Knowledge (XXG)

Kőnig's lemma

Source 📝

89: 2007:. Although the axiom of choice is, in general, stronger than the principle of dependent choice, this restriction of dependent choice is equivalent to a restriction of the axiom of choice. In particular, when the branching at each node is done on a finite subset of an arbitrary set not assumed to be countable, the form of Kőnig's lemma that says "Every infinite finitely branching tree has an infinite path" is equivalent to the principle that every countable set of finite sets has a choice function, that is to say, the axiom of countable choice for finite sets. This form of the axiom of choice (and hence of Kőnig's lemma) is not provable in ZF set theory. 32: 1903:. At each step of the induction, a vertex with a particular property must be selected. Although it is proved that at least one appropriate vertex exists, if there is more than one suitable vertex there may be no canonical choice. In fact, the full strength of the axiom of dependent choice is not needed; as described below, the 344:, consider the infinitely many vertices that can be reached by simple paths that extend the current path, and for each of these vertices construct a simple path to it that extends the current path. There are infinitely many of these extended paths, each of which connects from 239:
that meets the conditions of the lemma, can be performed step by step, maintaining at each step a finite path that can be extended to reach infinitely many vertices (not necessarily all along the same path as each other). To begin this process, start with any single vertex
1838:
of the fan theorem can be taken to be the length of the longest sequence whose basic open set is in the finite subcover. This topological proof can be used in classical mathematics to show that the following form of Kőnig's lemma holds: for any natural number
498:
Repeating this process for extending the path produces an infinite sequence of finite simple paths, each extending the previous path in the sequence by one more edge. The union of all of these paths is the ray whose existence was promised by the lemma.
2180: 591:
the tree whose nodes are all finite sequences of natural numbers, where the parent of a node is obtained by removing the last element from a sequence. Each finite sequence can be identified with a partial function from
1531:. Here a binary tree is one in which every term of every sequence in the tree is 0 or 1, which is to say the tree is computably bounded via the constant function 2. The full form of Kőnig's lemma is not provable in WKL 115:
who published it in 1927. It gives a sufficient condition for an infinite graph to have an infinitely long path. The computability aspects of this theorem have been thoroughly investigated by researchers in
2192: 507:
The computability aspects of Kőnig's lemma have been thoroughly investigated. For this purpose it is convenient to state Kőnig's lemma in the form that any infinite finitely branching subtree of
1910:
If the graph is countable, the vertices are well-ordered and one can canonically choose the smallest suitable vertex. In this case, Kőnig's lemma is provable in second-order arithmetic with
1889: 1834:. Each sequence in the bar represents a basic open set of this space, and these basic open sets cover the space by assumption. By compactness, this cover has a finite subcover. The 172:. This means that every two vertices can be connected by a finite path, each vertex is adjacent to only finitely many other vertices, and the graph has infinitely many vertices. Then 1119: 980: 948: 916: 834: 762: 1622: 1399: 1208: 1051: 1013: 884: 730: 677: 643: 589: 535: 1832: 211:
or an infinite simple path. If it is locally finite, it meets the conditions of the lemma and has a ray, and if it is not locally finite then it has an infinite-degree vertex.
1151: 2337: 1087: 267:. This vertex can be thought of as a path of length zero, consisting of one vertex and no edges. By the assumptions of the lemma, each of the infinitely many vertices of 1766: 1734: 1678: 1646: 1493: 1428: 1276: 1256: 610: 555: 493: 433: 460: 396: 369: 342: 312: 265: 1345: 88: 2005: 1979: 1959: 1939: 1786: 1714: 1513: 1473: 1365: 1316: 1296: 1236: 1175: 854: 802: 782: 700: 285: 237: 190: 158: 1555:
to establish that there exists an adjacent vertex from which infinitely many other vertices can be reached, and because of the reliance on a weak form of the
1688:
if every sequence is either in the bar or not in the bar (this assumption is required because the theorem is ordinarily considered in situations where the
612:
to itself, and each infinite path can be identified with a total function. This allows for an analysis using the techniques of computability theory.
1559:. Facts about the computational aspects of the lemma suggest that no proof can be given that would be considered constructive by the main schools of 20: 2533: 2283: 2023:
of any inverse system of non-empty finite sets is non-empty. This may be seen as a generalization of Kőnig's lemma and can be proved with
645:
in which each sequence has only finitely many immediate extensions (that is, the tree has finite degree when viewed as a graph) is called
53: 1899:
Kőnig's lemma may be considered to be a choice principle; the first proof above illustrates the relationship between the lemma and the
2459: 2430: 2362: 2237: 2218: 1519:
A weak form of Kőnig's lemma which states that every infinite binary tree has an infinite branch is used to define the subsystem WKL
75: 495:. This extension preserves the property that infinitely many vertices can be reached by simple paths that extend the current path. 1915: 2508: 169: 165: 2513: 1368: 2117: 2028: 1567: 1548: 200:(a path with no repeated vertices) that starts at one vertex and continues from it through infinitely many vertices. 46: 40: 1911: 1846: 1689: 679:
has an infinite path, but Kőnig's lemma shows that any finitely branching infinite subtree must have such a path.
1904: 1900: 57: 2528: 2523: 2518: 1560: 125: 402:
that at least one of these neighbors is used as the next step on infinitely many of these extended paths. Let
1092: 953: 921: 889: 807: 735: 1524: 1585: 1374: 1183: 1026: 988: 859: 705: 652: 618: 564: 510: 2024: 1016: 2491:
has completely formalized and automatically checked the proof of a version of Kőnig's lemma in the file
208: 1798: 2452:
Recursively Enumerable Sets and Degrees: A study of computable functions and computably generated sets
2266:(1976), "Some cases of König's lemma", in Marek, V. Wiktor; Srebrny, Marian; Zarach, Andrzej (eds.), 1552: 1154: 1124: 1020: 399: 2043:, for the possible existence of counterexamples when generalizing the lemma to higher cardinalities. 2244: 1528: 1438: 204: 197: 2310: 2171:, Mathematical Surveys and Monographs, vol. 59, Providence, RI: American Mathematical Society 1921:
Kőnig's lemma is essentially the restriction of the axiom of dependent choice to entire relations
1060: 2152: 193: 117: 2346: 2340: 1452:. This means that any function computable from the path is dominated by a computable function. 2482: 2455: 2426: 2409: 2379: 2358: 2279: 2233: 2214: 2176: 1442: 112: 2414:
Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe
1739: 1719: 1651: 1631: 1478: 1261: 1241: 595: 540: 465: 405: 2398: 2350: 2271: 2144: 2016: 1791:
This can be proven in a classical setting by considering the bar as an open covering of the
121: 2469: 2440: 2372: 2293: 2256: 2228: 438: 374: 347: 320: 290: 243: 2465: 2447: 2436: 2368: 2289: 2252: 2224: 1556: 1431: 1321: 161: 1984: 1408: 2206: 2040: 1964: 1944: 1924: 1771: 1699: 1575: 1498: 1458: 1350: 1301: 1281: 1221: 1160: 839: 787: 767: 685: 558: 270: 222: 175: 143: 2354: 2502: 2164: 2156: 2020: 1792: 1054: 2383: 2488: 129: 108: 1180:
A finer analysis has been conducted for computably bounded trees. A subtree of
2263: 2135:
Franchella, Miriam (1997), "On the origins of Dénes König's infinity lemma",
2046: 2402: 2270:, Lecture Notes in Mathematics, vol. 537, Springer, pp. 273–284, 435:
be such a neighbor, and extend the current path by one edge, the edge from
2492: 2027:, viewing the finite sets as compact discrete spaces, and then using the 398:
has only finitely many neighbors. Therefore, it follows by a form of the
2275: 2268:
Set Theory and Hierarchy Theory a Memorial Tribute to Andrzej Mostowski
2148: 104: 1788:. Brouwer's fan theorem says that any detachable bar is uniform. 1278:
such that for every sequence in the tree and every natural number
87: 1371:
apply to infinite, computably bounded, computable subtrees of
25: 2483:
Stanford Encyclopedia of Philosophy: Constructive Mathematics
985:
There exist non-finitely branching computable subtrees of
203:
A useful special case of the lemma is that every infinite
2249:
Theory of Recursive Functions and Effective Computability
2181:"Über eine Schlussweise aus dem Endlichen ins Unendliche" 1768:
has an initial segment in the bar of length no more than
1367:
gives a bound for how "wide" the tree is. The following
1547:
The proof given above is not generally considered to be
1543:
Relationship to constructive mathematics and compactness
1430:, the canonical Turing complete set that can decide the 317:
Next, as long as the current path ends at some vertex
2313: 1987: 1967: 1947: 1927: 1849: 1801: 1774: 1742: 1722: 1702: 1654: 1634: 1588: 1501: 1481: 1461: 1411: 1377: 1353: 1324: 1304: 1284: 1264: 1244: 1224: 1186: 1163: 1127: 1095: 1063: 1029: 991: 956: 924: 892: 862: 842: 810: 790: 770: 738: 708: 688: 655: 621: 598: 567: 557:
denotes the set of natural numbers (thought of as an
543: 513: 468: 441: 408: 377: 350: 323: 293: 273: 246: 225: 178: 146: 784:
through which there is an infinite path. Even when
2384:"Sur les correspondances multivoques des ensembles" 982:ensures that this greedy process cannot get stuck. 2331: 1999: 1973: 1953: 1933: 1883: 1826: 1780: 1760: 1728: 1708: 1672: 1640: 1616: 1507: 1487: 1467: 1422: 1393: 1359: 1339: 1310: 1290: 1270: 1250: 1230: 1202: 1169: 1145: 1113: 1081: 1045: 1007: 974: 942: 910: 886:has an infinite path, the path is computable from 878: 848: 828: 796: 776: 756: 724: 694: 671: 637: 604: 583: 549: 529: 487: 454: 427: 390: 363: 336: 306: 279: 259: 231: 184: 152: 1535:, but is equivalent to the stronger subsystem ACA 918:, step by step, greedily choosing a successor in 287:can be reached by a simple path that starts from 2454:, Perspectives in Mathematical Logic, Springer, 2425:, Perspectives in Mathematical Logic, Springer, 1495:the tree has a path that does not compute  1884:{\displaystyle \{0,\ldots ,k\}^{<\omega }} 1053:with a path must have a path computable from 8: 1869: 1850: 1815: 1802: 1755: 1743: 1667: 1655: 1602: 1589: 1023:path. However, every computable subtree of 124:. This theorem also has important roles in 2096: 1527:. This subsystem has an important role in 836:may not be computable. Whenever a subtree 2069: 1574:) is, from a classical point of view, the 2323: 2318: 2312: 2122:On the Domains of Definition of Functions 1986: 1966: 1946: 1926: 1872: 1848: 1818: 1800: 1773: 1741: 1721: 1701: 1653: 1633: 1605: 1587: 1500: 1480: 1460: 1410: 1405:Any such tree has a path computable from 1382: 1376: 1352: 1323: 1303: 1283: 1263: 1243: 1223: 1191: 1185: 1162: 1137: 1132: 1126: 1094: 1073: 1068: 1062: 1034: 1028: 996: 990: 955: 923: 891: 867: 861: 841: 809: 789: 769: 737: 713: 707: 687: 660: 654: 626: 620: 597: 572: 566: 542: 518: 512: 473: 467: 446: 440: 413: 407: 382: 376: 355: 349: 328: 322: 298: 292: 272: 251: 245: 224: 177: 145: 76:Learn how and when to remove this message 39:This article includes a list of general 2058: 1571: 1153:(for the meaning of this notation, see 1114:{\displaystyle \operatorname {Ext} (T)} 1089:complete set. This is because the set 975:{\displaystyle \operatorname {Ext} (T)} 943:{\displaystyle \operatorname {Ext} (T)} 911:{\displaystyle \operatorname {Ext} (T)} 829:{\displaystyle \operatorname {Ext} (T)} 757:{\displaystyle \operatorname {Ext} (T)} 2080: 1578:of a form of Kőnig's lemma. A subset 1318:th element of the sequence is at most 219:The construction of a ray, in a graph 2423:Subsystems of Second Order Arithmetic 2137:Archive for History of Exact Sciences 2092: 2065: 1895:Relationship with the axiom of choice 1617:{\displaystyle \{0,1\}^{<\omega }} 1394:{\displaystyle \omega ^{<\omega }} 1203:{\displaystyle \omega ^{<\omega }} 1046:{\displaystyle \omega ^{<\omega }} 1008:{\displaystyle \omega ^{<\omega }} 879:{\displaystyle \omega ^{<\omega }} 725:{\displaystyle \omega ^{<\omega }} 672:{\displaystyle \omega ^{<\omega }} 638:{\displaystyle \omega ^{<\omega }} 584:{\displaystyle \omega ^{<\omega }} 530:{\displaystyle \omega ^{<\omega }} 207:contains either a vertex of infinite 16:Mathematical result on infinite trees 7: 2100: 2169:Consequences of the Axiom of Choice 1843:, any infinite subtree of the tree 111:due to the Hungarian mathematician 2416:(in German), Leipzig: Akad. Verlag 2339:classes in computability theory", 2315: 2127:van Heijenoort, Jean, ed. (1967), 1218:if there is a computable function 1129: 1065: 45:it lacks sufficient corresponding 14: 2031:characterization of compactness. 1827:{\displaystyle \{0,1\}^{\omega }} 1551:, because at each step it uses a 1448:Any such tree has a path that is 1437:Any such tree has a path that is 950:at each step. The restriction to 649:. Not every infinite subtree of 2342:Handbook of Computability Theory 30: 21:König's theorem (disambiguation) 1146:{\displaystyle \Sigma _{1}^{1}} 2191:(2–3): 121–130, archived from 1334: 1328: 1108: 1102: 969: 963: 937: 931: 905: 899: 823: 817: 751: 745: 1: 2355:10.1016/S0049-237X(99)80018-4 1961:there are only finitely many 1455:For any noncomputable subset 537:has an infinite path. Here 371:to one of its neighbors, but 2534:Constructivism (mathematics) 2421:Simpson, Stephen G. (1999), 2332:{\displaystyle \Pi _{1}^{0}} 2029:finite intersection property 1692:is not assumed). A bar is 1680:has some initial segment in 1082:{\displaystyle \Pi _{1}^{1}} 764:denotes the set of nodes of 2550: 1912:arithmetical comprehension 1716:so that any function from 1690:law of the excluded middle 18: 2307:Cenzer, Douglas (1999), " 2097:Howard & Rubin (1998) 1905:axiom of countable choice 1901:axiom of dependent choice 2232:; reprint, Dover, 2002, 2185:Acta Sci. Math. (Szeged) 1696:if there is some number 1561:constructive mathematics 1441:. This is known as the 126:constructive mathematics 92:Kőnig's 1927 publication 2391:Fundamenta Mathematicae 2099:, pp. 20, 243; compare 1761:{\displaystyle \{0,1\}} 1729:{\displaystyle \omega } 1673:{\displaystyle \{0,1\}} 1641:{\displaystyle \omega } 1525:second-order arithmetic 1488:{\displaystyle \omega } 1271:{\displaystyle \omega } 1251:{\displaystyle \omega } 605:{\displaystyle \omega } 550:{\displaystyle \omega } 488:{\displaystyle v_{i+1}} 428:{\displaystyle v_{i+1}} 60:more precise citations. 2509:Lemmas in graph theory 2403:10.4064/fm-8-1-114-134 2333: 2001: 1975: 1955: 1935: 1914:, and, a fortiori, in 1891:has an infinite path. 1885: 1828: 1782: 1762: 1730: 1710: 1674: 1642: 1618: 1553:proof by contradiction 1509: 1489: 1469: 1424: 1395: 1361: 1341: 1312: 1292: 1272: 1252: 1232: 1204: 1171: 1147: 1115: 1083: 1047: 1009: 976: 944: 912: 880: 850: 830: 804:is computable the set 798: 778: 758: 726: 696: 673: 639: 606: 585: 551: 531: 489: 456: 429: 392: 365: 338: 308: 281: 261: 233: 186: 154: 136:Statement of the lemma 101:Kőnig's infinity lemma 93: 2345:, Elsevier, pp.  2334: 2002: 1976: 1956: 1936: 1886: 1829: 1783: 1763: 1731: 1711: 1675: 1643: 1628:if any function from 1619: 1510: 1490: 1470: 1425: 1396: 1362: 1342: 1313: 1293: 1273: 1253: 1233: 1205: 1172: 1148: 1116: 1084: 1048: 1010: 977: 945: 913: 881: 851: 831: 799: 779: 759: 727: 697: 674: 640: 607: 586: 552: 532: 503:Computability aspects 490: 457: 455:{\displaystyle v_{i}} 430: 393: 391:{\displaystyle v_{i}} 366: 364:{\displaystyle v_{i}} 339: 337:{\displaystyle v_{i}} 309: 307:{\displaystyle v_{1}} 282: 262: 260:{\displaystyle v_{1}} 234: 187: 155: 91: 2514:Computability theory 2311: 2143:(51(1)3:2-3): 3–27, 1985: 1965: 1945: 1925: 1847: 1799: 1772: 1740: 1720: 1700: 1652: 1632: 1586: 1568:L. E. J. Brouwer 1499: 1479: 1459: 1409: 1375: 1351: 1340:{\displaystyle f(n)} 1322: 1302: 1282: 1262: 1242: 1222: 1184: 1161: 1155:analytical hierarchy 1125: 1093: 1061: 1027: 1019:path, and indeed no 989: 954: 922: 890: 860: 840: 808: 788: 768: 736: 706: 686: 653: 619: 596: 565: 541: 511: 466: 439: 406: 400:pigeonhole principle 375: 348: 321: 291: 271: 244: 223: 176: 144: 122:computability theory 19:For other uses, see 2328: 2245:Rogers, Hartley Jr. 2129:From Frege to Gödel 2103:, Exercise IX.2.18. 2025:Tychonoff's theorem 2000:{\displaystyle xRz} 1941:such that for each 1566:The fan theorem of 1529:reverse mathematics 1216:recursively bounded 1142: 1078: 2329: 2314: 2276:10.1007/BFb0096907 2149:10.1007/BF00376449 1997: 1971: 1951: 1931: 1918:(without choice). 1881: 1824: 1795:topological space 1778: 1758: 1726: 1706: 1670: 1638: 1614: 1505: 1485: 1465: 1423:{\displaystyle 0'} 1420: 1391: 1357: 1337: 1308: 1288: 1268: 1248: 1228: 1212:computably bounded 1200: 1167: 1143: 1128: 1111: 1079: 1064: 1043: 1005: 972: 940: 908: 876: 846: 826: 794: 774: 754: 722: 692: 669: 647:finitely branching 635: 602: 581: 547: 527: 485: 452: 425: 388: 361: 334: 304: 277: 257: 229: 182: 150: 118:mathematical logic 94: 2285:978-3-540-07856-2 2118:Brouwer, L. E. J. 2070:Franchella (1997) 1974:{\displaystyle z} 1954:{\displaystyle x} 1934:{\displaystyle R} 1781:{\displaystyle N} 1709:{\displaystyle N} 1508:{\displaystyle X} 1468:{\displaystyle X} 1443:low basis theorem 1360:{\displaystyle f} 1311:{\displaystyle n} 1291:{\displaystyle n} 1231:{\displaystyle f} 1170:{\displaystyle T} 1021:hyperarithmetical 849:{\displaystyle T} 797:{\displaystyle T} 777:{\displaystyle T} 695:{\displaystyle T} 280:{\displaystyle G} 232:{\displaystyle G} 185:{\displaystyle G} 153:{\displaystyle G} 86: 85: 78: 2541: 2472: 2448:Soare, Robert I. 2443: 2417: 2405: 2388: 2375: 2338: 2336: 2335: 2330: 2327: 2322: 2296: 2259: 2231: 2211:Basic Set Theory 2202: 2201: 2200: 2172: 2159: 2131: 2124: 2104: 2090: 2084: 2083:, p. 418ff. 2078: 2072: 2068:as explained in 2063: 2017:category of sets 2006: 2004: 2003: 1998: 1980: 1978: 1977: 1972: 1960: 1958: 1957: 1952: 1940: 1938: 1937: 1932: 1890: 1888: 1887: 1882: 1880: 1879: 1833: 1831: 1830: 1825: 1823: 1822: 1787: 1785: 1784: 1779: 1767: 1765: 1764: 1759: 1735: 1733: 1732: 1727: 1715: 1713: 1712: 1707: 1679: 1677: 1676: 1671: 1647: 1645: 1644: 1639: 1623: 1621: 1620: 1615: 1613: 1612: 1514: 1512: 1511: 1506: 1494: 1492: 1491: 1486: 1474: 1472: 1471: 1466: 1450:hyperimmune free 1429: 1427: 1426: 1421: 1419: 1400: 1398: 1397: 1392: 1390: 1389: 1366: 1364: 1363: 1358: 1346: 1344: 1343: 1338: 1317: 1315: 1314: 1309: 1297: 1295: 1294: 1289: 1277: 1275: 1274: 1269: 1257: 1255: 1254: 1249: 1237: 1235: 1234: 1229: 1209: 1207: 1206: 1201: 1199: 1198: 1176: 1174: 1173: 1168: 1152: 1150: 1149: 1144: 1141: 1136: 1120: 1118: 1117: 1112: 1088: 1086: 1085: 1080: 1077: 1072: 1057:, the canonical 1052: 1050: 1049: 1044: 1042: 1041: 1014: 1012: 1011: 1006: 1004: 1003: 981: 979: 978: 973: 949: 947: 946: 941: 917: 915: 914: 909: 885: 883: 882: 877: 875: 874: 855: 853: 852: 847: 835: 833: 832: 827: 803: 801: 800: 795: 783: 781: 780: 775: 763: 761: 760: 755: 731: 729: 728: 723: 721: 720: 701: 699: 698: 693: 682:For any subtree 678: 676: 675: 670: 668: 667: 644: 642: 641: 636: 634: 633: 611: 609: 608: 603: 590: 588: 587: 582: 580: 579: 556: 554: 553: 548: 536: 534: 533: 528: 526: 525: 494: 492: 491: 486: 484: 483: 461: 459: 458: 453: 451: 450: 434: 432: 431: 426: 424: 423: 397: 395: 394: 389: 387: 386: 370: 368: 367: 362: 360: 359: 343: 341: 340: 335: 333: 332: 313: 311: 310: 305: 303: 302: 286: 284: 283: 278: 266: 264: 263: 258: 256: 255: 238: 236: 235: 230: 191: 189: 188: 183: 159: 157: 156: 151: 120:, especially in 81: 74: 70: 67: 61: 56:this article by 47:inline citations 34: 33: 26: 2549: 2548: 2544: 2543: 2542: 2540: 2539: 2538: 2529:Infinite graphs 2524:Axiom of choice 2519:Wellfoundedness 2499: 2498: 2479: 2462: 2446: 2433: 2420: 2408: 2386: 2378: 2365: 2309: 2308: 2306: 2303: 2301:Further reading 2286: 2262: 2251:, McGraw-Hill, 2243: 2221: 2205: 2198: 2196: 2175: 2162: 2134: 2126: 2125:. published in 2116: 2113: 2108: 2107: 2095:, p. 273; 2091: 2087: 2079: 2075: 2064: 2060: 2055: 2037: 2013: 1983: 1982: 1963: 1962: 1943: 1942: 1923: 1922: 1897: 1868: 1845: 1844: 1814: 1797: 1796: 1770: 1769: 1738: 1737: 1718: 1717: 1698: 1697: 1650: 1649: 1630: 1629: 1601: 1584: 1583: 1557:axiom of choice 1545: 1538: 1534: 1522: 1497: 1496: 1477: 1476: 1457: 1456: 1432:halting problem 1412: 1407: 1406: 1378: 1373: 1372: 1349: 1348: 1320: 1319: 1300: 1299: 1280: 1279: 1260: 1259: 1240: 1239: 1220: 1219: 1187: 1182: 1181: 1177:is computable. 1159: 1158: 1123: 1122: 1091: 1090: 1059: 1058: 1030: 1025: 1024: 992: 987: 986: 952: 951: 920: 919: 888: 887: 863: 858: 857: 838: 837: 806: 805: 786: 785: 766: 765: 734: 733: 709: 704: 703: 684: 683: 656: 651: 650: 622: 617: 616: 594: 593: 568: 563: 562: 539: 538: 514: 509: 508: 505: 469: 464: 463: 442: 437: 436: 409: 404: 403: 378: 373: 372: 351: 346: 345: 324: 319: 318: 294: 289: 288: 269: 268: 247: 242: 241: 221: 220: 217: 174: 173: 142: 141: 138: 82: 71: 65: 62: 52:Please help to 51: 35: 31: 24: 17: 12: 11: 5: 2547: 2545: 2537: 2536: 2531: 2526: 2521: 2516: 2511: 2501: 2500: 2497: 2496: 2485: 2478: 2477:External links 2475: 2474: 2473: 2460: 2444: 2431: 2418: 2406: 2397:(8): 114–134, 2376: 2363: 2326: 2321: 2317: 2302: 2299: 2298: 2297: 2284: 2260: 2241: 2219: 2203: 2173: 2163:Howard, Paul; 2160: 2132: 2112: 2109: 2106: 2105: 2085: 2073: 2057: 2056: 2054: 2051: 2050: 2049: 2044: 2041:Aronszajn tree 2036: 2033: 2012: 2011:Generalization 2009: 1996: 1993: 1990: 1970: 1950: 1930: 1896: 1893: 1878: 1875: 1871: 1867: 1864: 1861: 1858: 1855: 1852: 1821: 1817: 1813: 1810: 1807: 1804: 1777: 1757: 1754: 1751: 1748: 1745: 1725: 1705: 1669: 1666: 1663: 1660: 1657: 1637: 1611: 1608: 1604: 1600: 1597: 1594: 1591: 1576:contrapositive 1544: 1541: 1536: 1532: 1520: 1517: 1516: 1504: 1484: 1464: 1453: 1446: 1435: 1418: 1415: 1388: 1385: 1381: 1369:basis theorems 1356: 1336: 1333: 1330: 1327: 1307: 1287: 1267: 1247: 1227: 1197: 1194: 1190: 1166: 1140: 1135: 1131: 1110: 1107: 1104: 1101: 1098: 1076: 1071: 1067: 1040: 1037: 1033: 1002: 999: 995: 971: 968: 965: 962: 959: 939: 936: 933: 930: 927: 907: 904: 901: 898: 895: 873: 870: 866: 845: 825: 822: 819: 816: 813: 793: 773: 753: 750: 747: 744: 741: 719: 716: 712: 691: 666: 663: 659: 632: 629: 625: 601: 578: 575: 571: 559:ordinal number 546: 524: 521: 517: 504: 501: 482: 479: 476: 472: 449: 445: 422: 419: 416: 412: 385: 381: 358: 354: 331: 327: 301: 297: 276: 254: 250: 228: 216: 213: 181: 170:infinite graph 166:locally finite 149: 137: 134: 84: 83: 38: 36: 29: 15: 13: 10: 9: 6: 4: 3: 2: 2546: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2506: 2504: 2494: 2490: 2489:Mizar project 2486: 2484: 2481: 2480: 2476: 2471: 2467: 2463: 2461:3-540-15299-7 2457: 2453: 2449: 2445: 2442: 2438: 2434: 2432:3-540-64882-8 2428: 2424: 2419: 2415: 2411: 2407: 2404: 2400: 2396: 2393:(in French), 2392: 2385: 2381: 2377: 2374: 2370: 2366: 2364:0-444-89882-4 2360: 2356: 2352: 2348: 2344: 2343: 2324: 2319: 2305: 2304: 2300: 2295: 2291: 2287: 2281: 2277: 2273: 2269: 2265: 2261: 2258: 2254: 2250: 2246: 2242: 2239: 2238:0-486-42079-5 2235: 2230: 2226: 2222: 2220:3-540-08417-7 2216: 2212: 2208: 2204: 2195:on 2014-12-23 2194: 2190: 2187:(in German), 2186: 2182: 2178: 2174: 2170: 2166: 2161: 2158: 2154: 2150: 2146: 2142: 2138: 2133: 2130: 2123: 2119: 2115: 2114: 2110: 2102: 2098: 2094: 2089: 2086: 2082: 2081:Rogers (1967) 2077: 2074: 2071: 2067: 2062: 2059: 2052: 2048: 2045: 2042: 2039: 2038: 2034: 2032: 2030: 2026: 2022: 2021:inverse limit 2018: 2010: 2008: 1994: 1991: 1988: 1968: 1948: 1928: 1919: 1917: 1916:ZF set theory 1913: 1908: 1906: 1902: 1894: 1892: 1876: 1873: 1865: 1862: 1859: 1856: 1853: 1842: 1837: 1819: 1811: 1808: 1805: 1794: 1789: 1775: 1752: 1749: 1746: 1723: 1703: 1695: 1691: 1687: 1683: 1664: 1661: 1658: 1635: 1627: 1609: 1606: 1598: 1595: 1592: 1581: 1577: 1573: 1569: 1564: 1562: 1558: 1554: 1550: 1542: 1540: 1530: 1526: 1502: 1482: 1462: 1454: 1451: 1447: 1444: 1440: 1436: 1433: 1416: 1413: 1404: 1403: 1402: 1386: 1383: 1379: 1370: 1354: 1331: 1325: 1305: 1285: 1265: 1245: 1225: 1217: 1213: 1195: 1192: 1188: 1178: 1164: 1156: 1138: 1133: 1105: 1099: 1096: 1074: 1069: 1056: 1038: 1035: 1031: 1022: 1018: 1015:that have no 1000: 997: 993: 983: 966: 960: 957: 934: 928: 925: 902: 896: 893: 871: 868: 864: 843: 820: 814: 811: 791: 771: 748: 742: 739: 732:the notation 717: 714: 710: 689: 680: 664: 661: 657: 648: 630: 627: 623: 615:A subtree of 613: 599: 576: 573: 569: 560: 544: 522: 519: 515: 502: 500: 496: 480: 477: 474: 470: 447: 443: 420: 417: 414: 410: 401: 383: 379: 356: 352: 329: 325: 315: 299: 295: 274: 252: 248: 226: 214: 212: 210: 206: 201: 199: 195: 179: 171: 167: 163: 147: 135: 133: 131: 127: 123: 119: 114: 110: 106: 102: 98: 97:Kőnig's lemma 90: 80: 77: 69: 66:February 2021 59: 55: 49: 48: 42: 37: 28: 27: 22: 2451: 2422: 2413: 2394: 2390: 2341: 2267: 2248: 2213:, Springer, 2210: 2207:Lévy, Azriel 2197:, retrieved 2193:the original 2188: 2184: 2168: 2140: 2136: 2128: 2121: 2093:Truss (1976) 2088: 2076: 2066:Kőnig (1927) 2061: 2014: 1920: 1909: 1898: 1840: 1835: 1790: 1693: 1685: 1684:. A bar is 1681: 1625: 1624:is called a 1579: 1565: 1549:constructive 1546: 1518: 1449: 1215: 1211: 1179: 1017:arithmetical 984: 681: 646: 614: 506: 497: 316: 218: 215:Construction 202: 139: 130:proof theory 109:graph theory 100: 96: 95: 72: 63: 44: 2165:Rubin, Jean 2101:Lévy (1979) 1648:to the set 198:simple path 192:contains a 113:Dénes Kőnig 58:introducing 2503:Categories 2199:2014-12-23 2111:References 1981:such that 1907:suffices. 1686:detachable 1210:is called 1121:is always 1055:Kleene's O 41:references 2410:Kőnig, D. 2380:Kőnig, D. 2316:Π 2264:Truss, J. 2177:Kőnig, D. 2157:117198918 2047:PA degree 1877:ω 1860:… 1820:ω 1724:ω 1636:ω 1610:ω 1483:ω 1387:ω 1380:ω 1266:ω 1246:ω 1196:ω 1189:ω 1130:Σ 1100:⁡ 1066:Π 1039:ω 1032:ω 1001:ω 994:ω 961:⁡ 929:⁡ 897:⁡ 872:ω 865:ω 815:⁡ 743:⁡ 718:ω 711:ω 665:ω 658:ω 631:ω 624:ω 600:ω 577:ω 570:ω 545:ω 523:ω 516:ω 162:connected 2450:(1987), 2412:(1936), 2382:(1926), 2247:(1967), 2209:(1979), 2179:(1927), 2167:(1998), 2120:(1927), 2035:See also 1417:′ 1347:. Thus 2493:TREES_2 2470:0882921 2441:1723993 2373:1720779 2294:0429557 2257:0224462 2229:0533962 2015:In the 1793:compact 1694:uniform 1570: ( 1157:) when 105:theorem 54:improve 2468:  2458:  2439:  2429:  2371:  2361:  2292:  2282:  2255:  2236:  2227:  2217:  2155:  2019:, the 1298:, the 561:) and 209:degree 43:, but 2387:(PDF) 2347:37–85 2153:S2CID 2053:Notes 1238:from 160:be a 103:is a 2487:The 2456:ISBN 2427:ISBN 2359:ISBN 2280:ISBN 2234:ISBN 2215:ISBN 1874:< 1607:< 1572:1927 1384:< 1193:< 1036:< 998:< 869:< 715:< 662:< 628:< 574:< 520:< 205:tree 196:: a 140:Let 128:and 2399:doi 2351:doi 2272:doi 2145:doi 1736:to 1626:bar 1582:of 1523:of 1475:of 1439:low 1258:to 1214:or 1097:Ext 958:Ext 926:Ext 894:Ext 856:of 812:Ext 740:Ext 702:of 462:to 194:ray 107:in 99:or 2505:: 2466:MR 2464:, 2437:MR 2435:, 2389:, 2369:MR 2367:, 2357:, 2349:, 2290:MR 2288:, 2278:, 2253:MR 2225:MR 2223:, 2183:, 2151:, 2141:51 2139:, 1563:. 1539:. 1401:. 314:. 168:, 164:, 132:. 2495:. 2401:: 2395:8 2353:: 2325:0 2320:1 2274:: 2240:. 2189:3 2147:: 1995:z 1992:R 1989:x 1969:z 1949:x 1929:R 1870:} 1866:k 1863:, 1857:, 1854:0 1851:{ 1841:k 1836:N 1816:} 1812:1 1809:, 1806:0 1803:{ 1776:N 1756:} 1753:1 1750:, 1747:0 1744:{ 1704:N 1682:S 1668:} 1665:1 1662:, 1659:0 1656:{ 1603:} 1599:1 1596:, 1593:0 1590:{ 1580:S 1537:0 1533:0 1521:0 1515:. 1503:X 1463:X 1445:. 1434:. 1414:0 1355:f 1335:) 1332:n 1329:( 1326:f 1306:n 1286:n 1226:f 1165:T 1139:1 1134:1 1109:) 1106:T 1103:( 1075:1 1070:1 970:) 967:T 964:( 938:) 935:T 932:( 906:) 903:T 900:( 844:T 824:) 821:T 818:( 792:T 772:T 752:) 749:T 746:( 690:T 481:1 478:+ 475:i 471:v 448:i 444:v 421:1 418:+ 415:i 411:v 384:i 380:v 357:i 353:v 330:i 326:v 300:1 296:v 275:G 253:1 249:v 227:G 180:G 148:G 79:) 73:( 68:) 64:( 50:. 23:.

Index

König's theorem (disambiguation)
references
inline citations
improve
introducing
Learn how and when to remove this message

theorem
graph theory
Dénes Kőnig
mathematical logic
computability theory
constructive mathematics
proof theory
connected
locally finite
infinite graph
ray
simple path
tree
degree
pigeonhole principle
ordinal number
arithmetical
hyperarithmetical
Kleene's O
analytical hierarchy
basis theorems
halting problem
low

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.