Knowledge

Karp–Lipton theorem

Source 📝

1066:
really is a valid circuit using self-reducibility, as described above. This equivalent formula has its quantifiers in the opposite order, as desired. Therefore, the Karp–Lipton assumption allows us to transpose the order of existential and universal quantifiers in formulas of this type, showing that
429:
is any polynomial-time computable predicate. The existential power of the first quantifier in this predicate can be used to guess a correct circuit for SAT, and the universal power of the second quantifier can be used to verify that the circuit is correct. Once this circuit is guessed and verified,
293:
Suppose that polynomial sized circuits for SAT not only exist, but also that they could be constructed by a polynomial time algorithm. Then this supposition implies that SAT itself could be solved by a polynomial time algorithm that constructs the circuit and then applies it. That is, efficiently
656:. Once these two smaller instances have been constructed, apply the test for solvability to each of them. If one of these two tests returns that the smaller instance is satisfiable, continue solving that instance until a complete solution has been derived. 3911: 836:
is a polynomial-time computable predicate. The Karp–Lipton theorem states that this type of formula can be transformed in polynomial time into an equivalent formula in which the quantifiers appear in the opposite order; such a formula belongs to
2142: 3832: 2908: 4050: 2797: 2049: 2654: 2354: 2545: 2258: 3702: 612:
Self-reducibility describes the phenomenon that, if we can quickly test whether a SAT instance is solvable, we can almost as quickly find an explicit solution to the instance. To find a solution to an instance
3524: 4138: 3766: 3640: 1053: 3271: 3055: 1389: 1216: 153:
at its second level. Such a collapse is believed unlikely, so the theorem is generally viewed by complexity theorists as evidence for the nonexistence of polynomial size circuits for SAT or for other
3439: 3206: 3141: 1110:
Repeating the transposition allows formulas with deeper nesting to be simplified to a form in which they have a single existential quantifier followed by a single universal quantifier, showing that
3331: 1685: 811: 3964: 1590: 404: 132: 1766: 922: 3582: 3371: 2407: 1442: 88: 1108: 1827: 4295: 3843: 1147: 2997: 1904: 862: 455: 353: 322: 232: 201: 1969: 1934: 1857: 1308: 754: 708: 603: 494: 2065: 2684: 2434: 1509: 1473: 1274: 1243: 961: 834: 427: 2970: 2931: 1877: 3777: 2803: 3980: 2692: 297:
The assumption of the Karp–Lipton theorem, that these circuits exist, is weaker. But it is still possible for an algorithm in the complexity class
1992: 2551: 2264: 2442: 2168: 3645: 3452: 4083: 4156: 3710: 3591: 973: 165:), the theorem is also evidence that the use of randomization does not lead to polynomial time algorithms for NP-complete problems. 3211: 3006: 4229: 1316: 1167: 27: 3376: 3154: 3078: 729:
The Karp–Lipton theorem can be restated as a result about Boolean formulas with polynomially-bounded quantifiers. Problems in
35: 3279: 1616: 3144: 762: 3922: 469:
is a correct circuit for solving SAT instances of a given size, and show that this circuit testing problem belongs to
2148: 1523: 361: 277:. If NP is assumed to be a subset of BPP (which is a subset of P/poly), then the polynomial hierarchy collapses to 93: 1718: 870: 1975:
making the formula (1) false will work against any circuit. This property means a stronger collapse, namely to
718: 659:
To use self-reducibility to check the second property of a correct circuit for SAT, we rewrite it as follows:
3538: 3336: 2362: 1397: 52: 1070: 1775: 465:
To understand the Karp–Lipton proof in more detail, we consider the problem of testing whether a circuit
3906:{\displaystyle {\mathsf {P^{\#P}}}\supseteq {\mathsf {PH}}\supseteq \Sigma _{2}\supseteq {\mathsf {MA}}} 3066: 1113: 150: 20: 4244: 2975: 1882: 1445: 840: 433: 331: 300: 210: 179: 142: 2137:{\displaystyle {\mathsf {NP}}\subseteq {\mathsf {P/poly}}\implies {\mathsf {AM}}={\mathsf {MA}}} 4262: 4224: 3914: 1947: 1912: 1835: 1286: 732: 686: 581: 472: 173: 4274: 4234: 4177: 1977: 278: 255: 2662: 2412: 1478: 1451: 1252: 1221: 946: 931:
is a valid circuit for SAT, then this subformula is equivalent to the unquantified formula
819: 412: 4258: 4220: 3835: 3531: 245: 239: 169: 158: 138: 39: 4152: 3057:, which is currently open and states that there exists a single language that is not in 4206: 4068: 2955: 2916: 1862: 204: 4181: 273:, or some other complexity classes are assumed to have polynomial-sized circuits; see 4289: 16:
On collapse of the polynomial hierarchy if NP is in non-uniform polynomial time class
4168:
Kannan, R. (1982). "Circuit-size lower bounds and non-reducibility to sparse sets".
4248: 3827:{\displaystyle {\mathsf {P^{\#P}}}\supseteq {\mathsf {PP}}\supseteq {\mathsf {MA}}} 3445:
A stronger version of Karp–Lipton theorem strengthens Kannan's theorem to: for any
2903:{\displaystyle z\notin L\implies \forall D.\Pr \nolimits _{x}\leq {\tfrac {1}{3}}} 675:) is true, the self-reduction procedure described above finds a valid solution to 141:, the class of nondeterministic polynomial time problems, can be contained in the 4210: 4140: 4045:{\displaystyle {\mathsf {PP}}=\Sigma _{2}\not \subseteq {\mathsf {SIZE}}(n^{k})} 2945: 154: 2792:{\displaystyle z\in L\implies \exists D.\Pr \nolimits _{x}\geq {\tfrac {2}{3}}} 4227:(1980), "Some connections between nonuniform and uniform complexity classes", 578:
The first of these two properties is already in the form of problems in class
43: 4195: 2044:{\displaystyle \Pi _{2}\subseteq {\mathsf {S}}_{2}^{P}\subseteq \Sigma _{2}} 4239: 294:
constructible circuits for SAT would lead to a stronger collapse, P = NP.
161:. As P/poly contains all problems solvable in randomized polynomial time ( 1608:
Furthermore, the circuit can be guessed with existential quantification:
4278: 2649:{\displaystyle z\notin L\implies \Pr \nolimits _{x}\leq {\tfrac {1}{3}}} 2349:{\displaystyle z\notin L\implies \Pr \nolimits _{x}\leq {\tfrac {1}{3}}} 3966:(follows from assumption using interactive protocol for permanent, see 282: 4230:
Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing
3967: 2540:{\displaystyle z\in L\implies \Pr \nolimits _{x}\geq {\tfrac {2}{3}}} 2253:{\displaystyle z\in L\implies \Pr \nolimits _{x}\geq {\tfrac {2}{3}}} 274: 270: 176:, who first proved it in 1980. (Their original proof collapsed PH to 162: 146: 3697:{\displaystyle {\mathsf {PP}}\not \subseteq {\mathsf {SIZE}}(n^{k})} 157:
problems. A proof that such circuits do not exist would imply that
3519:{\displaystyle L\in {\mathsf {S}}_{2}^{P}-{\mathsf {SIZE}}(n^{k})} 504:
is a correct circuit if and only if, for all polynomially-bounded
4133:{\displaystyle S_{2}^{P}\subseteq {\mathsf {ZPP}}^{\mathsf {NP}}} 3761:{\displaystyle {\mathsf {P^{\#P}}}\subseteq {\mathsf {P/poly}}} 3635:{\displaystyle {\mathsf {PP}}\not \subseteq {\mathsf {P/poly}}} 496:. That is, there exists a polynomial time computable predicate 237:
Variants of the theorem state that, under the same assumption,
1048:{\displaystyle \exists c\forall (x,z)\;V(c,z)\wedge c(s(x))\,} 285:, then the polynomial hierarchy collapses to its third level. 3266:{\displaystyle {\mathsf {SAT}}\notin {\mathsf {SIZE}}(n^{k})} 1249:. Using self-reducibility, there exists a family of circuits 527:
is a correct circuit for SAT if it satisfies two properties:
269:
complexity class. There are stronger conclusions possible if
3050:{\displaystyle \Sigma _{2}\not \subseteq {\mathsf {P/poly}}} 19:
The notation used in this article is explained on the page
1384:{\displaystyle L=\{z:\forall x.\exists y.\phi (x,y,z)\}\,} 1211:{\displaystyle {\mathsf {NP}}\subseteq {\mathsf {P/poly}}} 1276:
which outputs a satisfying assignment on true instances.
963:
is equivalent (under the assumption that a valid circuit
3434:{\displaystyle L\in \Sigma _{2}-{\mathsf {SIZE}}(n^{k})} 3201:{\displaystyle {\mathsf {SAT}}\notin {\mathsf {P/poly}}} 3136:{\displaystyle L\in \Sigma _{4}-{\mathsf {SIZE}}(n^{k})} 756:
are described by formulas of this type, with the syntax
457:
can use it as a subroutine for solving other problems.
2941:
Application to circuit lower bounds – Kannan's theorem
2889: 2778: 2635: 2526: 2335: 2239: 4086: 3983: 3925: 3846: 3780: 3713: 3648: 3594: 3541: 3455: 3379: 3339: 3326:{\displaystyle {\mathsf {SAT}}\in {\mathsf {P/poly}}} 3282: 3214: 3157: 3081: 3009: 2978: 2958: 2919: 2806: 2695: 2665: 2554: 2445: 2415: 2365: 2267: 2171: 2068: 1995: 1950: 1915: 1885: 1865: 1838: 1778: 1721: 1680:{\displaystyle \exists D.\forall x.\phi (x,D(x,z),z)} 1619: 1526: 1481: 1454: 1400: 1319: 1289: 1255: 1224: 1170: 1116: 1073: 976: 949: 873: 843: 822: 765: 735: 689: 584: 475: 436: 415: 364: 334: 303: 213: 182: 96: 55: 806:{\displaystyle \phi =\forall x\exists y\;\psi (x,y)} 2436:that outputs a satisfying assignment if it exists: 149:, then this assumption implies the collapse of the 4132: 4044: 3959:{\displaystyle {\mathsf {P^{\#P}}}={\mathsf {MA}}} 3958: 3905: 3826: 3760: 3696: 3634: 3576: 3518: 3433: 3365: 3325: 3265: 3200: 3135: 3049: 2991: 2964: 2925: 2902: 2791: 2678: 2648: 2539: 2428: 2401: 2348: 2252: 2136: 2043: 1963: 1928: 1898: 1871: 1851: 1821: 1760: 1679: 1584: 1503: 1467: 1436: 1383: 1302: 1268: 1237: 1210: 1141: 1102: 1047: 955: 916: 856: 828: 805: 748: 702: 597: 488: 449: 421: 398: 347: 316: 226: 195: 126: 82: 4157:If NP has Polynomial-Size Circuits, then MA = AM 328:a correct circuit for SAT. The complexity class 1585:{\displaystyle \forall x.\phi (x,D_{n}(x,z),z)} 1218:. Therefore, there exists a family of circuits 1245:that solves satisfiability on input of length 399:{\displaystyle \exists x\forall y\;\psi (x,y)} 127:{\displaystyle {\mathsf {PH}}=\Sigma _{2}.\,} 8: 4265:(1982), "Turing machines that take advice", 3584:, which was proved by Vinodchandran. Proof: 1377: 1326: 605:. To verify the second property, we use the 4296:Theorems in computational complexity theory 4071:, Probabilistic quantifiers and games, 1988 3977:the containments are equalities and we get 1761:{\displaystyle \neg \exists y.\phi (x,y,z)} 2820: 2816: 2709: 2705: 2568: 2564: 2459: 2455: 2281: 2277: 2185: 2181: 2110: 2106: 1818: 1001: 917:{\displaystyle s(x)=\exists y\;\psi (x,y)} 895: 784: 377: 4238: 4120: 4119: 4107: 4106: 4096: 4091: 4085: 4033: 4011: 4010: 4001: 3985: 3984: 3982: 3947: 3946: 3932: 3927: 3926: 3924: 3894: 3893: 3884: 3868: 3867: 3853: 3848: 3847: 3845: 3815: 3814: 3802: 3801: 3787: 3782: 3781: 3779: 3739: 3735: 3734: 3720: 3715: 3714: 3712: 3685: 3663: 3662: 3650: 3649: 3647: 3613: 3609: 3608: 3596: 3595: 3593: 3565: 3543: 3542: 3540: 3507: 3485: 3484: 3475: 3470: 3464: 3463: 3454: 3422: 3400: 3399: 3390: 3378: 3357: 3344: 3338: 3304: 3300: 3299: 3284: 3283: 3281: 3254: 3232: 3231: 3216: 3215: 3213: 3179: 3175: 3174: 3159: 3158: 3156: 3124: 3102: 3101: 3092: 3080: 3028: 3024: 3023: 3014: 3008: 2983: 2977: 2957: 2918: 2888: 2834: 2805: 2777: 2723: 2694: 2670: 2664: 2634: 2598: 2573: 2553: 2525: 2489: 2464: 2444: 2420: 2414: 2364: 2334: 2286: 2266: 2238: 2190: 2170: 2125: 2124: 2112: 2111: 2087: 2083: 2082: 2070: 2069: 2067: 2059:A modification of the above proof yields 2035: 2022: 2017: 2011: 2010: 2000: 1994: 1955: 1949: 1920: 1914: 1890: 1884: 1864: 1843: 1837: 1777: 1720: 1618: 1552: 1525: 1496: 1488: 1480: 1459: 1453: 1444:can be considered an instance of SAT (by 1399: 1380: 1318: 1294: 1288: 1260: 1254: 1229: 1223: 1189: 1185: 1184: 1172: 1171: 1169: 1130: 1115: 1091: 1078: 1072: 1044: 975: 948: 872: 848: 842: 821: 764: 740: 734: 694: 688: 589: 583: 480: 474: 441: 435: 414: 363: 339: 333: 308: 302: 218: 212: 187: 181: 123: 114: 98: 97: 95: 79: 73: 60: 54: 3003:(n) (This is a different statement than 648:denotes the formula formed by replacing 4061: 3577:{\displaystyle {\mathsf {SIZE}}(n^{k})} 3366:{\displaystyle \Sigma _{4}=\Sigma _{2}} 168:The Karp–Lipton theorem is named after 4196:A note on the circuit complexity of PP 4124: 4121: 4114: 4111: 4108: 4021: 4018: 4015: 4012: 3989: 3986: 3951: 3948: 3936: 3933: 3929: 3898: 3895: 3872: 3869: 3857: 3854: 3850: 3819: 3816: 3806: 3803: 3791: 3788: 3784: 3753: 3750: 3747: 3744: 3740: 3736: 3724: 3721: 3717: 3673: 3670: 3667: 3664: 3654: 3651: 3627: 3624: 3621: 3618: 3614: 3610: 3600: 3597: 3553: 3550: 3547: 3544: 3495: 3492: 3489: 3486: 3465: 3410: 3407: 3404: 3401: 3318: 3315: 3312: 3309: 3305: 3301: 3291: 3288: 3285: 3242: 3239: 3236: 3233: 3223: 3220: 3217: 3193: 3190: 3187: 3184: 3180: 3176: 3166: 3163: 3160: 3112: 3109: 3106: 3103: 3042: 3039: 3036: 3033: 3029: 3025: 2402:{\displaystyle \exists y.\phi (x,y,z)} 2129: 2126: 2116: 2113: 2101: 2098: 2095: 2092: 2088: 2084: 2074: 2071: 2012: 1437:{\displaystyle \exists y.\phi (x,y,z)} 1203: 1200: 1197: 1194: 1190: 1186: 1176: 1173: 617:, choose one of the Boolean variables 102: 99: 83:{\displaystyle \Pi _{2}=\Sigma _{2}\,} 2948:'s theorem states that for any fixed 1103:{\displaystyle \Sigma _{2}=\Pi _{2}.} 281:. If coNP is assumed to be subset of 7: 4211:Oracles Are Subtle But Not Malicious 1610: 1517: 943:)). Therefore, the full formula for 714:is a valid circuit for solving SAT. 1822:{\displaystyle \phi (x,D(x,z),z)\;} 1062:is the formula used to verify that 927:is an instance of SAT. That is, if 3998: 3881: 3387: 3354: 3341: 3089: 3011: 2980: 2821: 2710: 2366: 2295: 2199: 2032: 1997: 1952: 1936:formula is true, then the circuit 1917: 1887: 1840: 1725: 1722: 1629: 1620: 1527: 1401: 1344: 1335: 1291: 1127: 1088: 1075: 983: 977: 889: 845: 778: 772: 737: 691: 586: 477: 438: 371: 365: 336: 305: 215: 184: 111: 70: 57: 14: 1511:, such that the formula defining 625:, and make two smaller instances 3147:technique). Consider two cases: 2051:). It was observed by Sengupta. 1772:can output an assignment making 3333:, then by Karp–Lipton theorem, 1142:{\displaystyle PH=\Sigma _{2}.} 547:is a solution to the instance, 355:describes problems of the form 4039: 4026: 3691: 3678: 3571: 3558: 3513: 3500: 3428: 3415: 3260: 3247: 3130: 3117: 2882: 2879: 2870: 2858: 2846: 2840: 2817: 2771: 2768: 2759: 2747: 2735: 2729: 2706: 2628: 2625: 2616: 2604: 2585: 2579: 2565: 2519: 2516: 2507: 2495: 2476: 2470: 2456: 2396: 2378: 2328: 2325: 2307: 2292: 2278: 2232: 2229: 2211: 2196: 2182: 2107: 1815: 1806: 1794: 1782: 1755: 1737: 1674: 1665: 1653: 1641: 1579: 1570: 1558: 1539: 1497: 1489: 1431: 1413: 1374: 1356: 1041: 1038: 1032: 1026: 1017: 1005: 998: 986: 911: 899: 883: 877: 800: 788: 393: 381: 36:Boolean satisfiability problem 1: 4182:10.1016/S0019-9958(82)90382-5 46:number of logic gates, then 725:Proof of Karp–Lipton theorem 4267:L'Enseignement Mathématique 2992:{\displaystyle \Sigma _{2}} 2831: 2720: 2570: 2461: 2283: 2187: 1899:{\displaystyle \Sigma _{2}} 1832:The proof has shown that a 1768:. In this case, no circuit 1711: 1705: 864:. Note that the subformula 857:{\displaystyle \Sigma _{2}} 450:{\displaystyle \Sigma _{2}} 348:{\displaystyle \Sigma _{2}} 317:{\displaystyle \Sigma _{2}} 227:{\displaystyle \Sigma _{2}} 196:{\displaystyle \Sigma _{3}} 143:non-uniform polynomial time 137:That is, if we assume that 4312: 3449:, there exists a language 2359:and as previously rewrite 1448:), there exists a circuit 543:is an instance of SAT and 18: 1715:). If (1) is false, then 3075:There exists a language 2952:there exists a language 2933:is in the smaller class 1964:{\displaystyle \Pi _{2}} 1929:{\displaystyle \Pi _{2}} 1852:{\displaystyle \Pi _{2}} 1303:{\displaystyle \Pi _{2}} 749:{\displaystyle \Pi _{2}} 719:Random self-reducibility 703:{\displaystyle \Pi _{1}} 598:{\displaystyle \Pi _{1}} 489:{\displaystyle \Pi _{1}} 4170:Information and Control 2940: 1989:complexity class (i.e. 1971:formula is false, then 967:exists) to the formula 430:the algorithm in class 38:(SAT) can be solved by 4151:V. Arvind, J. Köbler, 4134: 4046: 3960: 3907: 3828: 3762: 3698: 3636: 3578: 3529:It is also known that 3520: 3435: 3367: 3327: 3273:and theorem is proved. 3267: 3202: 3137: 3051: 2993: 2966: 2927: 2904: 2793: 2680: 2650: 2541: 2430: 2403: 2350: 2254: 2149:Arthur–Merlin protocol 2138: 2045: 1965: 1940:will work against any 1930: 1900: 1873: 1853: 1823: 1762: 1681: 1586: 1505: 1469: 1438: 1385: 1304: 1270: 1239: 1212: 1143: 1104: 1049: 957: 918: 858: 830: 807: 750: 721:for more information. 704: 599: 490: 451: 423: 400: 349: 318: 228: 197: 128: 84: 4240:10.1145/800141.804678 4194:N. V. Vinodchandran, 4135: 4047: 3961: 3908: 3829: 3763: 3699: 3637: 3579: 3521: 3436: 3368: 3328: 3268: 3203: 3138: 3052: 2994: 2967: 2928: 2905: 2794: 2681: 2679:{\displaystyle D_{n}} 2651: 2542: 2431: 2429:{\displaystyle D_{n}} 2404: 2351: 2255: 2139: 2046: 1966: 1931: 1901: 1874: 1854: 1824: 1763: 1682: 1587: 1506: 1504:{\displaystyle n=|z|} 1470: 1468:{\displaystyle D_{n}} 1439: 1386: 1305: 1271: 1269:{\displaystyle D_{n}} 1240: 1238:{\displaystyle C_{n}} 1213: 1144: 1105: 1050: 958: 956:{\displaystyle \phi } 919: 859: 831: 829:{\displaystyle \psi } 808: 751: 705: 683:Thus, we can test in 600: 491: 452: 424: 422:{\displaystyle \psi } 401: 350: 319: 229: 198: 129: 85: 4233:, pp. 302–309, 4084: 4052:by Kannan's theorem. 3981: 3923: 3844: 3778: 3711: 3646: 3592: 3539: 3535:is not contained in 3453: 3377: 3337: 3280: 3212: 3155: 3079: 3007: 2976: 2956: 2917: 2804: 2693: 2663: 2552: 2443: 2413: 2363: 2265: 2169: 2066: 1993: 1948: 1913: 1909:What's more, if the 1883: 1863: 1836: 1776: 1719: 1617: 1524: 1479: 1452: 1398: 1317: 1287: 1253: 1222: 1168: 1114: 1071: 974: 947: 871: 841: 820: 763: 733: 687: 582: 473: 434: 413: 362: 332: 301: 211: 180: 151:polynomial hierarchy 94: 53: 21:polynomial hierarchy 4279:10.5169/seals-52237 4101: 3917:and property of MA) 3480: 3067:circuit lower bound 2027: 1152:Another proof and S 663:For every instance 558:For every instance 34:states that if the 32:Karp–Lipton theorem 4130: 4087: 4042: 3956: 3903: 3824: 3758: 3694: 3632: 3574: 3516: 3462: 3431: 3363: 3323: 3263: 3198: 3133: 3065:). It is a simple 3047: 2999:, which is not in 2989: 2962: 2923: 2900: 2898: 2789: 2787: 2676: 2646: 2644: 2537: 2535: 2426: 2409:using the circuit 2399: 2346: 2344: 2250: 2248: 2134: 2041: 2009: 1961: 1926: 1896: 1869: 1849: 1819: 1758: 1677: 1582: 1501: 1465: 1446:Cook-Levin theorem 1434: 1381: 1300: 1266: 1235: 1208: 1139: 1100: 1045: 953: 914: 854: 826: 803: 746: 700: 652:with the constant 595: 486: 447: 419: 396: 345: 314: 224: 193: 124: 80: 2965:{\displaystyle L} 2926:{\displaystyle L} 2897: 2786: 2643: 2534: 2343: 2247: 1872:{\displaystyle L} 1701: 1700: 1606: 1605: 1515:is equivalent to 667:of SAT for which 621:that is input to 609:property of SAT. 607:self-reducibility 574:must be solvable. 562:of SAT for which 461:Self-reducibility 174:Richard J. Lipton 163:Adleman's theorem 145:complexity class 28:complexity theory 4303: 4281: 4251: 4242: 4213: 4204: 4198: 4192: 4186: 4185: 4165: 4159: 4149: 4143: 4139: 4137: 4136: 4131: 4129: 4128: 4127: 4118: 4117: 4100: 4095: 4078: 4072: 4066: 4051: 4049: 4048: 4043: 4038: 4037: 4025: 4024: 4006: 4005: 3993: 3992: 3965: 3963: 3962: 3957: 3955: 3954: 3942: 3941: 3940: 3939: 3912: 3910: 3909: 3904: 3902: 3901: 3889: 3888: 3876: 3875: 3863: 3862: 3861: 3860: 3834:(by property of 3833: 3831: 3830: 3825: 3823: 3822: 3810: 3809: 3797: 3796: 3795: 3794: 3767: 3765: 3764: 3759: 3757: 3756: 3743: 3730: 3729: 3728: 3727: 3703: 3701: 3700: 3695: 3690: 3689: 3677: 3676: 3658: 3657: 3641: 3639: 3638: 3633: 3631: 3630: 3617: 3604: 3603: 3583: 3581: 3580: 3575: 3570: 3569: 3557: 3556: 3525: 3523: 3522: 3517: 3512: 3511: 3499: 3498: 3479: 3474: 3469: 3468: 3440: 3438: 3437: 3432: 3427: 3426: 3414: 3413: 3395: 3394: 3372: 3370: 3369: 3364: 3362: 3361: 3349: 3348: 3332: 3330: 3329: 3324: 3322: 3321: 3308: 3295: 3294: 3272: 3270: 3269: 3264: 3259: 3258: 3246: 3245: 3227: 3226: 3207: 3205: 3204: 3199: 3197: 3196: 3183: 3170: 3169: 3143:(the proof uses 3142: 3140: 3139: 3134: 3129: 3128: 3116: 3115: 3097: 3096: 3056: 3054: 3053: 3048: 3046: 3045: 3032: 3019: 3018: 2998: 2996: 2995: 2990: 2988: 2987: 2971: 2969: 2968: 2963: 2932: 2930: 2929: 2924: 2909: 2907: 2906: 2901: 2899: 2890: 2839: 2838: 2798: 2796: 2795: 2790: 2788: 2779: 2728: 2727: 2686:can be guessed: 2685: 2683: 2682: 2677: 2675: 2674: 2655: 2653: 2652: 2647: 2645: 2636: 2603: 2602: 2578: 2577: 2546: 2544: 2543: 2538: 2536: 2527: 2494: 2493: 2469: 2468: 2435: 2433: 2432: 2427: 2425: 2424: 2408: 2406: 2405: 2400: 2355: 2353: 2352: 2347: 2345: 2336: 2291: 2290: 2259: 2257: 2256: 2251: 2249: 2240: 2195: 2194: 2143: 2141: 2140: 2135: 2133: 2132: 2120: 2119: 2105: 2104: 2091: 2078: 2077: 2050: 2048: 2047: 2042: 2040: 2039: 2026: 2021: 2016: 2015: 2005: 2004: 1986: 1985: 1970: 1968: 1967: 1962: 1960: 1959: 1935: 1933: 1932: 1927: 1925: 1924: 1905: 1903: 1902: 1897: 1895: 1894: 1878: 1876: 1875: 1870: 1858: 1856: 1855: 1850: 1848: 1847: 1828: 1826: 1825: 1820: 1767: 1765: 1764: 1759: 1695: 1686: 1684: 1683: 1678: 1611: 1600: 1591: 1589: 1588: 1583: 1557: 1556: 1518: 1510: 1508: 1507: 1502: 1500: 1492: 1474: 1472: 1471: 1466: 1464: 1463: 1443: 1441: 1440: 1435: 1390: 1388: 1387: 1382: 1309: 1307: 1306: 1301: 1299: 1298: 1275: 1273: 1272: 1267: 1265: 1264: 1244: 1242: 1241: 1236: 1234: 1233: 1217: 1215: 1214: 1209: 1207: 1206: 1193: 1180: 1179: 1160: 1159: 1148: 1146: 1145: 1140: 1135: 1134: 1109: 1107: 1106: 1101: 1096: 1095: 1083: 1082: 1054: 1052: 1051: 1046: 962: 960: 959: 954: 923: 921: 920: 915: 863: 861: 860: 855: 853: 852: 835: 833: 832: 827: 812: 810: 809: 804: 755: 753: 752: 747: 745: 744: 709: 707: 706: 701: 699: 698: 604: 602: 601: 596: 594: 593: 531:For every pair ( 495: 493: 492: 487: 485: 484: 456: 454: 453: 448: 446: 445: 428: 426: 425: 420: 405: 403: 402: 397: 354: 352: 351: 346: 344: 343: 323: 321: 320: 315: 313: 312: 266: 265: 264: 233: 231: 230: 225: 223: 222: 202: 200: 199: 194: 192: 191: 133: 131: 130: 125: 119: 118: 106: 105: 89: 87: 86: 81: 78: 77: 65: 64: 40:Boolean circuits 4311: 4310: 4306: 4305: 4304: 4302: 4301: 4300: 4286: 4285: 4257: 4219: 4216: 4205: 4201: 4193: 4189: 4167: 4166: 4162: 4150: 4146: 4105: 4082: 4081: 4079: 4075: 4067: 4063: 4059: 4029: 3997: 3979: 3978: 3928: 3921: 3920: 3880: 3849: 3842: 3841: 3783: 3776: 3775: 3716: 3709: 3708: 3681: 3644: 3643: 3590: 3589: 3561: 3537: 3536: 3503: 3451: 3450: 3418: 3386: 3375: 3374: 3353: 3340: 3335: 3334: 3278: 3277: 3250: 3210: 3209: 3153: 3152: 3145:diagonalization 3120: 3088: 3077: 3076: 3072:Proof outline: 3010: 3005: 3004: 2979: 2974: 2973: 2954: 2953: 2943: 2915: 2914: 2830: 2802: 2801: 2719: 2691: 2690: 2666: 2661: 2660: 2594: 2569: 2550: 2549: 2485: 2460: 2441: 2440: 2416: 2411: 2410: 2361: 2360: 2282: 2263: 2262: 2186: 2167: 2166: 2064: 2063: 2057: 2031: 1996: 1991: 1990: 1984: 1981: 1980: 1979: 1951: 1946: 1945: 1916: 1911: 1910: 1886: 1881: 1880: 1861: 1860: 1839: 1834: 1833: 1774: 1773: 1717: 1716: 1693: 1615: 1614: 1598: 1548: 1522: 1521: 1477: 1476: 1475:, depending on 1455: 1450: 1449: 1396: 1395: 1315: 1314: 1290: 1285: 1284: 1256: 1251: 1250: 1225: 1220: 1219: 1166: 1165: 1162: 1158: 1155: 1154: 1153: 1126: 1112: 1111: 1087: 1074: 1069: 1068: 972: 971: 945: 944: 869: 868: 844: 839: 838: 818: 817: 761: 760: 736: 731: 730: 727: 690: 685: 684: 647: 638: 631: 585: 580: 579: 476: 471: 470: 463: 437: 432: 431: 411: 410: 360: 359: 335: 330: 329: 304: 299: 298: 291: 263: 260: 259: 258: 256: 214: 209: 208: 207:improved it to 183: 178: 177: 170:Richard M. Karp 110: 92: 91: 69: 56: 51: 50: 24: 17: 12: 11: 5: 4309: 4307: 4299: 4298: 4288: 4287: 4284: 4283: 4254: 4253: 4215: 4214: 4199: 4187: 4176:(1–3): 40–56. 4160: 4155:, R. Schuler, 4144: 4126: 4123: 4116: 4113: 4110: 4104: 4099: 4094: 4090: 4073: 4060: 4058: 4055: 4054: 4053: 4041: 4036: 4032: 4028: 4023: 4020: 4017: 4014: 4009: 4004: 4000: 3996: 3991: 3988: 3974: 3973: 3972: 3971: 3953: 3950: 3945: 3938: 3935: 3931: 3918: 3915:Toda's theorem 3900: 3897: 3892: 3887: 3883: 3879: 3874: 3871: 3866: 3859: 3856: 3852: 3839: 3821: 3818: 3813: 3808: 3805: 3800: 3793: 3790: 3786: 3770: 3769: 3755: 3752: 3749: 3746: 3742: 3738: 3733: 3726: 3723: 3719: 3705: 3693: 3688: 3684: 3680: 3675: 3672: 3669: 3666: 3661: 3656: 3653: 3629: 3626: 3623: 3620: 3616: 3612: 3607: 3602: 3599: 3573: 3568: 3564: 3560: 3555: 3552: 3549: 3546: 3515: 3510: 3506: 3502: 3497: 3494: 3491: 3488: 3483: 3478: 3473: 3467: 3461: 3458: 3443: 3442: 3430: 3425: 3421: 3417: 3412: 3409: 3406: 3403: 3398: 3393: 3389: 3385: 3382: 3373:and therefore 3360: 3356: 3352: 3347: 3343: 3320: 3317: 3314: 3311: 3307: 3303: 3298: 3293: 3290: 3287: 3274: 3262: 3257: 3253: 3249: 3244: 3241: 3238: 3235: 3230: 3225: 3222: 3219: 3195: 3192: 3189: 3186: 3182: 3178: 3173: 3168: 3165: 3162: 3132: 3127: 3123: 3119: 3114: 3111: 3108: 3105: 3100: 3095: 3091: 3087: 3084: 3044: 3041: 3038: 3035: 3031: 3027: 3022: 3017: 3013: 2986: 2982: 2961: 2942: 2939: 2922: 2911: 2910: 2896: 2893: 2887: 2884: 2881: 2878: 2875: 2872: 2869: 2866: 2863: 2860: 2857: 2854: 2851: 2848: 2845: 2842: 2837: 2833: 2829: 2826: 2823: 2819: 2815: 2812: 2809: 2799: 2785: 2782: 2776: 2773: 2770: 2767: 2764: 2761: 2758: 2755: 2752: 2749: 2746: 2743: 2740: 2737: 2734: 2731: 2726: 2722: 2718: 2715: 2712: 2708: 2704: 2701: 2698: 2673: 2669: 2657: 2656: 2642: 2639: 2633: 2630: 2627: 2624: 2621: 2618: 2615: 2612: 2609: 2606: 2601: 2597: 2593: 2590: 2587: 2584: 2581: 2576: 2572: 2567: 2563: 2560: 2557: 2547: 2533: 2530: 2524: 2521: 2518: 2515: 2512: 2509: 2506: 2503: 2500: 2497: 2492: 2488: 2484: 2481: 2478: 2475: 2472: 2467: 2463: 2458: 2454: 2451: 2448: 2423: 2419: 2398: 2395: 2392: 2389: 2386: 2383: 2380: 2377: 2374: 2371: 2368: 2357: 2356: 2342: 2339: 2333: 2330: 2327: 2324: 2321: 2318: 2315: 2312: 2309: 2306: 2303: 2300: 2297: 2294: 2289: 2285: 2280: 2276: 2273: 2270: 2260: 2246: 2243: 2237: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2193: 2189: 2184: 2180: 2177: 2174: 2145: 2144: 2131: 2128: 2123: 2118: 2115: 2109: 2103: 2100: 2097: 2094: 2090: 2086: 2081: 2076: 2073: 2056: 2053: 2038: 2034: 2030: 2025: 2020: 2014: 2008: 2003: 1999: 1982: 1958: 1954: 1923: 1919: 1893: 1889: 1868: 1846: 1842: 1817: 1814: 1811: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1699: 1698: 1689: 1687: 1676: 1673: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1604: 1603: 1594: 1592: 1581: 1578: 1575: 1572: 1569: 1566: 1563: 1560: 1555: 1551: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1499: 1495: 1491: 1487: 1484: 1462: 1458: 1433: 1430: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1392: 1391: 1379: 1376: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1322: 1297: 1293: 1263: 1259: 1232: 1228: 1205: 1202: 1199: 1196: 1192: 1188: 1183: 1178: 1175: 1161: 1156: 1150: 1138: 1133: 1129: 1125: 1122: 1119: 1099: 1094: 1090: 1086: 1081: 1077: 1056: 1055: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1000: 997: 994: 991: 988: 985: 982: 979: 952: 925: 924: 913: 910: 907: 904: 901: 898: 894: 891: 888: 885: 882: 879: 876: 851: 847: 825: 814: 813: 802: 799: 796: 793: 790: 787: 783: 780: 777: 774: 771: 768: 743: 739: 726: 723: 697: 693: 681: 680: 643: 636: 629: 592: 588: 576: 575: 556: 555:) must be true 483: 479: 462: 459: 444: 440: 418: 407: 406: 395: 392: 389: 386: 383: 380: 376: 373: 370: 367: 342: 338: 311: 307: 290: 287: 261: 221: 217: 205:Michael Sipser 190: 186: 135: 134: 122: 117: 113: 109: 104: 101: 90:and therefore 76: 72: 68: 63: 59: 15: 13: 10: 9: 6: 4: 3: 2: 4308: 4297: 4294: 4293: 4291: 4280: 4276: 4272: 4268: 4264: 4263:Lipton, R. J. 4260: 4256: 4255: 4250: 4246: 4241: 4236: 4232: 4231: 4226: 4225:Lipton, R. J. 4222: 4218: 4217: 4212: 4208: 4203: 4200: 4197: 4191: 4188: 4183: 4179: 4175: 4171: 4164: 4161: 4158: 4154: 4148: 4145: 4141: 4102: 4097: 4092: 4088: 4077: 4074: 4070: 4065: 4062: 4056: 4034: 4030: 4007: 4002: 3994: 3976: 3975: 3969: 3943: 3919: 3916: 3890: 3885: 3877: 3864: 3840: 3837: 3811: 3798: 3774: 3773: 3772: 3771: 3731: 3706: 3686: 3682: 3659: 3605: 3587: 3586: 3585: 3566: 3562: 3534: 3533: 3527: 3508: 3504: 3481: 3476: 3471: 3459: 3456: 3448: 3423: 3419: 3396: 3391: 3383: 3380: 3358: 3350: 3345: 3296: 3275: 3255: 3251: 3228: 3171: 3150: 3149: 3148: 3146: 3125: 3121: 3098: 3093: 3085: 3082: 3073: 3070: 3068: 3064: 3060: 3020: 3015: 3002: 2984: 2959: 2951: 2947: 2938: 2936: 2920: 2913:which proves 2894: 2891: 2885: 2876: 2873: 2867: 2864: 2861: 2855: 2852: 2849: 2843: 2835: 2827: 2824: 2813: 2810: 2807: 2800: 2783: 2780: 2774: 2765: 2762: 2756: 2753: 2750: 2744: 2741: 2738: 2732: 2724: 2716: 2713: 2702: 2699: 2696: 2689: 2688: 2687: 2671: 2667: 2640: 2637: 2631: 2622: 2619: 2613: 2610: 2607: 2599: 2595: 2591: 2588: 2582: 2574: 2561: 2558: 2555: 2548: 2531: 2528: 2522: 2513: 2510: 2504: 2501: 2498: 2490: 2486: 2482: 2479: 2473: 2465: 2452: 2449: 2446: 2439: 2438: 2437: 2421: 2417: 2393: 2390: 2387: 2384: 2381: 2375: 2372: 2369: 2340: 2337: 2331: 2322: 2319: 2316: 2313: 2310: 2304: 2301: 2298: 2287: 2274: 2271: 2268: 2261: 2244: 2241: 2235: 2226: 2223: 2220: 2217: 2214: 2208: 2205: 2202: 2191: 2178: 2175: 2172: 2165: 2164: 2163: 2161: 2157: 2154:Suppose that 2152: 2150: 2121: 2079: 2062: 2061: 2060: 2054: 2052: 2036: 2028: 2023: 2018: 2006: 2001: 1988: 1987: 1974: 1956: 1943: 1939: 1921: 1907: 1891: 1866: 1844: 1830: 1812: 1809: 1803: 1800: 1797: 1791: 1788: 1785: 1779: 1771: 1752: 1749: 1746: 1743: 1740: 1734: 1731: 1728: 1714: 1713: 1708: 1707: 1697: 1690: 1688: 1671: 1668: 1662: 1659: 1656: 1650: 1647: 1644: 1638: 1635: 1632: 1626: 1623: 1613: 1612: 1609: 1602: 1595: 1593: 1576: 1573: 1567: 1564: 1561: 1553: 1549: 1545: 1542: 1536: 1533: 1530: 1520: 1519: 1516: 1514: 1493: 1485: 1482: 1460: 1456: 1447: 1428: 1425: 1422: 1419: 1416: 1410: 1407: 1404: 1371: 1368: 1365: 1362: 1359: 1353: 1350: 1347: 1341: 1338: 1332: 1329: 1323: 1320: 1313: 1312: 1311: 1295: 1282: 1277: 1261: 1257: 1248: 1230: 1226: 1181: 1151: 1149: 1136: 1131: 1123: 1120: 1117: 1097: 1092: 1084: 1079: 1065: 1061: 1035: 1029: 1023: 1020: 1014: 1011: 1008: 1002: 995: 992: 989: 980: 970: 969: 968: 966: 950: 942: 938: 934: 930: 908: 905: 902: 896: 892: 886: 880: 874: 867: 866: 865: 849: 823: 797: 794: 791: 785: 781: 775: 769: 766: 759: 758: 757: 741: 724: 722: 720: 715: 713: 695: 678: 674: 670: 666: 662: 661: 660: 657: 655: 651: 646: 642: 635: 628: 624: 620: 616: 610: 608: 590: 573: 569: 565: 561: 557: 554: 550: 546: 542: 538: 534: 530: 529: 528: 526: 521: 519: 515: 511: 507: 503: 499: 481: 468: 460: 458: 442: 416: 390: 387: 384: 378: 374: 368: 358: 357: 356: 340: 327: 309: 295: 288: 286: 284: 280: 276: 272: 268: 267: 253:collapses to 252: 248: 247: 242: 241: 235: 219: 206: 188: 175: 171: 166: 164: 160: 156: 152: 148: 144: 140: 120: 115: 107: 74: 66: 61: 49: 48: 47: 45: 41: 37: 33: 29: 22: 4270: 4266: 4228: 4202: 4190: 4173: 4169: 4163: 4147: 4080:Jin Yi-Cai. 4076: 4064: 3530: 3528: 3446: 3444: 3074: 3071: 3062: 3061:(n) for any 3058: 3000: 2949: 2944: 2934: 2912: 2658: 2358: 2159: 2155: 2153: 2146: 2058: 1976: 1972: 1941: 1937: 1908: 1831: 1769: 1710: 1704: 1702: 1691: 1607: 1596: 1512: 1393: 1280: 1278: 1246: 1163: 1063: 1059: 1057: 964: 940: 936: 932: 928: 926: 815: 728: 716: 711: 682: 676: 672: 668: 664: 658: 653: 649: 644: 640: 633: 626: 622: 618: 614: 611: 606: 577: 571: 567: 563: 559: 552: 548: 544: 540: 536: 532: 524: 523:The circuit 522: 517: 513: 509: 505: 501: 497: 466: 464: 408: 325: 296: 292: 254: 250: 244: 238: 236: 167: 136: 31: 25: 4273:: 191–209, 4259:Karp, R. M. 4221:Karp, R. M. 4207:S. Aaronson 4153:U. Schöning 4142:, section 6 3707:Otherwise, 1709:) implies ( 1703:Obviously ( 570:) is true, 520:) is true. 155:NP-complete 4057:References 500:such that 44:polynomial 4103:⊆ 4069:S. Zachos 3999:Σ 3934:# 3891:⊇ 3882:Σ 3878:⊇ 3865:⊇ 3855:# 3812:⊇ 3799:⊇ 3789:# 3732:⊆ 3722:# 3482:− 3460:∈ 3397:− 3388:Σ 3384:∈ 3355:Σ 3342:Σ 3297:∈ 3229:∉ 3172:∉ 3099:− 3090:Σ 3086:∈ 3012:Σ 2981:Σ 2886:≤ 2844:ϕ 2822:∀ 2818:⟹ 2811:∉ 2775:≥ 2733:ϕ 2711:∃ 2707:⟹ 2700:∈ 2632:≤ 2583:ϕ 2566:⟹ 2559:∉ 2523:≥ 2474:ϕ 2457:⟹ 2450:∈ 2376:ϕ 2367:∃ 2332:≤ 2305:ϕ 2296:∃ 2279:⟹ 2272:∉ 2236:≥ 2209:ϕ 2200:∃ 2183:⟹ 2176:∈ 2108:⟹ 2080:⊆ 2033:Σ 2029:⊆ 2007:⊆ 1998:Π 1953:Π 1944:. If the 1918:Π 1888:Σ 1841:Π 1780:ϕ 1735:ϕ 1726:∃ 1723:¬ 1639:ϕ 1630:∀ 1621:∃ 1537:ϕ 1528:∀ 1411:ϕ 1402:∃ 1354:ϕ 1345:∃ 1336:∀ 1292:Π 1182:⊆ 1128:Σ 1089:Π 1076:Σ 1021:∧ 984:∀ 978:∃ 951:ϕ 897:ψ 890:∃ 846:Σ 824:ψ 786:ψ 779:∃ 773:∀ 767:ϕ 738:Π 692:Π 587:Π 478:Π 439:Σ 417:ψ 379:ψ 372:∀ 366:∃ 337:Σ 306:Σ 289:Intuition 216:Σ 185:Σ 112:Σ 71:Σ 58:Π 4290:Category 4008:⊈ 3660:⊈ 3606:⊈ 3021:⊈ 2162:, i.e.: 1279:Suppose 710:whether 539:) where 4249:1458043 3768:. Since 2055:AM = MA 1164:Assume 283:NP/poly 42:with a 4247:  3968:P/poly 2946:Kannan 2659:Since 2158:is in 1879:is in 1829:true. 1394:Since 1058:where 816:where 639:where 409:where 275:P/poly 271:PSPACE 249:, and 203:, but 159:P ≠ NP 147:P/poly 30:, the 4245:S2CID 3642:then 3208:then 2147:(see 1283:is a 326:guess 3913:(by 3059:SIZE 3001:SIZE 1859:set 1310:set 717:See 632:and 172:and 4275:doi 4235:doi 4178:doi 3588:If 3276:If 3151:If 2972:in 2151:). 324:to 279:BPP 234:.) 26:In 4292:: 4271:28 4269:, 4261:; 4243:, 4223:; 4209:, 4174:55 4172:. 3836:MA 3532:PP 3526:. 3069:. 2937:. 2935:MA 2832:Pr 2721:Pr 2571:Pr 2462:Pr 2284:Pr 2188:Pr 2160:AM 1906:. 508:, 251:PH 246:AM 243:= 240:MA 139:NP 4282:. 4277:: 4252:. 4237:: 4184:. 4180:: 4125:P 4122:N 4115:P 4112:P 4109:Z 4098:P 4093:2 4089:S 4040:) 4035:k 4031:n 4027:( 4022:E 4019:Z 4016:I 4013:S 4003:2 3995:= 3990:P 3987:P 3970:) 3952:A 3949:M 3944:= 3937:P 3930:P 3899:A 3896:M 3886:2 3873:H 3870:P 3858:P 3851:P 3838:) 3820:A 3817:M 3807:P 3804:P 3792:P 3785:P 3754:y 3751:l 3748:o 3745:p 3741:/ 3737:P 3725:P 3718:P 3704:. 3692:) 3687:k 3683:n 3679:( 3674:E 3671:Z 3668:I 3665:S 3655:P 3652:P 3628:y 3625:l 3622:o 3619:p 3615:/ 3611:P 3601:P 3598:P 3572:) 3567:k 3563:n 3559:( 3554:E 3551:Z 3548:I 3545:S 3514:) 3509:k 3505:n 3501:( 3496:E 3493:Z 3490:I 3487:S 3477:P 3472:2 3466:S 3457:L 3447:k 3441:. 3429:) 3424:k 3420:n 3416:( 3411:E 3408:Z 3405:I 3402:S 3392:2 3381:L 3359:2 3351:= 3346:4 3319:y 3316:l 3313:o 3310:p 3306:/ 3302:P 3292:T 3289:A 3286:S 3261:) 3256:k 3252:n 3248:( 3243:E 3240:Z 3237:I 3234:S 3224:T 3221:A 3218:S 3194:y 3191:l 3188:o 3185:p 3181:/ 3177:P 3167:T 3164:A 3161:S 3131:) 3126:k 3122:n 3118:( 3113:E 3110:Z 3107:I 3104:S 3094:4 3083:L 3063:k 3043:y 3040:l 3037:o 3034:p 3030:/ 3026:P 3016:2 2985:2 2960:L 2950:k 2921:L 2895:3 2892:1 2883:] 2880:) 2877:z 2874:, 2871:) 2868:z 2865:, 2862:x 2859:( 2856:D 2853:, 2850:x 2847:( 2841:[ 2836:x 2828:. 2825:D 2814:L 2808:z 2784:3 2781:2 2772:] 2769:) 2766:z 2763:, 2760:) 2757:z 2754:, 2751:x 2748:( 2745:D 2742:, 2739:x 2736:( 2730:[ 2725:x 2717:. 2714:D 2703:L 2697:z 2672:n 2668:D 2641:3 2638:1 2629:] 2626:) 2623:z 2620:, 2617:) 2614:z 2611:, 2608:x 2605:( 2600:n 2596:D 2592:, 2589:x 2586:( 2580:[ 2575:x 2562:L 2556:z 2532:3 2529:2 2520:] 2517:) 2514:z 2511:, 2508:) 2505:z 2502:, 2499:x 2496:( 2491:n 2487:D 2483:, 2480:x 2477:( 2471:[ 2466:x 2453:L 2447:z 2422:n 2418:D 2397:) 2394:z 2391:, 2388:y 2385:, 2382:x 2379:( 2373:. 2370:y 2341:3 2338:1 2329:] 2326:) 2323:z 2320:, 2317:y 2314:, 2311:x 2308:( 2302:. 2299:y 2293:[ 2288:x 2275:L 2269:z 2245:3 2242:2 2233:] 2230:) 2227:z 2224:, 2221:y 2218:, 2215:x 2212:( 2206:. 2203:y 2197:[ 2192:x 2179:L 2173:z 2156:L 2130:A 2127:M 2122:= 2117:M 2114:A 2102:y 2099:l 2096:o 2093:p 2089:/ 2085:P 2075:P 2072:N 2037:2 2024:P 2019:2 2013:S 2002:2 1983:2 1978:S 1973:x 1957:2 1942:x 1938:D 1922:2 1892:2 1867:L 1845:2 1816:) 1813:z 1810:, 1807:) 1804:z 1801:, 1798:x 1795:( 1792:D 1789:, 1786:x 1783:( 1770:D 1756:) 1753:z 1750:, 1747:y 1744:, 1741:x 1738:( 1732:. 1729:y 1712:2 1706:1 1696:) 1694:2 1692:( 1675:) 1672:z 1669:, 1666:) 1663:z 1660:, 1657:x 1654:( 1651:D 1648:, 1645:x 1642:( 1636:. 1633:x 1627:. 1624:D 1601:) 1599:1 1597:( 1580:) 1577:z 1574:, 1571:) 1568:z 1565:, 1562:x 1559:( 1554:n 1550:D 1546:, 1543:x 1540:( 1534:. 1531:x 1513:L 1498:| 1494:z 1490:| 1486:= 1483:n 1461:n 1457:D 1432:) 1429:z 1426:, 1423:y 1420:, 1417:x 1414:( 1408:. 1405:y 1378:} 1375:) 1372:z 1369:, 1366:y 1363:, 1360:x 1357:( 1351:. 1348:y 1342:. 1339:x 1333:: 1330:z 1327:{ 1324:= 1321:L 1296:2 1281:L 1262:n 1258:D 1247:n 1231:n 1227:C 1204:y 1201:l 1198:o 1195:p 1191:/ 1187:P 1177:P 1174:N 1157:2 1137:. 1132:2 1124:= 1121:H 1118:P 1098:. 1093:2 1085:= 1080:2 1064:c 1060:V 1042:) 1039:) 1036:x 1033:( 1030:s 1027:( 1024:c 1018:) 1015:z 1012:, 1009:c 1006:( 1003:V 999:) 996:z 993:, 990:x 987:( 981:c 965:c 941:x 939:( 937:s 935:( 933:c 929:c 912:) 909:y 906:, 903:x 900:( 893:y 887:= 884:) 881:x 878:( 875:s 850:2 801:) 798:y 795:, 792:x 789:( 782:y 776:x 770:= 742:2 712:c 696:1 679:. 677:s 673:s 671:( 669:c 665:s 654:i 650:x 645:i 641:s 637:1 634:s 630:0 627:s 623:s 619:x 615:s 591:1 572:s 568:s 566:( 564:c 560:s 553:s 551:( 549:c 545:x 541:s 537:x 535:, 533:s 525:c 518:z 516:, 514:c 512:( 510:V 506:z 502:c 498:V 482:1 467:c 443:2 394:) 391:y 388:, 385:x 382:( 375:y 369:x 341:2 310:2 262:2 257:S 220:2 189:3 121:. 116:2 108:= 103:H 100:P 75:2 67:= 62:2 23:.

Index

polynomial hierarchy
complexity theory
Boolean satisfiability problem
Boolean circuits
polynomial
NP
non-uniform polynomial time
P/poly
polynomial hierarchy
NP-complete
P ≠ NP
Adleman's theorem
Richard M. Karp
Richard J. Lipton
Michael Sipser
MA
AM
S
2

PSPACE
P/poly
BPP
NP/poly
Random self-reducibility
Cook-Levin theorem
1
2
S
2

Arthur–Merlin protocol
Kannan
circuit lower bound

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.