Knowledge

Kazhdan's property (T)

Source 📝

251: 845:, i.e. can be expressed as a finite product of easier subgroups, such as the elementary subgroups consisting of matrices differing from the identity matrix in one given off-diagonal position. 817:
Historically property (T) was established for discrete groups Γ by embedding them as lattices in real or p-adic Lie groups with property (T). There are now several direct methods available.
730:,1) is a simple Lie group of real rank 1 that has property (T). By Kazhdan's theorem, lattices in this group have property (T). This construction is significant because these lattices are 1048: 993:, that is, graphs with the property that every subset has a uniformly large "boundary". This connection led to a number of recent studies giving an explicit estimate of 952:
and has been successfully implemented by several researchers. It is based on the algebraic characterization of property (T) in terms of an inequality in the real
734:; thus, there are groups that are hyperbolic and have property (T). Explicit examples of groups in this category are provided by arithmetic lattices in Sp( 178: 84:, property (T) can often be checked even when there is little or no explicit knowledge of the unitary dual. Property (T) has important applications to 1374: 1427: 461:
The equivalence of (4) and (5) (Property (FH)) is the Delorme-Guichardet theorem. The fact that (5) implies (4) requires the assumption that
458:, ε)-invariant unit vector and does not have an invariant vector. Look at the direct sum of all such representation and that will negate (4). 1321: 1250: 302: 1067:
observed that the positivity of the bottom of the spectrum of a "twisted" Laplacian on a closed manifold is related to property (T) of the
1267:
de la Harpe, P.; Valette, A. (1989), "La propriété (T) de Kazhdan pour les groupes localement compactes (with an appendix by M. Burger)",
961: 1442: 1437: 853: 1202:
Ballmann, W.; Swiatkowski, J. (1997), "L-cohomology and property (T) for automorphism groups of polyhedral cell complexes",
865: 786:), as a result of the existence of complementary series representations near the trivial representation, although SL(2, 1432: 538: 531:. Amenability and property (T) are in a rough sense opposite: they make almost invariant vectors easy or hard to find. 85: 920: 1242: 369: 81: 842: 571: 957: 50: 944: 860:. Its simplest combinatorial version is due to Zuk: let Γ be a discrete group generated by a finite subset 1333: 1211: 1058: 916: 325: 276: 141: 97: 58: 38: 592: 363: 1367: 1024: 1283:(1967), "On the connection of the dual space of a group with the structure of its closed subgroups", 614: 1216: 1076: 1015: 1004: 610: 310: 299: 1342: 1329: 1309: 928: 805: 1317: 1246: 1068: 125: 105: 27: 1233: 1050:. Sorin Popa subsequently used relative property (T) for discrete groups to produce a type II 1406: 1292: 1221: 1185: 1156: 1125: 1072: 1064: 974: 936: 892: 739: 731: 630: 602: 415: 89: 66: 1383:
Zuk, A. (1996), "La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres",
1303: 1260: 1121: 1071:. This observation yields Brooks' result which says that the bottom of the spectrum of the 960:
problem numerically on a computer. Notably, this method has confirmed property (T) for the
1300: 1256: 1129: 1117: 990: 932: 662: 395: 109: 24: 790:) has property (τ) with respect to principal congruence subgroups, by Selberg's theorem. 1087: 1019: 949: 794: 723: 524: 483: 314: 280: 101: 93: 42: 1145:"Unitary representations of fundamental groups and the spectrum of twisted Laplacians" 1421: 1280: 1161: 1144: 528: 380: 292: 269: 70: 62: 864:, closed under taking inverses and not containing the identity, and define a finite 1000: 924: 857: 575: 284: 246:{\displaystyle \forall g\in K\ :\ \left\|\pi (g)\xi -\xi \right\|<\varepsilon .} 46: 1176:
Brooks, Robert (1981). "The fundamental group and the spectrum of the Laplacian".
450:
be a locally compact group satisfying (3), assume by contradiction that for every
1346: 666: 20: 1410: 1108:
Watatani, Yasuo (1981). "Property T of Kazhdan implies property FA of Serre".
953: 801: 720: 911:, then Γ has property (T). A more general geometric version, due to Zuk and 1012: 606: 446:
Definition (4) evidently implies definition (3). To show the converse, let
1397:
Zuk, A. (2003), "Property (T) and Kazhdan constants for discrete groups",
1225: 891:. If this graph is connected and the smallest non-zero eigenvalue of the 366: 1296: 1189: 997:, quantifying property (T) for a particular group and a generating set. 520:
Any countable discrete group with property (T) is finitely generated.
1316:, Progress in Mathematics, vol. 125, Basel: Birkhäuser Verlag, 613:
at least two have property (T). This family of groups includes the
465:
is σ-compact (and locally compact) (Bekka et al., Theorem 2.12.4).
494:
has property (T). Equivalently, if a homomorphic image of a group
272:, and any of them can be used as the definition of property (T). 434:)-invariant unit vector, then it has a non-zero vector fixed by 336:)-invariant unit vector for any ε > 0 and any compact subset 935:
at each vertex, then Γ has property (T). Many new examples of
964:
of rank at least 5. No human proof is known for this result.
1232:
Bekka, Bachir; de la Harpe, Pierre; Valette, Alain (2008),
1003:
used discrete groups with property (T) to find examples of
65:
and has "almost invariant vectors", then it has a nonzero
359:)-invariant unit vector, has a nonzero invariant vector. 1314:
Discrete groups, expanding graphs and invariant measures
989:≥ 3) has property (T) to construct explicit families of 895:
of the corresponding simple random walk is greater than
931:
with the same graph theoretic conditions placed on the
1027: 939:
with property (T) can be exhibited using this method.
181: 1376:
International Congress of Mathematicians Madrid 2006
1082:
equals zero if and only if the fundamental group of
454:
and ε there is a unitary representation that has a (
912: 1042: 343:(4) There exists an ε > 0 and a compact subset 245: 1075:on the universal covering manifold over a closed 956:, for which a solution may be found by solving a 841:≥ 3; the method relies on the fact that Γ can be 418:if there exists an ε > 0 and a compact subset 426:such that whenever a unitary representation of 77:), gives this a precise, quantitative meaning. 474:Property (T) is preserved under quotients: if 90:lattices in algebraic groups over local fields 1241:, New Mathematical Monographs, vol. 11, 8: 852:method has its origins in ideas of Garland, 661:≥ 3. More generally, this holds for simple 599:) and all finite groups have property (T). 351:such that every unitary representation of 1215: 1160: 1034: 1030: 1029: 1026: 915:, states that if a discrete group Γ acts 180: 1285:Functional Analysis and its Applications 80:Although originally defined in terms of 1100: 545:then Γ has property (T) if and only if 74: 69:. The formal definition, introduced by 1054:factor with trivial fundamental group. 574:have property (T). In particular, the 527:which has property (T) is necessarily 825:method of Shalom applies when Γ = SL( 7: 1368:"The algebraization of property (T)" 1018:, so in particular not the whole of 962:automorphism group of the free group 1057:Groups with property (T) also have 948:method is based on a suggestion by 340:, has a non-zero invariant vector. 506:itself does not have property (T). 182: 14: 913:Ballmann & Swiatkowski (1997) 715:≥ 2, the noncompact Lie group Sp( 704:) have relative property (T) for 553:≥ 3, the special linear group SL( 53:. Informally, this means that if 1043:{\displaystyle \mathbb {R} ^{+}} 778:The special linear groups SL(2, 754:The additive groups of integers 124:be a σ-compact, locally compact 738:, 1) and certain quaternionic 317:, converges to 1 uniformly on 230: 217: 211: 204: 1: 1428:Unitary representation theory 148:on a (complex) Hilbert space 1162:10.1016/0040-9383(89)90015-3 665:of rank at least two over a 256:The following conditions on 750:have property (T) include 549:has property (T). Thus for 303:positive definite functions 86:group representation theory 82:irreducible representations 1459: 1243:Cambridge University Press 1143:Sunada, Toshikazu (1989). 572:Compact topological groups 160:, then a unit vector ξ in 1411:10.1007/s00039-003-0425-8 1443:Computer-assisted proofs 958:semidefinite programming 917:properly discontinuously 746:Examples of groups that 719:, 1) of isometries of a 591:-adic integers, compact 502:have property (T) then 156:is a compact subset of 1438:Geometric group theory 1385:C. R. Acad. Sci. Paris 1347:"What is property (τ)" 1338:, monograph to appear. 1235:Kazhdan's property (T) 1044: 977:used the fact that SL( 593:special unitary groups 513:has property (T) then 326:unitary representation 277:trivial representation 260:are all equivalent to 247: 142:unitary representation 98:geometric group theory 39:trivial representation 1226:10.1007/s000390050022 1045: 615:special linear groups 578:, the additive group 478:has property (T) and 412:relative property (T) 362:(5) Every continuous 248: 1025: 872:and an edge between 629:≥ 3 and the special 298:(2) Any sequence of 179: 1366:Shalom, Y. (2006), 1178:Comment. Math. Helv 1077:Riemannian manifold 1059:Serre's property FA 843:boundedly generated 806:free abelian groups 561:) has property (T). 383:has a fixed point ( 1433:Topological groups 1297:10.1007/BF01075866 1190:10.1007/bf02566228 1040: 929:simplicial complex 758:, of real numbers 469:General properties 410:) is said to have 243: 170:)-invariant vector 152:. If ε > 0 and 110:theory of networks 49:equipped with the 1332:, A. and A. Zuk, 1323:978-3-7643-5075-8 1252:978-0-521-88720-5 1069:fundamental group 1016:fundamental group 995:Kazhdan constants 945:computer-assisted 937:hyperbolic groups 740:reflection groups 732:hyperbolic groups 631:orthogonal groups 535:Kazhdan's theorem 202: 196: 126:topological group 106:operator algebras 28:topological group 1450: 1413: 1392: 1379: 1372: 1361: 1351: 1326: 1299: 1275: 1263: 1240: 1228: 1219: 1194: 1193: 1173: 1167: 1166: 1164: 1140: 1134: 1133: 1105: 1065:Toshikazu Sunada 1049: 1047: 1046: 1041: 1039: 1038: 1033: 991:expanding graphs 975:Grigory Margulis 910: 908: 907: 904: 901: 663:algebraic groups 355:that has an (ε, 332:that has an (ε, 309:converging to 1 252: 250: 249: 244: 233: 229: 200: 194: 67:invariant vector 16:Mathematics term 1458: 1457: 1453: 1452: 1451: 1449: 1448: 1447: 1418: 1417: 1396: 1382: 1370: 1365: 1349: 1341: 1335:On property (τ) 1324: 1308: 1279: 1266: 1253: 1238: 1231: 1201: 1198: 1197: 1175: 1174: 1170: 1142: 1141: 1137: 1107: 1106: 1102: 1097: 1053: 1028: 1023: 1022: 1008: 971: 905: 902: 899: 898: 896: 815: 813:Discrete groups 795:solvable groups 774: 586: 568: 541:in a Lie group 471: 444: 396:closed subgroup 315:compact subsets 207: 203: 177: 176: 118: 25:locally compact 17: 12: 11: 5: 1456: 1454: 1446: 1445: 1440: 1435: 1430: 1420: 1419: 1416: 1415: 1405:(3): 643–670, 1394: 1380: 1363: 1339: 1327: 1322: 1306: 1277: 1264: 1251: 1229: 1217:10.1.1.56.8641 1210:(4): 615–645, 1196: 1195: 1168: 1155:(2): 125–132. 1135: 1099: 1098: 1096: 1093: 1092: 1091: 1062: 1055: 1051: 1037: 1032: 1020:positive reals 1006: 998: 970: 967: 966: 965: 950:Narutaka Ozawa 940: 927:2-dimensional 868:with vertices 846: 814: 811: 810: 809: 798: 791: 776: 770: 766:-adic numbers 744: 743: 726:of signature ( 724:hermitian form 709: 670: 600: 582: 567: 564: 563: 562: 532: 525:amenable group 521: 518: 507: 484:quotient group 470: 467: 443: 440: 281:isolated point 254: 253: 242: 239: 236: 232: 228: 225: 222: 219: 216: 213: 210: 206: 199: 193: 190: 187: 184: 128:and π : 117: 114: 94:ergodic theory 43:isolated point 15: 13: 10: 9: 6: 4: 3: 2: 1455: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1425: 1423: 1412: 1408: 1404: 1400: 1395: 1390: 1386: 1381: 1378: 1377: 1369: 1364: 1359: 1355: 1348: 1345:, A. (2005), 1344: 1340: 1337: 1336: 1331: 1328: 1325: 1319: 1315: 1312:, A. (1994), 1311: 1307: 1305: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1265: 1262: 1258: 1254: 1248: 1244: 1237: 1236: 1230: 1227: 1223: 1218: 1213: 1209: 1205: 1200: 1199: 1191: 1187: 1183: 1179: 1172: 1169: 1163: 1158: 1154: 1150: 1146: 1139: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1101: 1094: 1089: 1085: 1081: 1078: 1074: 1070: 1066: 1063: 1060: 1056: 1035: 1021: 1017: 1014: 1010: 1002: 999: 996: 992: 988: 984: 980: 976: 973: 972: 968: 963: 959: 955: 954:group algebra 951: 947: 946: 941: 938: 934: 930: 926: 922: 918: 914: 894: 890: 886: 883: 879: 875: 871: 867: 863: 859: 855: 851: 847: 844: 840: 836: 832: 828: 824: 820: 819: 818: 812: 807: 803: 799: 796: 792: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 752: 751: 749: 741: 737: 733: 729: 725: 722: 718: 714: 710: 707: 703: 699: 695: 691: 687: 683: 679: 675: 671: 668: 664: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 620: 616: 612: 608: 604: 601: 598: 594: 590: 585: 581: 577: 573: 570: 569: 565: 560: 556: 552: 548: 544: 540: 536: 533: 530: 526: 522: 519: 517:/ is compact. 516: 512: 508: 505: 501: 497: 493: 489: 485: 481: 477: 473: 472: 468: 466: 464: 459: 457: 453: 449: 441: 439: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 397: 393: 388: 386: 385:property (FH) 382: 381:Hilbert space 379: 375: 371: 368: 365: 360: 358: 354: 350: 346: 341: 339: 335: 331: 327: 322: 320: 316: 312: 308: 304: 301: 296: 294: 293:Fell topology 290: 286: 282: 278: 273: 271: 267: 263: 259: 240: 237: 234: 226: 223: 220: 214: 208: 197: 191: 188: 185: 175: 174: 173: 171: 169: 164:is called an 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 115: 113: 111: 107: 103: 99: 95: 91: 87: 83: 78: 76: 72: 71:David Kazhdan 68: 64: 63:Hilbert space 60: 56: 52: 51:Fell topology 48: 44: 40: 36: 32: 29: 26: 22: 1402: 1398: 1388: 1384: 1375: 1360:(6): 626–627 1357: 1353: 1334: 1313: 1291:(1): 63–65, 1288: 1284: 1272: 1268: 1234: 1207: 1203: 1181: 1177: 1171: 1152: 1148: 1138: 1113: 1109: 1103: 1083: 1079: 1001:Alain Connes 994: 986: 982: 978: 969:Applications 943: 925:contractible 888: 884: 881: 877: 873: 869: 861: 858:Pierre Pansu 849: 838: 834: 830: 826: 822: 816: 787: 783: 782:) and SL(2, 779: 771: 767: 763: 759: 755: 747: 745: 735: 727: 721:quaternionic 716: 712: 705: 701: 697: 693: 689: 685: 681: 677: 673: 658: 654: 650: 646: 642: 638: 634: 626: 622: 618: 596: 588: 583: 579: 576:circle group 558: 554: 550: 546: 542: 537:: If Γ is a 534: 514: 510: 503: 499: 495: 491: 487: 479: 475: 462: 460: 455: 451: 447: 445: 435: 431: 427: 423: 419: 411: 407: 403: 402:, the pair ( 399: 391: 389: 384: 377: 373: 361: 356: 352: 348: 344: 342: 337: 333: 329: 323: 318: 306: 297: 288: 285:unitary dual 274: 266:property (T) 265: 261: 257: 255: 167: 165: 161: 157: 153: 149: 145: 137: 133: 129: 121: 119: 79: 54: 47:unitary dual 35:property (T) 34: 30: 18: 1354:AMS Notices 1281:Kazhdan, D. 1184:: 581–598. 1110:Math. Japon 921:cocompactly 837:a ring and 802:free groups 800:Nontrivial 793:Noncompact 672:The pairs ( 667:local field 649:≥ 2 and SO( 430:has an (ε, 116:Definitions 21:mathematics 1422:Categories 1269:Astérisque 1130:0489.20022 1116:: 97–103. 1095:References 607:Lie groups 442:Discussion 324:(3) Every 300:continuous 1391:: 453–458 1212:CiteSeerX 1073:Laplacian 1013:countable 893:Laplacian 880:whenever 850:geometric 823:algebraic 367:isometric 311:uniformly 238:ε 227:ξ 224:− 221:ξ 209:π 189:∈ 183:∀ 102:expanders 59:unitarily 1343:Lubotzky 1330:Lubotzky 1310:Lubotzky 1149:Topology 1088:amenable 887:lies in 609:of real 566:Examples 416:Margulis 275:(1) The 264:having 231:‖ 205:‖ 108:and the 1304:0209390 1261:2415834 1122:0649023 1009:factors 1005:type II 985:) (for 909:⁠ 897:⁠ 833:) with 762:and of 688:) and ( 539:lattice 529:compact 283:of the 270:Kazhdan 45:in its 37:if the 1320:  1259:  1249:  1214:  1128:  1120:  854:Gromov 748:do not 657:) for 641:) for 625:) for 603:Simple 370:action 364:affine 279:is an 201:  195:  140:) a 41:is an 1371:(PDF) 1350:(PDF) 1239:(PDF) 1011:with 923:on a 866:graph 692:⋊ SL( 676:⋊ SL( 645:> 605:real 498:does 490:then 482:is a 394:is a 376:on a 291:with 61:on a 57:acts 1399:GAFA 1318:ISBN 1247:ISBN 1204:GAFA 942:The 933:link 919:and 876:and 856:and 848:The 821:The 804:and 711:For 708:≥ 2. 611:rank 378:real 235:< 172:if 166:(ε, 144:of 120:Let 75:1967 33:has 23:, a 1407:doi 1389:323 1293:doi 1273:175 1222:doi 1186:doi 1157:doi 1126:Zbl 1086:is 700:), 684:), 633:SO( 617:SL( 595:SU( 587:of 523:An 509:If 500:not 486:of 422:of 414:of 398:of 390:If 387:). 372:of 347:of 328:of 313:on 305:on 287:of 268:of 19:In 1424:: 1403:13 1401:, 1387:, 1373:, 1358:52 1356:, 1352:, 1301:MR 1287:, 1271:, 1257:MR 1255:, 1245:, 1220:, 1206:, 1182:56 1180:. 1153:28 1151:. 1147:. 1124:. 1118:MR 1114:27 1112:. 981:, 829:, 696:, 680:, 621:, 557:, 438:. 321:. 295:. 132:→ 112:. 104:, 100:, 96:, 92:, 88:, 1414:. 1409:: 1393:. 1362:. 1295:: 1289:1 1276:. 1224:: 1208:7 1192:. 1188:: 1165:. 1159:: 1132:. 1090:. 1084:M 1080:M 1061:. 1052:1 1036:+ 1031:R 1007:1 987:n 983:Z 979:n 906:2 903:/ 900:1 889:S 885:h 882:g 878:h 874:g 870:S 862:S 839:n 835:R 831:R 827:n 808:. 797:. 788:Z 784:R 780:Z 775:. 772:p 768:Q 764:p 760:R 756:Z 742:. 736:n 728:n 717:n 713:n 706:n 702:Z 698:Z 694:n 690:Z 686:R 682:R 678:n 674:R 669:. 659:p 655:p 653:, 651:p 647:q 643:p 639:q 637:, 635:p 627:n 623:R 619:n 597:n 589:p 584:p 580:Z 559:Z 555:n 551:n 547:G 543:G 515:G 511:G 504:G 496:G 492:H 488:G 480:H 476:G 463:G 456:K 452:K 448:G 436:H 432:K 428:G 424:G 420:K 408:H 406:, 404:G 400:G 392:H 374:G 357:K 353:G 349:G 345:K 338:K 334:K 330:G 319:G 307:G 289:G 262:G 258:G 241:. 218:) 215:g 212:( 198:: 192:K 186:g 168:K 162:H 158:G 154:K 150:H 146:G 138:H 136:( 134:U 130:G 122:G 73:( 55:G 31:G

Index

mathematics
locally compact
topological group
trivial representation
isolated point
unitary dual
Fell topology
unitarily
Hilbert space
invariant vector
David Kazhdan
1967
irreducible representations
group representation theory
lattices in algebraic groups over local fields
ergodic theory
geometric group theory
expanders
operator algebras
theory of networks
topological group
unitary representation
Kazhdan
trivial representation
isolated point
unitary dual
Fell topology
continuous
positive definite functions
uniformly

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.