7053: 6771: 6373: 6346: 6270: 6006: 5953: 5575: 5123: 5009: 4841: 4821: 4683: 4612: 4416: 4396: 4239: 4140: 3815: 3795: 3775: 3748: 3596: 3517: 3493: 3272: 2043: 2003: 1983: 1963: 1943: 1668: 1586: 1566: 1483: 1463: 1422: 1381: 1239: 1219: 1004: 984: 964: 915: 888: 868: 848: 824: 733: 686: 639: 619: 599: 461: 432: 414: 364: 341: 310: 286: 167: 96: 2956: 2793: 2702: 8629: 8579: 8564: 8539: 8529: 8499: 8444: 8419: 8364: 8349: 8344: 8309: 8284: 8244: 8034: 7686: 7602: 7480: 7461: 7333: 7245: 7009: 6296: 5915: 5872: 5860: 5521: 5494: 3030: 2783: 1426: 280: 212: 93: 73: 7295: 7248:(2004), "On the homotopy types of compact Kähler and complex projective manifolds", 7189: 8609: 8449: 8329: 8279: 8249: 8234: 8042: 8009: 7901: 7827: 7807: 7744: 7607: 6335: 6000: 5992: 5883: 5517: 5117: 4630: 2230: 103: 4808:{\displaystyle H^{r}(X,\mathbf {C} )\cong \bigoplus _{p+q=r}H^{q}(X,\Omega ^{p}).} 586:{\displaystyle \omega (u,v)=\operatorname {Re} h(iu,v)=\operatorname {Im} h(u,v)} 8604: 8574: 8554: 8414: 8369: 8324: 8289: 8239: 8004: 7973: 7734: 7691: 7419: 6814: 6059:, which is a real number associated to any real 2-plane in the tangent space of 5782: 5715: 4349:{\displaystyle {\mathcal {H}}^{r}(X)=\bigoplus _{p+q=r}{\mathcal {H}}^{p,q}(X),} 2195: 906: 33: 5749:
Many properties of Kähler manifolds hold in the slightly greater generality of
5217:
The Hodge numbers of a compact Kähler manifold satisfy several identities. The
2775:{\displaystyle \omega _{\varphi }=\omega +i\partial {\bar {\partial }}\varphi } 17: 8549: 8489: 8424: 8087: 8067: 7966: 7925: 7739: 7279: 6914: 6830: 6810: 6400: 5914:. Equivalently, the Ricci curvature tensor is equal to a constant λ times the 5615:
Characterizations of complex projective varieties and compact Kähler manifolds
4701: 4634: 3038: 1501: 7220: 4226:{\displaystyle \Delta _{d}=2\Delta _{\bar {\partial }}=2\Delta _{\partial }.} 8464: 8254: 8194: 7840: 7714: 7635: 7630: 7625: 6025: 3511: 6063:
at a point. For example, the sectional curvature of the standard metric on
7181: 3380:{\displaystyle \Delta _{d},\Delta _{\partial },\Delta _{\bar {\partial }}} 8110: 7999: 7994: 7724: 7719: 7656: 7572: 6266: 6029: 5926:, which asserts in the absence of mass that spacetime is a 4-dimensional 3766: 2123:{\displaystyle {\omega \vert }_{U}=(i/2)\partial {\bar {\partial }}\rho } 45: 7325: 5887:"Kähler" is a purely topological property for compact complex surfaces. 1908:, every Kähler metric can locally be described in this way. That is, if 7729: 7709: 7666: 7661: 7107: 6993: 6785: 5586: 6269:
2-manifold is Kähler. (Indeed, its holonomy group is contained in the
5422:
can be proved using that the Hodge star operator gives an isomorphism
3131:{\displaystyle \mathrm {vol} (Y)={\frac {1}{r!}}\int _{Y}\omega ^{r},} 1772:{\displaystyle \omega ={\frac {i}{2}}\partial {\bar {\partial }}\rho } 7262: 7211: 7133: 7116: 6873: 6856: 6165:
happens to be compact, then this is equivalent to the manifold being
4862:
connects topology and complex geometry for compact Kähler manifolds.
3251:
minimizes volume among all (real) cycles in the same homology class.
7099: 5505:
A simple consequence of Hodge theory is that every odd Betti number
7316: 7172: 7701: 6314:(up to a positive multiple) that is invariant under the action of 5109:{\displaystyle h^{p,q}(X)=\mathrm {dim} _{\mathbf {C} }H^{p,q}(X)} 2725:
is a Kähler class, then any other Kähler metric can be written as
2566:. In the local discussion above, one takes the local Kähler class 3017:. In this way the space of Kähler potentials allows one to study 7430: 5596:
give further restrictions on which groups can be Kähler groups.
4838:
as a topological space, while the groups on the right depend on
2186:
using a single Kähler potential, it is possible to describe the
7434: 2816:
is defined as those positive cases, and is commonly denoted by
5578:
of a Kähler group must have even rank, since the Betti number
6577: 6566: 6388:
of noncompact type is isomorphic to a bounded domain in some
5002:
of harmonic forms with respect to a given Kähler metric. The
2782:
for such a smooth function. This form is not automatically a
5781:-manifolds, that is compact complex manifolds for which the 5559:. A related result is that every compact Kähler manifold is 4966: 4492: 4369: 4317: 4269: 2988: 2853: 2825: 2525:{\displaystyle d\beta =i\partial {\bar {\partial }}\varphi } 2190:
of two Kähler forms this way, provided they are in the same
7201:, London Mathematical Society Student Texts, vol. 69, 6055:
from the standard metric on Euclidean space is measured by
2182:
Whilst it is not always possible to describe a Kähler form
6673: 5941:
can be viewed as a real closed (1,1)-form that represents
4161:
imply these Laplacians are all the same up to a constant:
29:
Manifold with Riemannian, complex and symplectic structure
6396:
is a complete Kähler metric with sectional curvature ≤ 0.
5116:. The Hodge decomposition implies a decomposition of the 6247:
with the standard Hermitian metric is a Kähler manifold.
5585:
of a compact Kähler manifold is even. (For example, the
3243:(outside its singular set). Even more: by the theory of 2268:
is a compact Kähler manifold, then the cohomology class
6980:(1933), "Ùber eine bemerkenswerte Hermitesche Metrik", 5599:
Without the Kähler condition, the situation is simple:
3792:-forms with compact support.) For a Hermitian manifold 932:
in which the metric agrees with the standard metric on
6277:
in a canonical way; this is known as the existence of
6258:) inherits a flat metric from the Euclidean metric on 5741:
that satisfies these conditions (that is, Kähler form
5486:{\displaystyle H^{p,q}\cong {\overline {H^{n-p,n-q}}}} 3157:
is closed, this integral depends only on the class of
1056: 6776:, Mathematical Surveys and Monographs, vol. 44, 6618: 6178: 6139: 6107: 5971:. It follows that a compact Kähler–Einstein manifold 5830: 5788: 5755: 5428: 5364: 5305: 5278: 5226: 5149: 5126: 5032: 5012: 4962: 4913: 4871: 4844: 4824: 4717: 4686: 4642: 4615: 4580: 4560: 4526: 4488: 4459: 4439: 4419: 4399: 4365: 4265: 4242: 4170: 4143: 3978: 3868: 3838: 3818: 3798: 3778: 3751: 3720: 3696: 3619: 3599: 3540: 3520: 3496: 3431: 3396: 3333: 3298: 3275: 3231:
A related fact is that every closed complex subspace
3066: 2985: 2959: 2849: 2822: 2796: 2731: 2705: 2670: 2650: 2630: 2604: 2572: 2538: 2491: 2468: 2436: 2416: 2376: 2356: 2331: 2274: 2242: 2201: 2160: 2136: 2066: 2046: 2026: 2006: 1986: 1966: 1946: 1914: 1880: 1851: 1827: 1788: 1734: 1707: 1671: 1609: 1589: 1569: 1533: 1510: 1486: 1466: 1434: 1404: 1384: 1325: 1302: 1262: 1242: 1222: 1145: 1027: 1007: 987: 967: 938: 918: 891: 871: 851: 827: 759: 736: 712: 689: 662: 642: 622: 602: 507: 484: 464: 441: 417: 393: 367: 344: 313: 289: 223: 197: 170: 135: 6817:; Peters, Chris A.M.; Van de Ven, Antonius (2004) , 5627:
is projective if and only if there is a Kähler form
1050:, and the metric is written in these coordinates as 8132: 8109: 8086: 8033: 7918: 7826: 7768: 7700: 7649: 7616: 7511: 7468: 6345:of a Kähler manifold is Kähler. In particular, any 3683:{\displaystyle d^{*}=-(-1)^{n(r+1)}\star d\,\star } 6634: 6196: 6153: 6125: 5848: 5806: 5773: 5485: 5414: 5350: 5291: 5264: 5206: 5132: 5108: 5018: 4994: 4948: 4899: 4850: 4830: 4807: 4692: 4672: 4621: 4598: 4566: 4544: 4511: 4474: 4445: 4425: 4405: 4382: 4348: 4248: 4225: 4149: 4126: 3958: 3851: 3824: 3804: 3784: 3757: 3733: 3702: 3682: 3605: 3585: 3526: 3502: 3450: 3414: 3379: 3319: 3281: 3201:with respect to complex subspaces. In particular, 3130: 3005: 2971: 2942: 2832: 2808: 2774: 2717: 2688: 2656: 2636: 2616: 2590: 2558: 2524: 2477: 2454: 2422: 2402: 2362: 2342: 2313: 2260: 2219: 2166: 2142: 2122: 2052: 2032: 2012: 1992: 1972: 1952: 1932: 1898: 1857: 1833: 1809: 1771: 1713: 1677: 1657: 1595: 1575: 1555: 1519: 1492: 1472: 1452: 1413: 1390: 1355: 1308: 1286: 1248: 1228: 1205: 1128: 1042: 1013: 993: 973: 953: 924: 897: 877: 857: 833: 810: 742: 718: 695: 675: 648: 628: 608: 585: 490: 470: 450: 423: 399: 373: 350: 319: 295: 268: 203: 176: 153: 7304:Transactions of the American Mathematical Society 5650:is in the image of the integral cohomology group 4236:These identities imply that on a Kähler manifold 811:{\displaystyle g(u,v)=\operatorname {Re} h(u,v).} 6905:, Lecture Notes in Mathematics, vol. 1764, 6635:{\displaystyle \partial {\overline {\partial }}} 5999:, or with ample canonical bundle (which implies 1206:{\displaystyle h_{ab}=\delta _{ab}+O(\|z\|^{2})} 6731: 6470: 6446: 6361:) is Kähler. This is a large class of examples. 6284:There is a standard choice of Kähler metric on 6773:Fundamental Groups of Compact Kähler Manifolds 5930:with zero Ricci curvature. See the article on 7446: 6262:, and is therefore a compact Kähler manifold. 5987:either anti-ample, homologically trivial, or 5351:{\displaystyle H^{p,q}={\overline {H^{q,p}}}} 1460:. Equivalently, there is a complex structure 48:with three mutually compatible structures: a 8: 6612:Angella, D. and Tomassini, A., 2013. On the 3320:{\displaystyle \partial ,{\bar {\partial }}} 2934: 2873: 2072: 1810:{\displaystyle \partial ,{\bar {\partial }}} 1281: 1263: 1191: 1184: 7117:"Courants kählériens et surfaces compactes" 6220:) has holomorphic sectional curvature ≤ 0. 5849:{\displaystyle \partial {\bar {\partial }}} 5807:{\displaystyle \partial {\bar {\partial }}} 5774:{\displaystyle \partial {\bar {\partial }}} 5207:{\displaystyle b_{r}=\sum _{p+q=r}h^{p,q}.} 3006:{\displaystyle {\mathcal {K}}/\mathbb {R} } 2462:-lemma further states that this exact form 2455:{\displaystyle \partial {\bar {\partial }}} 2220:{\displaystyle \partial {\bar {\partial }}} 1940:is a Kähler manifold, then for every point 1899:{\displaystyle \partial {\bar {\partial }}} 72:in 1933. The terminology has been fixed by 7453: 7439: 7431: 7344:Differential Analysis on Complex Manifolds 7160:International Mathematics Research Notices 6754: 6554: 6542: 6530: 6518: 6506: 5879:to any smooth complex projective variety. 5563:in the sense of rational homotopy theory. 2559:{\displaystyle \varphi :X\to \mathbb {C} } 2325:. Any other representative of this class, 1868:Conversely, by the complex version of the 1782:is positive, that is, a Kähler form. Here 7315: 7261: 7210: 7171: 7132: 6872: 6743: 6622: 6617: 6177: 6141: 6140: 6138: 6106: 5835: 5834: 5829: 5793: 5792: 5787: 5760: 5759: 5754: 5454: 5448: 5433: 5427: 5388: 5369: 5363: 5331: 5325: 5310: 5304: 5283: 5277: 5250: 5231: 5225: 5189: 5167: 5154: 5148: 5125: 5085: 5074: 5073: 5062: 5037: 5031: 5011: 4971: 4965: 4964: 4961: 4956:, which can be identified with the space 4937: 4918: 4912: 4876: 4870: 4843: 4823: 4793: 4774: 4752: 4737: 4722: 4716: 4685: 4662: 4647: 4641: 4614: 4579: 4559: 4525: 4497: 4491: 4490: 4487: 4458: 4438: 4418: 4398: 4374: 4368: 4367: 4364: 4322: 4316: 4315: 4296: 4274: 4268: 4267: 4264: 4241: 4214: 4192: 4191: 4175: 4169: 4142: 4112: 4099: 4083: 4053: 4052: 4046: 4035: 4034: 4024: 4013: 4012: 4000: 3999: 3984: 3983: 3977: 3947: 3936: 3935: 3925: 3912: 3882: 3881: 3867: 3843: 3837: 3817: 3797: 3777: 3750: 3725: 3719: 3695: 3676: 3649: 3624: 3618: 3598: 3586:{\displaystyle \Delta _{d}=dd^{*}+d^{*}d} 3574: 3561: 3545: 3539: 3519: 3495: 3442: 3430: 3395: 3365: 3364: 3351: 3338: 3332: 3306: 3305: 3297: 3274: 3149:-dimensional closed complex subspace and 3119: 3109: 3090: 3067: 3065: 2999: 2998: 2993: 2987: 2986: 2984: 2958: 2914: 2913: 2893: 2889: 2888: 2858: 2852: 2851: 2848: 2824: 2823: 2821: 2795: 2758: 2757: 2736: 2730: 2704: 2669: 2649: 2629: 2603: 2571: 2552: 2551: 2537: 2508: 2507: 2490: 2467: 2441: 2440: 2435: 2415: 2375: 2355: 2330: 2296: 2291: 2273: 2241: 2206: 2205: 2200: 2159: 2135: 2106: 2105: 2091: 2076: 2068: 2065: 2045: 2025: 2005: 1985: 1965: 1945: 1913: 1885: 1884: 1879: 1850: 1826: 1796: 1795: 1787: 1755: 1754: 1741: 1733: 1706: 1670: 1608: 1588: 1568: 1538: 1532: 1509: 1485: 1465: 1433: 1403: 1383: 1346: 1345: 1330: 1324: 1301: 1261: 1241: 1221: 1194: 1166: 1150: 1144: 1114: 1101: 1089: 1076: 1061: 1055: 1034: 1030: 1029: 1026: 1006: 986: 966: 945: 941: 940: 937: 917: 890: 870: 850: 826: 758: 735: 711: 688: 663: 661: 641: 621: 601: 506: 483: 463: 440: 416: 392: 366: 343: 312: 288: 222: 196: 169: 134: 6685: 6482: 6372:has a complete Kähler metric called the 6037:constant scalar curvature Kähler metrics 6032:, a purely algebro-geometric condition. 5703:is projective if and only if there is a 2403:{\displaystyle \omega '=\omega +d\beta } 2314:{\displaystyle \in H_{\text{dR}}^{2}(X)} 6669: 6667: 6601: 6439: 6306:, the group of linear automorphisms of 6051:The deviation of a Riemannian manifold 5922:. The reference to Einstein comes from 4995:{\displaystyle {\mathcal {H}}^{p,q}(X)} 4609:Further, for a compact Kähler manifold 4574:is harmonic if and only if each of its 1316:is closed, it determines an element in 6696: 6659: 4818:The group on the left depends only on 4700:with complex coefficients splits as a 3969:and two other Laplacians are defined: 3490:On a Riemannian manifold of dimension 3025:Kähler manifolds and volume minimizers 3013:. The space of Kähler potentials is a 6719: 6707: 6589: 6494: 6458: 4673:{\displaystyle H^{r}(X,\mathbf {C} )} 1453:{\displaystyle \operatorname {U} (n)} 1356:{\displaystyle H^{2}(X,\mathbb {R} )} 7: 7851:Bogomol'nyi–Prasad–Sommerfield bound 7058:Foundations of Differential Geometry 5570:of compact Kähler manifolds, called 5566:The question of which groups can be 5501:Topology of compact Kähler manifolds 4949:{\displaystyle H^{q}(X,\Omega ^{p})} 4512:{\displaystyle {\mathcal {H}}^{p,q}} 2979:can be identified with the quotient 2194:class. This is a consequence of the 269:{\displaystyle g(u,v)=\omega (u,Jv)} 5415:{\displaystyle h^{p,q}=h^{n-p,n-q}} 3327:and their adjoints, the Laplacians 163:integrable almost-complex structure 60:. The concept was first studied by 6642:-Lemma and Bott-Chern cohomology. 6624: 6619: 6384:. Every Hermitian symmetric space 5837: 5831: 5795: 5789: 5762: 5756: 5280: 5069: 5066: 5063: 4934: 4790: 4460: 4383:{\displaystyle {\mathcal {H}}^{r}} 4215: 4211: 4194: 4188: 4172: 4118: 4109: 4096: 4092: 4084: 4080: 4055: 4037: 4015: 4002: 3986: 3980: 3938: 3922: 3884: 3875: 3542: 3486:The Laplacian on a Kähler manifold 3432: 3415:{\displaystyle L:=\omega \wedge -} 3367: 3361: 3352: 3348: 3335: 3308: 3299: 3074: 3071: 3068: 2916: 2910: 2760: 2754: 2510: 2504: 2443: 2437: 2208: 2202: 2108: 2102: 2020:and a smooth real-valued function 1887: 1881: 1798: 1789: 1757: 1751: 1435: 1107: 1103: 1082: 1078: 307:(and hence a Riemannian metric on 25: 7021:Complex Geometry: An Introduction 6154:{\displaystyle \mathbb {C} \to X} 5669:has a Kähler form whose class in 6948:Principles of Algebraic Geometry 6380:of noncompact type, such as the 6326:. One natural generalization of 5952:) (the first Chern class of the 5557:Hodge-Riemann bilinear relations 5075: 4738: 4663: 4475:{\displaystyle \Delta \alpha =0} 3476:Hodge-Riemann bilinear relations 3220:, for a compact Kähler manifold 1721:on a complex manifold is called 1043:{\displaystyle \mathbb {C} ^{n}} 954:{\displaystyle \mathbb {C} ^{n}} 821:Equivalently, a Kähler manifold 83:Hermitian Yang–Mills connections 68:in 1930, and then introduced by 8048:Eleven-dimensional supergravity 6903:Lectures on Symplectic Geometry 6295:. One description involves the 6076:holomorphic sectional curvature 6047:Holomorphic sectional curvature 5265:{\displaystyle h^{p,q}=h^{q,p}} 5140:in terms of its Hodge numbers: 4858:as a complex manifold. So this 4554:. That is, a differential form 3613:is the exterior derivative and 1658:{\displaystyle g(Ju,Jv)=g(u,v)} 1500:at each point (that is, a real 1287:{\displaystyle \{1,\cdots ,n\}} 303:at each point is symmetric and 110:, proved using Kähler metrics. 6265:Every Riemannian metric on an 6216:(with the induced metric from 6191: 6179: 6145: 6120: 6108: 6024:, and Song Sun proved the Yau– 5840: 5798: 5765: 5103: 5097: 5055: 5049: 4989: 4983: 4943: 4924: 4894: 4888: 4799: 4780: 4742: 4728: 4667: 4653: 4593: 4581: 4539: 4527: 4340: 4334: 4286: 4280: 4197: 4058: 4040: 4018: 4005: 3989: 3941: 3887: 3665: 3653: 3646: 3636: 3451:{\displaystyle \Lambda =L^{*}} 3370: 3311: 3084: 3078: 2966: 2960: 2919: 2885: 2865: 2859: 2833:{\displaystyle {\mathcal {K}}} 2803: 2797: 2763: 2712: 2706: 2677: 2671: 2579: 2573: 2548: 2513: 2446: 2308: 2302: 2281: 2275: 2255: 2243: 2211: 2111: 2099: 2085: 1927: 1915: 1890: 1801: 1760: 1725:if the real closed (1,1)-form 1652: 1640: 1631: 1613: 1447: 1441: 1350: 1336: 1200: 1181: 1123: 1073: 981:. That is, if the chart takes 802: 790: 775: 763: 580: 568: 553: 538: 523: 511: 263: 248: 239: 227: 148: 136: 1: 7496:Second superstring revolution 7368:American Mathematical Society 7364:Complex Differential Geometry 7121:Annales de l'Institut Fourier 6982:Abh. Math. Sem. Univ. Hamburg 6861:Annales de l'Institut Fourier 6778:American Mathematical Society 6732:Kobayashi & Nomizu (1996) 6471:Kobayashi & Nomizu (1996) 5120:of a compact Kähler manifold 3235:of a compact Kähler manifold 85:, or special metrics such as 7990:Generalized complex manifold 7491:First superstring revolution 6857:"On compact Kähler surfaces" 6627: 6392:, and the Bergman metric of 5906:A Kähler manifold is called 5549:Lefschetz hyperplane theorem 5478: 5343: 5272:holds because the Laplacian 4907:be the complex vector space 3468:Lefschetz hyperplane theorem 676:{\displaystyle {\sqrt {-1}}} 7421:Lectures on Kähler Geometry 7406:Encyclopedia of Mathematics 7199:Lectures on Kähler Geometry 6855:Buchdahl, Nicholas (1999). 6734:, v. 2, Proposition IX.9.2. 6197:{\displaystyle (X,\omega )} 6126:{\displaystyle (X,\omega )} 5299:is a real operator, and so 5292:{\displaystyle \Delta _{d}} 4860:Hodge decomposition theorem 2261:{\displaystyle (X,\omega )} 1933:{\displaystyle (X,\omega )} 154:{\displaystyle (X,\omega )} 8667: 7588:Non-critical string theory 7341:Wells, Raymond O. (2007). 7203:Cambridge University Press 6424:Quaternion-Kähler manifold 6378:Hermitian symmetric spaces 6332:Hermitian symmetric spaces 6230:complex curvature operator 6226:real bisectional curvature 6208:is rationally connected. 5899: 5869:classification of surfaces 4900:{\displaystyle H^{p,q}(X)} 3267:complex differential forms 3258: 3153:is the Kähler form. Since 2617:{\displaystyle U\subset X} 2178:Space of Kähler potentials 865:such that for every point 431:gives a positive definite 7418:Moroianu, Andrei (2004), 7280:10.1007/s00222-003-0352-1 7197:Moroianu, Andrei (2007), 6915:10.1007/978-3-540-45330-7 6831:10.1007/978-3-642-57739-0 6334:of compact type, such as 5896:Kähler–Einstein manifolds 5820:is an alternative to the 5816:holds. In particular the 5621:Kodaira embedding theorem 4706:coherent sheaf cohomology 4606:-components is harmonic. 4519:is the space of harmonic 3464:Nakano vanishing theorems 1723:strictly plurisubharmonic 683:). For a Kähler manifold 8124:Introduction to M-theory 7818:Wess–Zumino–Witten model 7760:Hanany–Witten transition 7486:History of string theory 7362:Zheng, Fangyang (2000), 7250:Inventiones Mathematicae 7221:10.1017/CBO9780511618666 6819:Compact Complex Surfaces 6755:Lee & Streets (2021) 6644:Inventiones mathematicae 6341:The induced metric on a 6286:complex projective space 6250:A compact complex torus 6096:complex hyperbolic space 5611:is finitely presented.) 5605:finitely presented group 5594:non-abelian Hodge theory 2657:{\displaystyle \varphi } 2343:{\displaystyle \omega '} 1980:there is a neighborhood 1556:{\displaystyle J^{2}=-1} 1480:on the tangent space of 7803:Vertex operator algebra 7503:String theory landscape 7115:Lamari, Ahcène (1999). 6744:Yang & Zheng (2018) 6545:, sections 3.3 and 5.2, 6414:Almost complex manifold 6382:Siegel upper half space 6353:) or smooth projective 6041:extremal Kähler metrics 5705:holomorphic line bundle 5493:. It also follows from 4567:{\displaystyle \alpha } 4446:{\displaystyle \alpha } 2478:{\displaystyle d\beta } 2363:{\displaystyle \omega } 2167:{\displaystyle \omega } 1858:{\displaystyle \omega } 1375:A Kähler manifold is a 1309:{\displaystyle \omega } 719:{\displaystyle \omega } 491:{\displaystyle \omega } 400:{\displaystyle \omega } 335:A Kähler manifold is a 204:{\displaystyle \omega } 126:A Kähler manifold is a 87:Kähler–Einstein metrics 8101:AdS/CFT correspondence 7856:Exceptional Lie groups 7798:Superconformal algebra 7770:Conformal field theory 7641:Montonen–Olive duality 7593:Non-linear sigma model 6636: 6447:Cannas da Silva (2001) 6279:isothermal coordinates 6198: 6172:On the other hand, if 6155: 6127: 6015:Miyaoka–Yau inequality 5902:Kähler–Einstein metric 5850: 5808: 5775: 5553:hard Lefschetz theorem 5487: 5416: 5352: 5293: 5266: 5208: 5134: 5110: 5020: 4996: 4950: 4901: 4852: 4832: 4809: 4694: 4674: 4623: 4600: 4568: 4546: 4513: 4476: 4447: 4427: 4407: 4384: 4350: 4250: 4227: 4151: 4128: 3960: 3853: 3826: 3806: 3786: 3759: 3735: 3704: 3703:{\displaystyle \star } 3684: 3607: 3587: 3528: 3504: 3472:Hard Lefschetz theorem 3452: 3416: 3381: 3321: 3283: 3132: 3007: 2973: 2944: 2834: 2810: 2776: 2719: 2690: 2658: 2638: 2618: 2592: 2560: 2532:for a smooth function 2526: 2479: 2456: 2424: 2423:{\displaystyle \beta } 2404: 2364: 2344: 2315: 2262: 2221: 2168: 2152:local Kähler potential 2144: 2124: 2054: 2034: 2014: 1994: 1974: 1954: 1934: 1900: 1859: 1835: 1811: 1773: 1715: 1679: 1659: 1597: 1577: 1557: 1521: 1494: 1474: 1454: 1415: 1392: 1357: 1310: 1288: 1250: 1230: 1207: 1130: 1044: 1015: 995: 975: 955: 926: 899: 879: 859: 835: 812: 744: 720: 697: 677: 656:is the complex number 650: 630: 610: 587: 492: 472: 452: 425: 401: 375: 352: 321: 297: 270: 205: 178: 155: 102:is a Kähler manifold. 8096:Holographic principle 8063:Type IIB supergravity 8058:Type IIA supergravity 7910:-form electrodynamics 7529:Bosonic string theory 7088:Annals of Mathematics 7062:John Wiley & Sons 6952:John Wiley & Sons 6637: 6557:, Proposition 3.A.28. 6521:, Proposition 3.1.12. 6199: 6156: 6128: 5851: 5818:Bott–Chern cohomology 5809: 5776: 5488: 5417: 5353: 5294: 5267: 5209: 5135: 5111: 5021: 4997: 4951: 4902: 4853: 4833: 4810: 4695: 4675: 4624: 4601: 4599:{\displaystyle (p,q)} 4569: 4547: 4545:{\displaystyle (p,q)} 4514: 4477: 4448: 4428: 4408: 4385: 4351: 4251: 4228: 4152: 4129: 3961: 3854: 3852:{\displaystyle d^{*}} 3827: 3807: 3787: 3760: 3736: 3734:{\displaystyle d^{*}} 3705: 3685: 3608: 3588: 3534:-forms is defined by 3529: 3505: 3453: 3422:and its adjoint, the 3417: 3382: 3322: 3284: 3224:of complex dimension 3133: 3049:is determined by its 3008: 2974: 2945: 2835: 2811: 2777: 2720: 2691: 2659: 2639: 2637:{\displaystyle \rho } 2619: 2593: 2561: 2527: 2480: 2457: 2425: 2405: 2365: 2345: 2316: 2263: 2222: 2169: 2145: 2143:{\displaystyle \rho } 2125: 2055: 2035: 2033:{\displaystyle \rho } 2015: 1995: 1975: 1955: 1935: 1901: 1860: 1836: 1834:{\displaystyle \rho } 1812: 1774: 1716: 1714:{\displaystyle \rho } 1701:real-valued function 1680: 1660: 1598: 1583:preserves the metric 1578: 1558: 1522: 1495: 1475: 1455: 1416: 1393: 1358: 1311: 1289: 1251: 1231: 1208: 1131: 1045: 1016: 996: 976: 956: 927: 900: 880: 860: 845:of complex dimension 836: 813: 745: 721: 698: 678: 651: 631: 611: 588: 493: 473: 453: 435:on the tangent space 426: 402: 376: 353: 322: 298: 271: 206: 179: 156: 106:is a central part of 62:Jan Arnoldus Schouten 38:differential geometry 8636:Riemannian manifolds 8015:Hořava–Witten theory 7962:Hyperkähler manifold 7650:Particles and fields 7598:Tachyon condensation 7583:Matrix string theory 7050:Kobayashi, Shoshichi 6899:Cannas da Silva, Ana 6616: 6592:p.217 Definition 1.1 6578:Amorós et al. (1996) 6567:Amorós et al. (1996) 6419:Hyperkähler manifold 6176: 6167:Kobayashi hyperbolic 6137: 6105: 5861:compact complex tori 5828: 5822:Dolbeault cohomology 5786: 5753: 5426: 5362: 5303: 5276: 5224: 5147: 5124: 5030: 5010: 4960: 4911: 4869: 4842: 4822: 4715: 4684: 4640: 4613: 4578: 4558: 4524: 4486: 4457: 4437: 4417: 4397: 4363: 4263: 4240: 4168: 4141: 3976: 3866: 3836: 3816: 3796: 3776: 3765:with respect to the 3749: 3718: 3694: 3617: 3597: 3538: 3518: 3494: 3429: 3424:contraction operator 3394: 3331: 3296: 3273: 3064: 2983: 2957: 2847: 2820: 2794: 2729: 2703: 2668: 2648: 2628: 2602: 2570: 2536: 2489: 2466: 2434: 2414: 2374: 2354: 2329: 2272: 2240: 2199: 2158: 2134: 2064: 2044: 2024: 2004: 1984: 1964: 1944: 1912: 1878: 1849: 1825: 1786: 1732: 1705: 1669: 1607: 1587: 1567: 1531: 1508: 1484: 1464: 1432: 1425:is contained in the 1402: 1382: 1371:Riemannian viewpoint 1323: 1300: 1260: 1240: 1220: 1143: 1054: 1025: 1005: 985: 965: 936: 916: 889: 869: 849: 825: 757: 734: 710: 687: 660: 640: 620: 600: 596:for tangent vectors 505: 482: 462: 439: 415: 391: 365: 342: 311: 287: 221: 195: 168: 133: 122:Symplectic viewpoint 58:symplectic structure 54:Riemannian structure 8651:Symplectic geometry 8053:Type I supergravity 7957:Calabi–Yau manifold 7952:Ricci-flat manifold 7931:Kaluza–Klein theory 7672:Ramond–Ramond field 7578:String field theory 7272:2004InMat.157..329V 7182:10.1093/imrn/rnz331 7166:(24): 18520–18528. 6674:Barth et al. (2004) 6533:, Corollary 3.2.12. 6461:, Proposition 7.14. 6429:K-energy functional 6403:is Kähler (by Siu). 6364:The open unit ball 6343:complex submanifold 6330:is provided by the 6293:Fubini–Study metric 6057:sectional curvature 5928:Lorentzian manifold 5910:if it has constant 5877:homotopy equivalent 5737:). The Kähler form 3712:Hodge star operator 3480:Hodge index theorem 3291:Dolbeault operators 3245:calibrated geometry 3241:minimal submanifold 3055:Wirtinger's formula 2301: 1819:Dolbeault operators 1377:Riemannian manifold 211:, meaning that the 128:symplectic manifold 8641:Algebraic geometry 8020:K-theory (physics) 7897:ADE classification 7534:Superstring theory 7017:Huybrechts, Daniel 6994:10.1007/BF02940642 6940:Griffiths, Phillip 6632: 6485:, Proposition 8.8. 6449:, Definition 16.1. 6194: 6151: 6123: 5934:for more details. 5932:Einstein manifolds 5924:general relativity 5892:complex manifold. 5889:Hironaka's example 5846: 5804: 5771: 5603:showed that every 5568:fundamental groups 5483: 5412: 5348: 5289: 5262: 5204: 5184: 5130: 5106: 5016: 4992: 4946: 4897: 4848: 4828: 4805: 4769: 4690: 4670: 4619: 4596: 4564: 4542: 4509: 4472: 4443: 4423: 4403: 4380: 4346: 4313: 4246: 4223: 4147: 4124: 3956: 3859:are decomposed as 3849: 3822: 3802: 3782: 3755: 3731: 3700: 3680: 3603: 3583: 3524: 3500: 3448: 3412: 3389:Lefschetz operator 3377: 3317: 3279: 3128: 3037:, the volume of a 3015:contractible space 3003: 2969: 2940: 2830: 2806: 2786:, so the space of 2772: 2715: 2689:{\displaystyle =0} 2686: 2654: 2634: 2614: 2598:on an open subset 2591:{\displaystyle =0} 2588: 2556: 2522: 2485:may be written as 2475: 2452: 2420: 2410:for some one-form 2400: 2360: 2350:say, differs from 2340: 2311: 2287: 2258: 2217: 2192:de Rham cohomology 2164: 2140: 2120: 2050: 2030: 2010: 1990: 1970: 1950: 1930: 1896: 1855: 1831: 1807: 1769: 1711: 1687:parallel transport 1675: 1655: 1593: 1573: 1553: 1520:{\displaystyle TX} 1517: 1490: 1470: 1450: 1414:{\displaystyle 2n} 1411: 1398:of even dimension 1388: 1353: 1318:de Rham cohomology 1306: 1284: 1246: 1226: 1203: 1126: 1040: 1011: 991: 971: 951: 922: 895: 875: 855: 843:Hermitian manifold 831: 808: 740: 716: 693: 673: 646: 626: 606: 583: 488: 468: 451:{\displaystyle TX} 448: 421: 411:. In more detail, 397: 371: 348: 317: 293: 266: 201: 174: 151: 108:algebraic geometry 100:projective variety 8646:Complex manifolds 8623: 8622: 8405:van Nieuwenhuizen 7941:Why 10 dimensions 7846:Chern–Simons form 7813:Kac–Moody algebra 7793:Conformal algebra 7788:Conformal anomaly 7682:Magnetic monopole 7677:Kalb–Ramond field 7519:Nambu–Goto action 7401:"Kähler manifold" 7377:978-0-8218-2163-3 7326:10.1090/tran/7445 7230:978-0-521-68897-0 7071:978-0-471-15732-8 7034:978-3-540-21290-4 6961:978-0-471-05059-9 6840:978-3-540-00832-3 6795:978-0-8218-0498-8 6630: 6580:, Corollary 1.66. 6555:Huybrechts (2005) 6543:Huybrechts (2005) 6531:Huybrechts (2005) 6519:Huybrechts (2005) 6507:Huybrechts (2005) 6355:algebraic variety 6161:is constant). If 6011:Calabi conjecture 5843: 5801: 5768: 5699:.) Equivalently, 5481: 5346: 5163: 5133:{\displaystyle X} 5019:{\displaystyle X} 4851:{\displaystyle X} 4831:{\displaystyle X} 4748: 4693:{\displaystyle X} 4622:{\displaystyle X} 4426:{\displaystyle X} 4406:{\displaystyle r} 4292: 4249:{\displaystyle X} 4200: 4159:Kähler identities 4150:{\displaystyle X} 4078: 4075: 4072: 4069: 4061: 4043: 4021: 4008: 3992: 3944: 3907: 3904: 3901: 3898: 3890: 3825:{\displaystyle d} 3805:{\displaystyle X} 3785:{\displaystyle r} 3758:{\displaystyle d} 3714:. (Equivalently, 3606:{\displaystyle d} 3527:{\displaystyle r} 3503:{\displaystyle n} 3373: 3314: 3282:{\displaystyle d} 3261:Kähler identities 3255:Kähler identities 3103: 2922: 2896: 2788:Kähler potentials 2766: 2516: 2449: 2294: 2214: 2114: 2053:{\displaystyle U} 2013:{\displaystyle p} 1993:{\displaystyle U} 1973:{\displaystyle X} 1953:{\displaystyle p} 1893: 1804: 1763: 1749: 1678:{\displaystyle J} 1596:{\displaystyle g} 1576:{\displaystyle J} 1493:{\displaystyle X} 1473:{\displaystyle J} 1391:{\displaystyle X} 1296:Since the 2-form 1249:{\displaystyle b} 1229:{\displaystyle a} 1121: 1096: 1014:{\displaystyle 0} 994:{\displaystyle p} 974:{\displaystyle p} 925:{\displaystyle p} 898:{\displaystyle X} 878:{\displaystyle p} 858:{\displaystyle n} 834:{\displaystyle X} 743:{\displaystyle g} 726:is a real closed 696:{\displaystyle X} 671: 649:{\displaystyle i} 629:{\displaystyle v} 609:{\displaystyle u} 478:, and the 2-form 471:{\displaystyle X} 458:at each point of 424:{\displaystyle h} 374:{\displaystyle h} 351:{\displaystyle X} 331:Complex viewpoint 320:{\displaystyle X} 305:positive definite 296:{\displaystyle X} 177:{\displaystyle J} 161:equipped with an 66:David van Dantzig 50:complex structure 16:(Redirected from 8658: 8133:String theorists 8073:Lie superalgebra 8025:Twisted K-theory 7983:Spin(7)-manifold 7936:Compactification 7778:Virasoro algebra 7561:Heterotic string 7455: 7448: 7441: 7432: 7427: 7426: 7414: 7388: 7358: 7337: 7319: 7310:(4): 2703–2718. 7298: 7265: 7241: 7214: 7193: 7175: 7154: 7136: 7134:10.5802/aif.1673 7111: 7082: 7045: 7012: 6973: 6935: 6894: 6876: 6874:10.5802/aif.1674 6851: 6806: 6786:10.1090/surv/044 6757: 6752: 6746: 6741: 6735: 6729: 6723: 6717: 6711: 6710:, Corollary 9.8. 6705: 6699: 6694: 6688: 6683: 6677: 6671: 6662: 6657: 6651: 6641: 6639: 6638: 6633: 6631: 6623: 6610: 6604: 6599: 6593: 6587: 6581: 6575: 6569: 6564: 6558: 6552: 6546: 6540: 6534: 6528: 6522: 6516: 6510: 6504: 6498: 6492: 6486: 6480: 6474: 6468: 6462: 6456: 6450: 6444: 6321: 6305: 6203: 6201: 6200: 6195: 6160: 6158: 6157: 6152: 6144: 6132: 6130: 6129: 6124: 6073: 5977:canonical bundle 5970: 5865:Kunihiko Kodaira 5855: 5853: 5852: 5847: 5845: 5844: 5836: 5813: 5811: 5810: 5805: 5803: 5802: 5794: 5780: 5778: 5777: 5772: 5770: 5769: 5761: 5736: 5698: 5683: 5664: 5649: 5543: 5533: 5492: 5490: 5489: 5484: 5482: 5477: 5476: 5449: 5444: 5443: 5421: 5419: 5418: 5413: 5411: 5410: 5380: 5379: 5357: 5355: 5354: 5349: 5347: 5342: 5341: 5326: 5321: 5320: 5298: 5296: 5295: 5290: 5288: 5287: 5271: 5269: 5268: 5263: 5261: 5260: 5242: 5241: 5213: 5211: 5210: 5205: 5200: 5199: 5183: 5159: 5158: 5139: 5137: 5136: 5131: 5115: 5113: 5112: 5107: 5096: 5095: 5080: 5079: 5078: 5072: 5048: 5047: 5025: 5023: 5022: 5017: 5001: 4999: 4998: 4993: 4982: 4981: 4970: 4969: 4955: 4953: 4952: 4947: 4942: 4941: 4923: 4922: 4906: 4904: 4903: 4898: 4887: 4886: 4857: 4855: 4854: 4849: 4837: 4835: 4834: 4829: 4814: 4812: 4811: 4806: 4798: 4797: 4779: 4778: 4768: 4741: 4727: 4726: 4699: 4697: 4696: 4691: 4679: 4677: 4676: 4671: 4666: 4652: 4651: 4628: 4626: 4625: 4620: 4605: 4603: 4602: 4597: 4573: 4571: 4570: 4565: 4551: 4549: 4548: 4543: 4518: 4516: 4515: 4510: 4508: 4507: 4496: 4495: 4481: 4479: 4478: 4473: 4452: 4450: 4449: 4444: 4432: 4430: 4429: 4424: 4412: 4410: 4409: 4404: 4390:is the space of 4389: 4387: 4386: 4381: 4379: 4378: 4373: 4372: 4355: 4353: 4352: 4347: 4333: 4332: 4321: 4320: 4312: 4279: 4278: 4273: 4272: 4255: 4253: 4252: 4247: 4232: 4230: 4229: 4224: 4219: 4218: 4203: 4202: 4201: 4193: 4180: 4179: 4156: 4154: 4153: 4148: 4133: 4131: 4130: 4125: 4117: 4116: 4104: 4103: 4088: 4087: 4076: 4073: 4070: 4067: 4063: 4062: 4054: 4051: 4050: 4045: 4044: 4036: 4029: 4028: 4023: 4022: 4014: 4010: 4009: 4001: 3995: 3994: 3993: 3985: 3965: 3963: 3962: 3957: 3952: 3951: 3946: 3945: 3937: 3930: 3929: 3917: 3916: 3905: 3902: 3899: 3896: 3892: 3891: 3883: 3858: 3856: 3855: 3850: 3848: 3847: 3831: 3829: 3828: 3823: 3811: 3809: 3808: 3803: 3791: 3789: 3788: 3783: 3764: 3762: 3761: 3756: 3740: 3738: 3737: 3732: 3730: 3729: 3709: 3707: 3706: 3701: 3689: 3687: 3686: 3681: 3669: 3668: 3629: 3628: 3612: 3610: 3609: 3604: 3592: 3590: 3589: 3584: 3579: 3578: 3566: 3565: 3550: 3549: 3533: 3531: 3530: 3525: 3509: 3507: 3506: 3501: 3457: 3455: 3454: 3449: 3447: 3446: 3421: 3419: 3418: 3413: 3386: 3384: 3383: 3378: 3376: 3375: 3374: 3366: 3356: 3355: 3343: 3342: 3326: 3324: 3323: 3318: 3316: 3315: 3307: 3288: 3286: 3285: 3280: 3219: 3200: 3181: 3137: 3135: 3134: 3129: 3124: 3123: 3114: 3113: 3104: 3102: 3091: 3077: 3033:Kähler manifold 3012: 3010: 3009: 3004: 3002: 2997: 2992: 2991: 2978: 2976: 2975: 2972:{\displaystyle } 2970: 2949: 2947: 2946: 2941: 2924: 2923: 2915: 2897: 2894: 2892: 2869: 2868: 2857: 2856: 2839: 2837: 2836: 2831: 2829: 2828: 2815: 2813: 2812: 2809:{\displaystyle } 2807: 2781: 2779: 2778: 2773: 2768: 2767: 2759: 2741: 2740: 2724: 2722: 2721: 2718:{\displaystyle } 2716: 2695: 2693: 2692: 2687: 2663: 2661: 2660: 2655: 2643: 2641: 2640: 2635: 2623: 2621: 2620: 2615: 2597: 2595: 2594: 2589: 2565: 2563: 2562: 2557: 2555: 2531: 2529: 2528: 2523: 2518: 2517: 2509: 2484: 2482: 2481: 2476: 2461: 2459: 2458: 2453: 2451: 2450: 2442: 2429: 2427: 2426: 2421: 2409: 2407: 2406: 2401: 2384: 2369: 2367: 2366: 2361: 2349: 2347: 2346: 2341: 2339: 2320: 2318: 2317: 2312: 2300: 2295: 2292: 2267: 2265: 2264: 2259: 2226: 2224: 2223: 2218: 2216: 2215: 2207: 2173: 2171: 2170: 2165: 2149: 2147: 2146: 2141: 2129: 2127: 2126: 2121: 2116: 2115: 2107: 2095: 2081: 2080: 2075: 2059: 2057: 2056: 2051: 2039: 2037: 2036: 2031: 2019: 2017: 2016: 2011: 1999: 1997: 1996: 1991: 1979: 1977: 1976: 1971: 1959: 1957: 1956: 1951: 1939: 1937: 1936: 1931: 1905: 1903: 1902: 1897: 1895: 1894: 1886: 1864: 1862: 1861: 1856: 1843:Kähler potential 1840: 1838: 1837: 1832: 1816: 1814: 1813: 1808: 1806: 1805: 1797: 1778: 1776: 1775: 1770: 1765: 1764: 1756: 1750: 1742: 1720: 1718: 1717: 1712: 1693:Kähler potential 1685:is preserved by 1684: 1682: 1681: 1676: 1664: 1662: 1661: 1656: 1602: 1600: 1599: 1594: 1582: 1580: 1579: 1574: 1562: 1560: 1559: 1554: 1543: 1542: 1526: 1524: 1523: 1518: 1499: 1497: 1496: 1491: 1479: 1477: 1476: 1471: 1459: 1457: 1456: 1451: 1420: 1418: 1417: 1412: 1397: 1395: 1394: 1389: 1362: 1360: 1359: 1354: 1349: 1335: 1334: 1315: 1313: 1312: 1307: 1293: 1291: 1290: 1285: 1255: 1253: 1252: 1247: 1235: 1233: 1232: 1227: 1212: 1210: 1209: 1204: 1199: 1198: 1174: 1173: 1158: 1157: 1135: 1133: 1132: 1127: 1122: 1120: 1119: 1118: 1102: 1097: 1095: 1094: 1093: 1077: 1069: 1068: 1049: 1047: 1046: 1041: 1039: 1038: 1033: 1020: 1018: 1017: 1012: 1000: 998: 997: 992: 980: 978: 977: 972: 961:to order 2 near 960: 958: 957: 952: 950: 949: 944: 931: 929: 928: 923: 910:coordinate chart 904: 902: 901: 896: 884: 882: 881: 876: 864: 862: 861: 856: 840: 838: 837: 832: 817: 815: 814: 809: 749: 747: 746: 741: 725: 723: 722: 717: 702: 700: 699: 694: 682: 680: 679: 674: 672: 664: 655: 653: 652: 647: 635: 633: 632: 627: 615: 613: 612: 607: 592: 590: 589: 584: 497: 495: 494: 489: 477: 475: 474: 469: 457: 455: 454: 449: 430: 428: 427: 422: 406: 404: 403: 398: 380: 378: 377: 372: 360:Hermitian metric 357: 355: 354: 349: 337:complex manifold 326: 324: 323: 318: 302: 300: 299: 294: 275: 273: 272: 267: 210: 208: 207: 202: 183: 181: 180: 175: 160: 158: 157: 152: 21: 8666: 8665: 8661: 8660: 8659: 8657: 8656: 8655: 8626: 8625: 8624: 8619: 8128: 8105: 8082: 8029: 7977: 7947:Kähler manifold 7914: 7891: 7884: 7877: 7870: 7863: 7822: 7783:Mirror symmetry 7764: 7750:Brane cosmology 7696: 7645: 7612: 7568:N=2 superstring 7554:Type IIB string 7549:Type IIA string 7524:Polyakov action 7507: 7464: 7459: 7424: 7417: 7399: 7396: 7391: 7378: 7361: 7355: 7340: 7301: 7244: 7231: 7196: 7157: 7114: 7100:10.2307/1969701 7085: 7072: 7060:, vol. 2, 7054:Nomizu, Katsumi 7048: 7035: 7015: 6976: 6962: 6938: 6925: 6897: 6854: 6841: 6809: 6796: 6769: 6765: 6760: 6753: 6749: 6742: 6738: 6730: 6726: 6718: 6714: 6706: 6702: 6695: 6691: 6686:Buchdahl (1999) 6684: 6680: 6676:, section IV.3. 6672: 6665: 6658: 6654: 6614: 6613: 6611: 6607: 6600: 6596: 6588: 6584: 6576: 6572: 6565: 6561: 6553: 6549: 6541: 6537: 6529: 6525: 6517: 6513: 6505: 6501: 6493: 6489: 6483:Moroianu (2007) 6481: 6477: 6473:, v. 2, p. 149. 6469: 6465: 6457: 6453: 6445: 6441: 6437: 6410: 6315: 6299: 6275:Riemann surface 6238: 6174: 6173: 6135: 6134: 6103: 6102: 6068: 6049: 6022:Simon Donaldson 5986: 5957: 5947: 5912:Ricci curvature 5908:Kähler–Einstein 5904: 5898: 5867:'s work on the 5826: 5825: 5784: 5783: 5751: 5750: 5723: 5685: 5670: 5651: 5636: 5635:whose class in 5617: 5609:closed manifold 5601:Clifford Taubes 5584: 5541: 5535: 5525: 5515: 5503: 5450: 5429: 5424: 5423: 5384: 5365: 5360: 5359: 5358:. The identity 5327: 5306: 5301: 5300: 5279: 5274: 5273: 5246: 5227: 5222: 5221: 5185: 5150: 5145: 5144: 5122: 5121: 5081: 5061: 5033: 5028: 5027: 5026:are defined by 5008: 5007: 4963: 4958: 4957: 4933: 4914: 4909: 4908: 4872: 4867: 4866: 4840: 4839: 4820: 4819: 4789: 4770: 4718: 4713: 4712: 4682: 4681: 4643: 4638: 4637: 4611: 4610: 4576: 4575: 4556: 4555: 4522: 4521: 4489: 4484: 4483: 4455: 4454: 4435: 4434: 4415: 4414: 4395: 4394: 4366: 4361: 4360: 4314: 4266: 4261: 4260: 4238: 4237: 4210: 4187: 4171: 4166: 4165: 4157:is Kähler, the 4139: 4138: 4108: 4095: 4079: 4033: 4011: 3979: 3974: 3973: 3934: 3921: 3908: 3864: 3863: 3839: 3834: 3833: 3814: 3813: 3794: 3793: 3774: 3773: 3747: 3746: 3721: 3716: 3715: 3692: 3691: 3645: 3620: 3615: 3614: 3595: 3594: 3570: 3557: 3541: 3536: 3535: 3516: 3515: 3492: 3491: 3488: 3438: 3427: 3426: 3392: 3391: 3360: 3347: 3334: 3329: 3328: 3294: 3293: 3271: 3270: 3263: 3257: 3206: 3205:is not zero in 3187: 3171: 3162: 3115: 3105: 3095: 3062: 3061: 3027: 2981: 2980: 2955: 2954: 2850: 2845: 2844: 2818: 2817: 2792: 2791: 2732: 2727: 2726: 2701: 2700: 2666: 2665: 2646: 2645: 2626: 2625: 2600: 2599: 2568: 2567: 2534: 2533: 2487: 2486: 2464: 2463: 2432: 2431: 2412: 2411: 2377: 2372: 2371: 2352: 2351: 2332: 2327: 2326: 2270: 2269: 2238: 2237: 2197: 2196: 2180: 2156: 2155: 2132: 2131: 2067: 2062: 2061: 2042: 2041: 2022: 2021: 2002: 2001: 1982: 1981: 1962: 1961: 1942: 1941: 1910: 1909: 1876: 1875: 1872:, known as the 1847: 1846: 1823: 1822: 1821:. The function 1784: 1783: 1730: 1729: 1703: 1702: 1695: 1667: 1666: 1605: 1604: 1585: 1584: 1565: 1564: 1534: 1529: 1528: 1527:to itself with 1506: 1505: 1482: 1481: 1462: 1461: 1430: 1429: 1400: 1399: 1380: 1379: 1373: 1363:, known as the 1326: 1321: 1320: 1298: 1297: 1258: 1257: 1238: 1237: 1218: 1217: 1190: 1162: 1146: 1141: 1140: 1110: 1106: 1085: 1081: 1057: 1052: 1051: 1028: 1023: 1022: 1003: 1002: 983: 982: 963: 962: 939: 934: 933: 914: 913: 887: 886: 867: 866: 847: 846: 823: 822: 755: 754: 732: 731: 708: 707: 685: 684: 658: 657: 638: 637: 618: 617: 598: 597: 503: 502: 480: 479: 460: 459: 437: 436: 413: 412: 389: 388: 363: 362: 340: 339: 333: 309: 308: 285: 284: 219: 218: 193: 192: 190:symplectic form 166: 165: 131: 130: 124: 116: 78:Kähler geometry 42:Kähler manifold 36:and especially 30: 23: 22: 18:Kähler geometry 15: 12: 11: 5: 8664: 8662: 8654: 8653: 8648: 8643: 8638: 8628: 8627: 8621: 8620: 8618: 8617: 8612: 8607: 8602: 8597: 8592: 8587: 8582: 8577: 8572: 8567: 8562: 8557: 8552: 8547: 8542: 8537: 8532: 8527: 8522: 8517: 8512: 8507: 8502: 8497: 8492: 8487: 8482: 8477: 8472: 8467: 8462: 8457: 8455:Randjbar-Daemi 8452: 8447: 8442: 8437: 8432: 8427: 8422: 8417: 8412: 8407: 8402: 8397: 8392: 8387: 8382: 8377: 8372: 8367: 8362: 8357: 8352: 8347: 8342: 8337: 8332: 8327: 8322: 8317: 8312: 8307: 8302: 8297: 8292: 8287: 8282: 8277: 8272: 8267: 8262: 8257: 8252: 8247: 8242: 8237: 8232: 8227: 8222: 8217: 8212: 8207: 8202: 8197: 8192: 8187: 8182: 8177: 8172: 8167: 8162: 8157: 8152: 8147: 8142: 8136: 8134: 8130: 8129: 8127: 8126: 8121: 8115: 8113: 8107: 8106: 8104: 8103: 8098: 8092: 8090: 8084: 8083: 8081: 8080: 8078:Lie supergroup 8075: 8070: 8065: 8060: 8055: 8050: 8045: 8039: 8037: 8031: 8030: 8028: 8027: 8022: 8017: 8012: 8007: 8002: 7997: 7992: 7987: 7986: 7985: 7980: 7975: 7971: 7970: 7969: 7959: 7949: 7944: 7938: 7933: 7928: 7922: 7920: 7916: 7915: 7913: 7912: 7904: 7899: 7894: 7889: 7882: 7875: 7868: 7861: 7853: 7848: 7843: 7838: 7832: 7830: 7824: 7823: 7821: 7820: 7815: 7810: 7805: 7800: 7795: 7790: 7785: 7780: 7774: 7772: 7766: 7765: 7763: 7762: 7757: 7755:Quiver diagram 7752: 7747: 7742: 7737: 7732: 7727: 7722: 7717: 7712: 7706: 7704: 7698: 7697: 7695: 7694: 7689: 7684: 7679: 7674: 7669: 7664: 7659: 7653: 7651: 7647: 7646: 7644: 7643: 7638: 7633: 7628: 7622: 7620: 7618:String duality 7614: 7613: 7611: 7610: 7605: 7600: 7595: 7590: 7585: 7580: 7575: 7570: 7565: 7564: 7563: 7558: 7557: 7556: 7551: 7544:Type II string 7541: 7531: 7526: 7521: 7515: 7513: 7509: 7508: 7506: 7505: 7500: 7499: 7498: 7493: 7483: 7481:Cosmic strings 7478: 7472: 7470: 7466: 7465: 7460: 7458: 7457: 7450: 7443: 7435: 7429: 7428: 7415: 7395: 7394:External links 7392: 7390: 7389: 7376: 7359: 7353: 7338: 7299: 7256:(2): 329–343, 7246:Voisin, Claire 7242: 7229: 7194: 7155: 7127:(1): 263–285. 7112: 7083: 7070: 7046: 7033: 7013: 6974: 6960: 6944:Harris, Joseph 6936: 6924:978-3540421955 6923: 6895: 6867:(1): 287–302. 6852: 6839: 6811:Barth, Wolf P. 6807: 6794: 6766: 6764: 6761: 6759: 6758: 6747: 6736: 6724: 6712: 6700: 6689: 6678: 6663: 6652: 6650:(1), pp.71-81. 6629: 6626: 6621: 6605: 6602:Kodaira (1954) 6594: 6582: 6570: 6559: 6547: 6535: 6523: 6511: 6509:, Section 3.1. 6499: 6497:, section 7.4. 6487: 6475: 6463: 6451: 6438: 6436: 6433: 6432: 6431: 6426: 6421: 6416: 6409: 6406: 6405: 6404: 6397: 6374:Bergman metric 6362: 6347:Stein manifold 6339: 6282: 6271:rotation group 6263: 6254:/Λ (Λ a full 6248: 6237: 6234: 6193: 6190: 6187: 6184: 6181: 6150: 6147: 6143: 6122: 6119: 6116: 6113: 6110: 6048: 6045: 6007:Shing-Tung Yau 5982: 5954:tangent bundle 5945: 5900:Main article: 5897: 5894: 5842: 5839: 5833: 5800: 5797: 5791: 5767: 5764: 5758: 5616: 5613: 5582: 5576:abelianization 5539: 5534:and hence has 5509: 5502: 5499: 5480: 5475: 5472: 5469: 5466: 5463: 5460: 5457: 5453: 5447: 5442: 5439: 5436: 5432: 5409: 5406: 5403: 5400: 5397: 5394: 5391: 5387: 5383: 5378: 5375: 5372: 5368: 5345: 5340: 5337: 5334: 5330: 5324: 5319: 5316: 5313: 5309: 5286: 5282: 5259: 5256: 5253: 5249: 5245: 5240: 5237: 5234: 5230: 5219:Hodge symmetry 5215: 5214: 5203: 5198: 5195: 5192: 5188: 5182: 5179: 5176: 5173: 5170: 5166: 5162: 5157: 5153: 5129: 5105: 5102: 5099: 5094: 5091: 5088: 5084: 5077: 5071: 5068: 5065: 5060: 5057: 5054: 5051: 5046: 5043: 5040: 5036: 5015: 4991: 4988: 4985: 4980: 4977: 4974: 4968: 4945: 4940: 4936: 4932: 4929: 4926: 4921: 4917: 4896: 4893: 4890: 4885: 4882: 4879: 4875: 4847: 4827: 4816: 4815: 4804: 4801: 4796: 4792: 4788: 4785: 4782: 4777: 4773: 4767: 4764: 4761: 4758: 4755: 4751: 4747: 4744: 4740: 4736: 4733: 4730: 4725: 4721: 4689: 4669: 4665: 4661: 4658: 4655: 4650: 4646: 4618: 4595: 4592: 4589: 4586: 4583: 4563: 4541: 4538: 4535: 4532: 4529: 4506: 4503: 4500: 4494: 4471: 4468: 4465: 4462: 4442: 4422: 4402: 4377: 4371: 4357: 4356: 4345: 4342: 4339: 4336: 4331: 4328: 4325: 4319: 4311: 4308: 4305: 4302: 4299: 4295: 4291: 4288: 4285: 4282: 4277: 4271: 4245: 4234: 4233: 4222: 4217: 4213: 4209: 4206: 4199: 4196: 4190: 4186: 4183: 4178: 4174: 4146: 4135: 4134: 4123: 4120: 4115: 4111: 4107: 4102: 4098: 4094: 4091: 4086: 4082: 4066: 4060: 4057: 4049: 4042: 4039: 4032: 4027: 4020: 4017: 4007: 4004: 3998: 3991: 3988: 3982: 3967: 3966: 3955: 3950: 3943: 3940: 3933: 3928: 3924: 3920: 3915: 3911: 3895: 3889: 3886: 3880: 3877: 3874: 3871: 3846: 3842: 3821: 3801: 3781: 3754: 3728: 3724: 3699: 3679: 3675: 3672: 3667: 3664: 3661: 3658: 3655: 3652: 3648: 3644: 3641: 3638: 3635: 3632: 3627: 3623: 3602: 3582: 3577: 3573: 3569: 3564: 3560: 3556: 3553: 3548: 3544: 3523: 3499: 3487: 3484: 3445: 3441: 3437: 3434: 3411: 3408: 3405: 3402: 3399: 3372: 3369: 3363: 3359: 3354: 3350: 3346: 3341: 3337: 3313: 3310: 3304: 3301: 3278: 3259:Main article: 3256: 3253: 3166: 3139: 3138: 3127: 3122: 3118: 3112: 3108: 3101: 3098: 3094: 3089: 3086: 3083: 3080: 3076: 3073: 3070: 3026: 3023: 3001: 2996: 2990: 2968: 2965: 2962: 2951: 2950: 2939: 2936: 2933: 2930: 2927: 2921: 2918: 2912: 2909: 2906: 2903: 2900: 2891: 2887: 2884: 2881: 2878: 2875: 2872: 2867: 2864: 2861: 2855: 2827: 2805: 2802: 2799: 2790:for the class 2771: 2765: 2762: 2756: 2753: 2750: 2747: 2744: 2739: 2735: 2714: 2711: 2708: 2699:In general if 2685: 2682: 2679: 2676: 2673: 2653: 2633: 2613: 2610: 2607: 2587: 2584: 2581: 2578: 2575: 2554: 2550: 2547: 2544: 2541: 2521: 2515: 2512: 2506: 2503: 2500: 2497: 2494: 2474: 2471: 2448: 2445: 2439: 2419: 2399: 2396: 2393: 2390: 2387: 2383: 2380: 2359: 2338: 2335: 2310: 2307: 2304: 2299: 2290: 2286: 2283: 2280: 2277: 2257: 2254: 2251: 2248: 2245: 2213: 2210: 2204: 2179: 2176: 2163: 2139: 2119: 2113: 2110: 2104: 2101: 2098: 2094: 2090: 2087: 2084: 2079: 2074: 2071: 2049: 2029: 2009: 1989: 1969: 1949: 1929: 1926: 1923: 1920: 1917: 1892: 1889: 1883: 1870:Poincaré lemma 1854: 1830: 1803: 1800: 1794: 1791: 1780: 1779: 1768: 1762: 1759: 1753: 1748: 1745: 1740: 1737: 1710: 1694: 1691: 1674: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1603:(meaning that 1592: 1572: 1552: 1549: 1546: 1541: 1537: 1516: 1513: 1489: 1469: 1449: 1446: 1443: 1440: 1437: 1423:holonomy group 1410: 1407: 1387: 1372: 1369: 1352: 1348: 1344: 1341: 1338: 1333: 1329: 1305: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1245: 1225: 1214: 1213: 1202: 1197: 1193: 1189: 1186: 1183: 1180: 1177: 1172: 1169: 1165: 1161: 1156: 1153: 1149: 1125: 1117: 1113: 1109: 1105: 1100: 1092: 1088: 1084: 1080: 1075: 1072: 1067: 1064: 1060: 1037: 1032: 1010: 990: 970: 948: 943: 921: 894: 874: 854: 830: 819: 818: 807: 804: 801: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 739: 715: 692: 670: 667: 645: 625: 605: 594: 593: 582: 579: 576: 573: 570: 567: 564: 561: 558: 555: 552: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 510: 498:is defined by 487: 467: 447: 444: 433:Hermitian form 420: 396: 370: 347: 332: 329: 316: 292: 277: 276: 265: 262: 259: 256: 253: 250: 247: 244: 241: 238: 235: 232: 229: 226: 200: 173: 150: 147: 144: 141: 138: 123: 120: 115: 112: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8663: 8652: 8649: 8647: 8644: 8642: 8639: 8637: 8634: 8633: 8631: 8616: 8613: 8611: 8608: 8606: 8603: 8601: 8600:Zamolodchikov 8598: 8596: 8595:Zamolodchikov 8593: 8591: 8588: 8586: 8583: 8581: 8578: 8576: 8573: 8571: 8568: 8566: 8563: 8561: 8558: 8556: 8553: 8551: 8548: 8546: 8543: 8541: 8538: 8536: 8533: 8531: 8528: 8526: 8523: 8521: 8518: 8516: 8513: 8511: 8508: 8506: 8503: 8501: 8498: 8496: 8493: 8491: 8488: 8486: 8483: 8481: 8478: 8476: 8473: 8471: 8468: 8466: 8463: 8461: 8458: 8456: 8453: 8451: 8448: 8446: 8443: 8441: 8438: 8436: 8433: 8431: 8428: 8426: 8423: 8421: 8418: 8416: 8413: 8411: 8408: 8406: 8403: 8401: 8398: 8396: 8393: 8391: 8388: 8386: 8383: 8381: 8378: 8376: 8373: 8371: 8368: 8366: 8363: 8361: 8358: 8356: 8353: 8351: 8348: 8346: 8343: 8341: 8338: 8336: 8333: 8331: 8328: 8326: 8323: 8321: 8318: 8316: 8313: 8311: 8308: 8306: 8303: 8301: 8298: 8296: 8293: 8291: 8288: 8286: 8283: 8281: 8278: 8276: 8273: 8271: 8268: 8266: 8263: 8261: 8258: 8256: 8253: 8251: 8248: 8246: 8243: 8241: 8238: 8236: 8233: 8231: 8228: 8226: 8223: 8221: 8218: 8216: 8213: 8211: 8208: 8206: 8203: 8201: 8198: 8196: 8193: 8191: 8188: 8186: 8183: 8181: 8178: 8176: 8173: 8171: 8168: 8166: 8163: 8161: 8158: 8156: 8153: 8151: 8148: 8146: 8143: 8141: 8138: 8137: 8135: 8131: 8125: 8122: 8120: 8119:Matrix theory 8117: 8116: 8114: 8112: 8108: 8102: 8099: 8097: 8094: 8093: 8091: 8089: 8085: 8079: 8076: 8074: 8071: 8069: 8066: 8064: 8061: 8059: 8056: 8054: 8051: 8049: 8046: 8044: 8041: 8040: 8038: 8036: 8035:Supersymmetry 8032: 8026: 8023: 8021: 8018: 8016: 8013: 8011: 8008: 8006: 8003: 8001: 7998: 7996: 7993: 7991: 7988: 7984: 7981: 7979: 7972: 7968: 7965: 7964: 7963: 7960: 7958: 7955: 7954: 7953: 7950: 7948: 7945: 7942: 7939: 7937: 7934: 7932: 7929: 7927: 7924: 7923: 7921: 7917: 7911: 7909: 7905: 7903: 7900: 7898: 7895: 7892: 7885: 7878: 7871: 7864: 7857: 7854: 7852: 7849: 7847: 7844: 7842: 7839: 7837: 7834: 7833: 7831: 7829: 7825: 7819: 7816: 7814: 7811: 7809: 7806: 7804: 7801: 7799: 7796: 7794: 7791: 7789: 7786: 7784: 7781: 7779: 7776: 7775: 7773: 7771: 7767: 7761: 7758: 7756: 7753: 7751: 7748: 7746: 7743: 7741: 7738: 7736: 7733: 7731: 7728: 7726: 7723: 7721: 7718: 7716: 7713: 7711: 7708: 7707: 7705: 7703: 7699: 7693: 7690: 7688: 7687:Dual graviton 7685: 7683: 7680: 7678: 7675: 7673: 7670: 7668: 7665: 7663: 7660: 7658: 7655: 7654: 7652: 7648: 7642: 7639: 7637: 7634: 7632: 7629: 7627: 7624: 7623: 7621: 7619: 7615: 7609: 7606: 7604: 7603:RNS formalism 7601: 7599: 7596: 7594: 7591: 7589: 7586: 7584: 7581: 7579: 7576: 7574: 7571: 7569: 7566: 7562: 7559: 7555: 7552: 7550: 7547: 7546: 7545: 7542: 7540: 7539:Type I string 7537: 7536: 7535: 7532: 7530: 7527: 7525: 7522: 7520: 7517: 7516: 7514: 7510: 7504: 7501: 7497: 7494: 7492: 7489: 7488: 7487: 7484: 7482: 7479: 7477: 7474: 7473: 7471: 7467: 7463: 7462:String theory 7456: 7451: 7449: 7444: 7442: 7437: 7436: 7433: 7423: 7422: 7416: 7412: 7408: 7407: 7402: 7398: 7397: 7393: 7387: 7383: 7379: 7373: 7369: 7365: 7360: 7356: 7354:9780387738925 7350: 7346: 7345: 7339: 7335: 7331: 7327: 7323: 7318: 7313: 7309: 7305: 7300: 7297: 7293: 7289: 7285: 7281: 7277: 7273: 7269: 7264: 7259: 7255: 7251: 7247: 7243: 7240: 7236: 7232: 7226: 7222: 7218: 7213: 7208: 7204: 7200: 7195: 7191: 7187: 7183: 7179: 7174: 7169: 7165: 7161: 7156: 7152: 7148: 7144: 7140: 7135: 7130: 7126: 7122: 7118: 7113: 7109: 7105: 7101: 7097: 7093: 7089: 7084: 7081: 7077: 7073: 7067: 7063: 7059: 7055: 7051: 7047: 7044: 7040: 7036: 7030: 7026: 7022: 7018: 7014: 7011: 7007: 7003: 6999: 6995: 6991: 6987: 6983: 6979: 6978:Kähler, Erich 6975: 6971: 6967: 6963: 6957: 6953: 6949: 6945: 6941: 6937: 6934: 6930: 6926: 6920: 6916: 6912: 6908: 6904: 6900: 6896: 6892: 6888: 6884: 6880: 6875: 6870: 6866: 6862: 6858: 6853: 6850: 6846: 6842: 6836: 6832: 6828: 6824: 6820: 6816: 6812: 6808: 6805: 6801: 6797: 6791: 6787: 6783: 6779: 6775: 6774: 6768: 6767: 6762: 6756: 6751: 6748: 6745: 6740: 6737: 6733: 6728: 6725: 6722:, Lemma 9.14. 6721: 6716: 6713: 6709: 6704: 6701: 6698: 6697:Lamari (1999) 6693: 6690: 6687: 6682: 6679: 6675: 6670: 6668: 6664: 6661: 6660:Voisin (2004) 6656: 6653: 6649: 6645: 6609: 6606: 6603: 6598: 6595: 6591: 6586: 6583: 6579: 6574: 6571: 6568: 6563: 6560: 6556: 6551: 6548: 6544: 6539: 6536: 6532: 6527: 6524: 6520: 6515: 6512: 6508: 6503: 6500: 6496: 6491: 6488: 6484: 6479: 6476: 6472: 6467: 6464: 6460: 6455: 6452: 6448: 6443: 6440: 6434: 6430: 6427: 6425: 6422: 6420: 6417: 6415: 6412: 6411: 6407: 6402: 6398: 6395: 6391: 6387: 6383: 6379: 6375: 6371: 6367: 6363: 6360: 6357:(embedded in 6356: 6352: 6349:(embedded in 6348: 6344: 6340: 6337: 6336:Grassmannians 6333: 6329: 6325: 6319: 6313: 6309: 6303: 6298: 6297:unitary group 6294: 6290: 6287: 6283: 6280: 6276: 6272: 6268: 6264: 6261: 6257: 6253: 6249: 6246: 6243: 6242:Complex space 6240: 6239: 6235: 6233: 6231: 6227: 6221: 6219: 6215: 6209: 6207: 6188: 6185: 6182: 6170: 6168: 6164: 6148: 6117: 6114: 6111: 6099: 6097: 6093: 6089: 6085: 6081: 6077: 6071: 6066: 6062: 6058: 6054: 6046: 6044: 6042: 6038: 6033: 6031: 6027: 6023: 6018: 6016: 6012: 6008: 6004: 6002: 5998: 5994: 5990: 5985: 5981: 5978: 5974: 5968: 5964: 5960: 5955: 5951: 5944: 5940: 5935: 5933: 5929: 5925: 5921: 5917: 5916:metric tensor 5913: 5909: 5903: 5895: 5893: 5890: 5885: 5880: 5878: 5874: 5873:Claire Voisin 5870: 5866: 5862: 5857: 5823: 5819: 5815: 5747: 5744: 5740: 5734: 5730: 5726: 5721: 5717: 5713: 5709: 5706: 5702: 5696: 5692: 5688: 5681: 5677: 5673: 5668: 5662: 5658: 5654: 5647: 5643: 5639: 5634: 5630: 5626: 5622: 5614: 5612: 5610: 5606: 5602: 5597: 5595: 5591: 5588: 5581: 5577: 5573: 5572:Kähler groups 5569: 5564: 5562: 5558: 5554: 5550: 5545: 5538: 5532: 5528: 5523: 5522:diffeomorphic 5519: 5513: 5508: 5500: 5498: 5496: 5495:Serre duality 5473: 5470: 5467: 5464: 5461: 5458: 5455: 5451: 5445: 5440: 5437: 5434: 5430: 5407: 5404: 5401: 5398: 5395: 5392: 5389: 5385: 5381: 5376: 5373: 5370: 5366: 5338: 5335: 5332: 5328: 5322: 5317: 5314: 5311: 5307: 5284: 5257: 5254: 5251: 5247: 5243: 5238: 5235: 5232: 5228: 5220: 5201: 5196: 5193: 5190: 5186: 5180: 5177: 5174: 5171: 5168: 5164: 5160: 5155: 5151: 5143: 5142: 5141: 5127: 5119: 5118:Betti numbers 5100: 5092: 5089: 5086: 5082: 5058: 5052: 5044: 5041: 5038: 5034: 5013: 5005: 5004:Hodge numbers 4986: 4978: 4975: 4972: 4938: 4930: 4927: 4919: 4915: 4891: 4883: 4880: 4877: 4873: 4863: 4861: 4845: 4825: 4802: 4794: 4786: 4783: 4775: 4771: 4765: 4762: 4759: 4756: 4753: 4749: 4745: 4734: 4731: 4723: 4719: 4711: 4710: 4709: 4707: 4703: 4687: 4659: 4656: 4648: 4644: 4636: 4632: 4616: 4607: 4590: 4587: 4584: 4561: 4553: 4536: 4533: 4530: 4504: 4501: 4498: 4469: 4466: 4463: 4440: 4420: 4400: 4393: 4375: 4343: 4337: 4329: 4326: 4323: 4309: 4306: 4303: 4300: 4297: 4293: 4289: 4283: 4275: 4259: 4258: 4257: 4243: 4220: 4207: 4204: 4184: 4181: 4176: 4164: 4163: 4162: 4160: 4144: 4121: 4113: 4105: 4100: 4089: 4064: 4047: 4030: 4025: 3996: 3972: 3971: 3970: 3953: 3948: 3931: 3926: 3918: 3913: 3909: 3893: 3878: 3872: 3869: 3862: 3861: 3860: 3844: 3840: 3819: 3799: 3779: 3771: 3770:inner product 3769: 3752: 3744: 3726: 3722: 3713: 3697: 3677: 3673: 3670: 3662: 3659: 3656: 3650: 3642: 3639: 3633: 3630: 3625: 3621: 3600: 3580: 3575: 3571: 3567: 3562: 3558: 3554: 3551: 3546: 3521: 3513: 3497: 3485: 3483: 3481: 3477: 3473: 3469: 3465: 3461: 3443: 3439: 3435: 3425: 3409: 3406: 3403: 3400: 3397: 3390: 3357: 3344: 3339: 3302: 3292: 3276: 3268: 3262: 3254: 3252: 3250: 3246: 3242: 3238: 3234: 3229: 3227: 3223: 3217: 3213: 3209: 3204: 3198: 3194: 3190: 3185: 3179: 3175: 3170: 3165: 3160: 3156: 3152: 3148: 3144: 3125: 3120: 3116: 3110: 3106: 3099: 3096: 3092: 3087: 3081: 3060: 3059: 3058: 3056: 3052: 3048: 3044: 3040: 3036: 3032: 3024: 3022: 3020: 3016: 2994: 2963: 2937: 2931: 2928: 2925: 2907: 2904: 2901: 2898: 2882: 2879: 2876: 2870: 2862: 2843: 2842: 2841: 2800: 2789: 2785: 2784:positive form 2769: 2751: 2748: 2745: 2742: 2737: 2733: 2709: 2697: 2683: 2680: 2674: 2651: 2631: 2611: 2608: 2605: 2585: 2582: 2576: 2545: 2542: 2539: 2519: 2501: 2498: 2495: 2492: 2472: 2469: 2417: 2397: 2394: 2391: 2388: 2385: 2381: 2378: 2357: 2336: 2333: 2324: 2305: 2297: 2288: 2284: 2278: 2252: 2249: 2246: 2234: 2232: 2228: 2193: 2189: 2185: 2177: 2175: 2161: 2153: 2137: 2117: 2096: 2092: 2088: 2082: 2077: 2069: 2047: 2027: 2007: 1987: 1967: 1947: 1924: 1921: 1918: 1907: 1871: 1866: 1852: 1844: 1828: 1820: 1792: 1766: 1746: 1743: 1738: 1735: 1728: 1727: 1726: 1724: 1708: 1700: 1692: 1690: 1688: 1672: 1649: 1646: 1643: 1637: 1634: 1628: 1625: 1622: 1619: 1616: 1610: 1590: 1570: 1550: 1547: 1544: 1539: 1535: 1514: 1511: 1503: 1487: 1467: 1444: 1438: 1428: 1427:unitary group 1424: 1408: 1405: 1385: 1378: 1370: 1368: 1366: 1342: 1339: 1331: 1327: 1319: 1303: 1294: 1278: 1275: 1272: 1269: 1266: 1243: 1223: 1195: 1187: 1178: 1175: 1170: 1167: 1163: 1159: 1154: 1151: 1147: 1139: 1138: 1137: 1115: 1111: 1098: 1090: 1086: 1070: 1065: 1062: 1058: 1035: 1008: 988: 968: 946: 919: 911: 908: 905:, there is a 892: 872: 852: 844: 828: 805: 799: 796: 793: 787: 784: 781: 778: 772: 769: 766: 760: 753: 752: 751: 737: 729: 713: 706: 690: 668: 665: 643: 623: 603: 577: 574: 571: 565: 562: 559: 556: 550: 547: 544: 541: 535: 532: 529: 526: 520: 517: 514: 508: 501: 500: 499: 485: 465: 445: 442: 434: 418: 410: 394: 387: 384: 368: 361: 345: 338: 330: 328: 314: 306: 290: 282: 281:tangent space 260: 257: 254: 251: 245: 242: 236: 233: 230: 224: 217: 216: 215: 214: 213:bilinear form 198: 191: 187: 171: 164: 145: 142: 139: 129: 121: 119: 113: 111: 109: 105: 101: 98: 95: 90: 88: 84: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 27: 19: 8145:Arkani-Hamed 8043:Supergravity 8010:Moduli space 7946: 7907: 7902:Dirac string 7828:Gauge theory 7808:Loop algebra 7745:Black string 7608:GS formalism 7420: 7404: 7363: 7347:. Springer. 7343: 7307: 7303: 7263:math/0312032 7253: 7249: 7212:math/0402223 7198: 7163: 7159: 7124: 7120: 7094:(1): 28–48. 7091: 7087: 7057: 7020: 6985: 6981: 6947: 6902: 6864: 6860: 6818: 6815:Hulek, Klaus 6772: 6750: 6739: 6727: 6720:Zheng (2000) 6715: 6708:Zheng (2000) 6703: 6692: 6681: 6655: 6647: 6643: 6608: 6597: 6590:Wells (2007) 6585: 6573: 6562: 6550: 6538: 6526: 6514: 6502: 6495:Zheng (2000) 6490: 6478: 6466: 6459:Zheng (2000) 6454: 6442: 6393: 6389: 6385: 6369: 6365: 6358: 6350: 6327: 6323: 6317: 6311: 6307: 6301: 6288: 6259: 6251: 6244: 6229: 6225: 6222: 6217: 6213: 6210: 6205: 6171: 6162: 6100: 6095: 6087: 6079: 6075: 6069: 6064: 6060: 6052: 6050: 6034: 6019: 6005: 6001:general type 5983: 5979: 5972: 5966: 5962: 5958: 5949: 5942: 5938: 5936: 5919: 5907: 5905: 5884:Yum-Tong Siu 5881: 5858: 5748: 5742: 5738: 5732: 5728: 5724: 5719: 5711: 5707: 5700: 5694: 5690: 5686: 5679: 5675: 5671: 5666: 5660: 5656: 5652: 5645: 5641: 5637: 5632: 5628: 5624: 5618: 5598: 5589: 5579: 5571: 5565: 5546: 5536: 5530: 5526: 5518:Hopf surface 5511: 5506: 5504: 5218: 5216: 5003: 4864: 4859: 4817: 4631:Hodge theory 4608: 4391: 4358: 4235: 4136: 3968: 3767: 3489: 3423: 3388: 3264: 3248: 3236: 3232: 3230: 3225: 3221: 3215: 3211: 3207: 3202: 3196: 3192: 3188: 3183: 3177: 3173: 3168: 3163: 3158: 3154: 3150: 3146: 3142: 3140: 3054: 3046: 3034: 3028: 3018: 2952: 2895: smooth 2787: 2698: 2644:is the same 2323:Kähler class 2322: 2321:is called a 2235: 2231:Hodge theory 2187: 2183: 2181: 2151: 2150:is called a 1867: 1842: 1841:is called a 1781: 1696: 1563:) such that 1374: 1365:Kähler class 1364: 1295: 1215: 820: 704: 595: 334: 278: 125: 117: 104:Hodge theory 91: 77: 70:Erich Kähler 41: 31: 26: 8505:Silverstein 8005:Orientifold 7740:Black holes 7735:Black brane 7692:Dual photon 6988:: 173–186, 6009:proved the 5716:Chern class 5684:comes from 5520:, which is 4704:of certain 2236:Namely, if 907:holomorphic 750:defined by 705:Kähler form 114:Definitions 34:mathematics 8630:Categories 8525:Strominger 8520:Steinhardt 8515:Staudacher 8430:Polchinski 8380:Nanopoulos 8340:Mandelstam 8320:Kontsevich 8160:Berenstein 8088:Holography 8068:Superspace 7967:K3 surface 7926:Worldsheet 7841:Instantons 7469:Background 7317:1610.07165 7173:1903.12645 7151:0926.32026 7002:58.0780.02 6891:0926.32025 6763:References 6401:K3 surface 5997:Calabi–Yau 5975:must have 5555:, and the 4702:direct sum 4635:cohomology 4413:-forms on 3514:on smooth 3387:, and the 3057:says that 2188:difference 2060:such that 1502:linear map 728:(1,1)-form 383:associated 186:compatible 74:André Weil 8560:Veneziano 8440:Rajaraman 8335:Maldacena 8225:Gopakumar 8175:Dijkgraaf 8170:Curtright 7836:Anomalies 7715:NS5-brane 7636:U-duality 7631:S-duality 7626:T-duality 7411:EMS Press 7334:119669591 7056:(1996) , 7010:122246578 6946:(1994) . 6628:¯ 6625:∂ 6620:∂ 6189:ω 6146:→ 6118:ω 5841:¯ 5838:∂ 5832:∂ 5799:¯ 5796:∂ 5790:∂ 5766:¯ 5763:∂ 5757:∂ 5479:¯ 5471:− 5459:− 5446:≅ 5405:− 5393:− 5344:¯ 5281:Δ 5165:∑ 4935:Ω 4791:Ω 4750:⨁ 4746:≅ 4562:α 4464:α 4461:Δ 4441:α 4294:⨁ 4216:∂ 4212:Δ 4198:¯ 4195:∂ 4189:Δ 4173:Δ 4119:∂ 4114:∗ 4110:∂ 4101:∗ 4097:∂ 4093:∂ 4085:∂ 4081:Δ 4059:¯ 4056:∂ 4048:∗ 4041:¯ 4038:∂ 4026:∗ 4019:¯ 4016:∂ 4006:¯ 4003:∂ 3990:¯ 3987:∂ 3981:Δ 3949:∗ 3942:¯ 3939:∂ 3927:∗ 3923:∂ 3914:∗ 3888:¯ 3885:∂ 3876:∂ 3845:∗ 3727:∗ 3698:⋆ 3678:⋆ 3671:⋆ 3640:− 3634:− 3626:∗ 3576:∗ 3563:∗ 3543:Δ 3512:Laplacian 3444:∗ 3433:Λ 3410:− 3407:∧ 3404:ω 3371:¯ 3368:∂ 3362:Δ 3353:∂ 3349:Δ 3336:Δ 3312:¯ 3309:∂ 3300:∂ 3117:ω 3107:∫ 2964:ω 2926:φ 2920:¯ 2917:∂ 2911:∂ 2902:ω 2899:∣ 2886:→ 2877:φ 2863:ω 2801:ω 2770:φ 2764:¯ 2761:∂ 2755:∂ 2746:ω 2738:φ 2734:ω 2710:ω 2696:locally. 2675:ω 2652:φ 2632:ρ 2609:⊂ 2577:ω 2549:→ 2540:φ 2520:φ 2514:¯ 2511:∂ 2505:∂ 2496:β 2473:β 2447:¯ 2444:∂ 2438:∂ 2418:β 2398:β 2389:ω 2379:ω 2358:ω 2334:ω 2285:∈ 2279:ω 2253:ω 2212:¯ 2209:∂ 2203:∂ 2162:ω 2138:ρ 2118:ρ 2112:¯ 2109:∂ 2103:∂ 2070:ω 2028:ρ 1925:ω 1891:¯ 1888:∂ 1882:∂ 1853:ω 1829:ρ 1802:¯ 1799:∂ 1790:∂ 1767:ρ 1761:¯ 1758:∂ 1752:∂ 1736:ω 1709:ρ 1548:− 1439:⁡ 1304:ω 1273:⋯ 1192:‖ 1185:‖ 1164:δ 1108:∂ 1104:∂ 1083:∂ 1079:∂ 785:⁡ 714:ω 666:− 563:⁡ 533:⁡ 509:ω 486:ω 395:ω 246:ω 199:ω 188:with the 184:which is 146:ω 8615:Zwiebach 8570:Verlinde 8565:Verlinde 8540:Townsend 8535:Susskind 8470:Sagnotti 8435:Polyakov 8390:Nekrasov 8355:Minwalla 8350:Martinec 8315:Knizhnik 8310:Klebanov 8305:Kapustin 8270:'t Hooft 8205:Fischler 8140:Aganagić 8111:M-theory 8000:Conifold 7995:Orbifold 7978:manifold 7919:Geometry 7725:M5-brane 7720:M2-brane 7657:Graviton 7573:F-theory 7296:11984149 7190:88524040 7025:Springer 7019:(2005), 6907:Springer 6901:(2001), 6823:Springer 6408:See also 6267:oriented 6236:Examples 6092:complete 6030:K-stable 5918:, Ric = 5587:integers 4708:groups: 4392:harmonic 3690:, where 3051:homology 3043:subspace 3041:complex 2382:′ 2337:′ 2184:globally 1817:are the 1216:for all 56:, and a 46:manifold 8545:Trivedi 8530:Sundrum 8495:Shenker 8485:Seiberg 8480:Schwarz 8450:Randall 8410:Novikov 8400:Nielsen 8385:Năstase 8295:Kallosh 8280:Gibbons 8220:Gliozzi 8210:Friedan 8200:Ferrara 8185:Douglas 8180:Distler 7730:S-brane 7710:D-brane 7667:Tachyon 7662:Dilaton 7476:Strings 7413:, 2001 7386:1777835 7288:2076925 7268:Bibcode 7239:2325093 7143:1688140 7108:1969701 7080:1393941 7043:2093043 6970:0507725 6933:1853077 6883:1688136 6849:2030225 6804:1379330 6256:lattice 4433:(forms 3743:adjoint 3741:is the 3710:is the 3460:Kodaira 3031:compact 2130:. Here 1136:, then 912:around 636:(where 358:with a 279:on the 97:complex 8610:Zumino 8605:Zaslow 8590:Yoneya 8580:Witten 8500:Siegel 8475:Scherk 8445:Ramond 8420:Ooguri 8345:Marolf 8300:Kaluza 8285:Kachru 8275:Hořava 8265:Harvey 8260:Hanson 8245:Gubser 8235:Greene 8165:Bousso 8150:Atiyah 7702:Branes 7512:Theory 7384:  7374:  7351:  7332:  7294:  7286:  7237:  7227:  7188:  7149:  7141:  7106:  7078:  7068:  7041:  7031:  7008:  7000:  6968:  6958:  6931:  6921:  6889:  6881:  6847:  6837:  6802:  6792:  6399:Every 6291:, the 6090:has a 5814:-lemma 5561:formal 5551:, the 4552:-forms 4482:) and 4359:where 4077:  4074:  4071:  4068:  3906:  3903:  3900:  3897:  3593:where 3510:, the 3478:, and 3466:, the 3289:, the 3145:is an 3141:where 3039:closed 3029:For a 2430:. The 2227:-lemma 1906:-lemma 1874:local 1699:smooth 1665:) and 1421:whose 703:, the 409:closed 386:2-form 381:whose 94:smooth 92:Every 8550:Turok 8460:Roček 8425:Ovrut 8415:Olive 8395:Neveu 8375:Myers 8370:Mukhi 8360:Moore 8330:Linde 8325:Klein 8250:Gukov 8240:Gross 8230:Green 8215:Gates 8195:Dvali 8155:Banks 7425:(PDF) 7330:S2CID 7312:arXiv 7292:S2CID 7258:arXiv 7207:arXiv 7186:S2CID 7168:arXiv 7104:JSTOR 7006:S2CID 6435:Notes 6067:(for 5989:ample 5956:) in 4453:with 3239:is a 2229:from 1504:from 841:is a 44:is a 8575:Wess 8555:Vafa 8465:Rohm 8365:Motl 8290:Kaku 8255:Guth 8190:Duff 7372:ISBN 7349:ISBN 7225:ISBN 7164:2021 7066:ISBN 7029:ISBN 6956:ISBN 6919:ISBN 6835:ISBN 6790:ISBN 6320:+ 1) 6304:+ 1) 6084:ball 6039:and 6026:Tian 5993:Fano 5619:The 4865:Let 3832:and 3462:and 2929:> 2664:for 2154:for 1845:for 616:and 64:and 52:, a 40:, a 8585:Yau 8510:Sơn 8490:Sen 7322:doi 7308:371 7276:doi 7254:157 7217:doi 7178:doi 7147:Zbl 7129:doi 7096:doi 6998:JFM 6990:doi 6911:doi 6887:Zbl 6869:doi 6827:doi 6782:doi 6648:192 6368:in 6322:on 6098:.) 6086:in 6072:≥ 2 5722:in 5718:of 5710:on 5631:on 5542:= 1 5524:to 5006:of 4680:of 4256:, 4137:If 3772:on 3745:of 3186:in 3161:in 3045:of 3019:all 2370:by 2040:on 2000:of 1960:in 1256:in 1021:in 1001:to 885:of 407:is 327:). 283:of 32:In 8632:: 7886:, 7879:, 7872:, 7865:, 7409:, 7403:, 7382:MR 7380:, 7370:, 7366:, 7328:. 7320:. 7306:. 7290:, 7284:MR 7282:, 7274:, 7266:, 7252:, 7235:MR 7233:, 7223:, 7215:, 7205:, 7184:. 7176:. 7162:. 7145:. 7139:MR 7137:. 7125:49 7123:. 7119:. 7102:. 7092:60 7090:. 7076:MR 7074:, 7064:, 7052:; 7039:MR 7037:, 7027:, 7023:, 7004:, 6996:, 6984:, 6966:MR 6964:. 6954:. 6950:. 6942:; 6929:MR 6927:, 6917:, 6909:, 6885:. 6879:MR 6877:. 6865:49 6863:. 6859:. 6845:MR 6843:, 6833:, 6825:, 6813:; 6800:MR 6798:, 6788:, 6780:, 6666:^ 6646:, 6359:CP 6328:CP 6324:CP 6316:U( 6312:CP 6300:U( 6289:CP 6232:. 6169:. 6080:CP 6065:CP 5995:, 5965:, 5920:λg 5731:, 5693:, 5678:, 5659:, 5644:, 5544:. 5529:× 5514:+1 5497:. 4629:, 3812:, 3482:. 3474:, 3470:, 3401::= 3247:, 3228:. 3214:, 3195:, 3176:, 2871::= 2840:: 2293:dR 2233:. 1865:. 1697:A 1689:. 1367:. 1236:, 782:Re 560:Im 530:Re 89:. 76:. 7976:2 7974:G 7943:? 7908:p 7893:) 7890:8 7888:E 7883:7 7881:E 7876:6 7874:E 7869:4 7867:F 7862:2 7860:G 7858:( 7454:e 7447:t 7440:v 7357:. 7336:. 7324:: 7314:: 7278:: 7270:: 7260:: 7219:: 7209:: 7192:. 7180:: 7170:: 7153:. 7131:: 7110:. 7098:: 6992:: 6986:9 6972:. 6913:: 6893:. 6871:: 6829:: 6784:: 6394:X 6390:C 6386:X 6370:C 6366:B 6351:C 6318:n 6308:C 6302:n 6260:C 6252:C 6245:C 6218:C 6214:C 6206:X 6192:) 6186:, 6183:X 6180:( 6163:X 6149:X 6142:C 6121:) 6115:, 6112:X 6109:( 6088:C 6070:n 6061:X 6053:X 5984:X 5980:K 5973:X 5969:) 5967:R 5963:X 5961:( 5959:H 5950:X 5948:( 5946:1 5943:c 5939:X 5743:ω 5739:ω 5735:) 5733:Z 5729:X 5727:( 5725:H 5720:L 5712:X 5708:L 5701:X 5697:) 5695:Q 5691:X 5689:( 5687:H 5682:) 5680:R 5676:X 5674:( 5672:H 5667:X 5663:) 5661:Z 5657:X 5655:( 5653:H 5648:) 5646:R 5642:X 5640:( 5638:H 5633:X 5629:ω 5625:X 5590:Z 5583:1 5580:b 5540:1 5537:b 5531:S 5527:S 5512:a 5510:2 5507:b 5474:q 5468:n 5465:, 5462:p 5456:n 5452:H 5441:q 5438:, 5435:p 5431:H 5408:q 5402:n 5399:, 5396:p 5390:n 5386:h 5382:= 5377:q 5374:, 5371:p 5367:h 5339:p 5336:, 5333:q 5329:H 5323:= 5318:q 5315:, 5312:p 5308:H 5285:d 5258:p 5255:, 5252:q 5248:h 5244:= 5239:q 5236:, 5233:p 5229:h 5202:. 5197:q 5194:, 5191:p 5187:h 5181:r 5178:= 5175:q 5172:+ 5169:p 5161:= 5156:r 5152:b 5128:X 5104:) 5101:X 5098:( 5093:q 5090:, 5087:p 5083:H 5076:C 5070:m 5067:i 5064:d 5059:= 5056:) 5053:X 5050:( 5045:q 5042:, 5039:p 5035:h 5014:X 4990:) 4987:X 4984:( 4979:q 4976:, 4973:p 4967:H 4944:) 4939:p 4931:, 4928:X 4925:( 4920:q 4916:H 4895:) 4892:X 4889:( 4884:q 4881:, 4878:p 4874:H 4846:X 4826:X 4803:. 4800:) 4795:p 4787:, 4784:X 4781:( 4776:q 4772:H 4766:r 4763:= 4760:q 4757:+ 4754:p 4743:) 4739:C 4735:, 4732:X 4729:( 4724:r 4720:H 4688:X 4668:) 4664:C 4660:, 4657:X 4654:( 4649:r 4645:H 4617:X 4594:) 4591:q 4588:, 4585:p 4582:( 4540:) 4537:q 4534:, 4531:p 4528:( 4505:q 4502:, 4499:p 4493:H 4470:0 4467:= 4421:X 4401:r 4376:r 4370:H 4344:, 4341:) 4338:X 4335:( 4330:q 4327:, 4324:p 4318:H 4310:r 4307:= 4304:q 4301:+ 4298:p 4290:= 4287:) 4284:X 4281:( 4276:r 4270:H 4244:X 4221:. 4208:2 4205:= 4185:2 4182:= 4177:d 4145:X 4122:. 4106:+ 4090:= 4065:, 4031:+ 3997:= 3954:, 3932:+ 3919:= 3910:d 3894:, 3879:+ 3873:= 3870:d 3841:d 3820:d 3800:X 3780:r 3768:L 3753:d 3723:d 3674:d 3666:) 3663:1 3660:+ 3657:r 3654:( 3651:n 3647:) 3643:1 3637:( 3631:= 3622:d 3601:d 3581:d 3572:d 3568:+ 3559:d 3555:d 3552:= 3547:d 3522:r 3498:n 3440:L 3436:= 3398:L 3358:, 3345:, 3340:d 3303:, 3277:d 3249:Y 3237:X 3233:Y 3226:n 3222:X 3218:) 3216:R 3212:X 3210:( 3208:H 3203:ω 3199:) 3197:R 3193:X 3191:( 3189:H 3184:ω 3180:) 3178:R 3174:X 3172:( 3169:r 3167:2 3164:H 3159:Y 3155:ω 3151:ω 3147:r 3143:Y 3126:, 3121:r 3111:Y 3100:! 3097:r 3093:1 3088:= 3085:) 3082:Y 3079:( 3075:l 3072:o 3069:v 3047:X 3035:X 3000:R 2995:/ 2989:K 2967:] 2961:[ 2938:. 2935:} 2932:0 2908:i 2905:+ 2890:R 2883:X 2880:: 2874:{ 2866:] 2860:[ 2854:K 2826:K 2804:] 2798:[ 2752:i 2749:+ 2743:= 2713:] 2707:[ 2684:0 2681:= 2678:] 2672:[ 2612:X 2606:U 2586:0 2583:= 2580:] 2574:[ 2553:C 2546:X 2543:: 2502:i 2499:= 2493:d 2470:d 2395:d 2392:+ 2386:= 2309:) 2306:X 2303:( 2298:2 2289:H 2282:] 2276:[ 2256:) 2250:, 2247:X 2244:( 2100:) 2097:2 2093:/ 2089:i 2086:( 2083:= 2078:U 2073:| 2048:U 2008:p 1988:U 1968:X 1948:p 1928:) 1922:, 1919:X 1916:( 1793:, 1747:2 1744:i 1739:= 1673:J 1653:) 1650:v 1647:, 1644:u 1641:( 1638:g 1635:= 1632:) 1629:v 1626:J 1623:, 1620:u 1617:J 1614:( 1611:g 1591:g 1571:J 1551:1 1545:= 1540:2 1536:J 1515:X 1512:T 1488:X 1468:J 1448:) 1445:n 1442:( 1436:U 1409:n 1406:2 1386:X 1351:) 1347:R 1343:, 1340:X 1337:( 1332:2 1328:H 1282:} 1279:n 1276:, 1270:, 1267:1 1264:{ 1244:b 1224:a 1201:) 1196:2 1188:z 1182:( 1179:O 1176:+ 1171:b 1168:a 1160:= 1155:b 1152:a 1148:h 1124:) 1116:b 1112:z 1099:, 1091:a 1087:z 1074:( 1071:= 1066:b 1063:a 1059:h 1036:n 1031:C 1009:0 989:p 969:p 947:n 942:C 920:p 893:X 873:p 853:n 829:X 806:. 803:) 800:v 797:, 794:u 791:( 788:h 779:= 776:) 773:v 770:, 767:u 764:( 761:g 738:g 691:X 669:1 644:i 624:v 604:u 581:) 578:v 575:, 572:u 569:( 566:h 557:= 554:) 551:v 548:, 545:u 542:i 539:( 536:h 527:= 524:) 521:v 518:, 515:u 512:( 466:X 446:X 443:T 419:h 369:h 346:X 315:X 291:X 264:) 261:v 258:J 255:, 252:u 249:( 243:= 240:) 237:v 234:, 231:u 228:( 225:g 172:J 149:) 143:, 140:X 137:( 20:)

Index

Kähler geometry
mathematics
differential geometry
manifold
complex structure
Riemannian structure
symplectic structure
Jan Arnoldus Schouten
David van Dantzig
Erich Kähler
André Weil
Hermitian Yang–Mills connections
Kähler–Einstein metrics
smooth
complex
projective variety
Hodge theory
algebraic geometry
symplectic manifold
integrable almost-complex structure
compatible
symplectic form
bilinear form
tangent space
positive definite
complex manifold
Hermitian metric
associated
2-form
closed

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.