Knowledge (XXG)

Kedarcidin

Source đź“ť

852: 637:, a common thiol reductant. In a model system, it was found that the 5,9-bicyclic core of kedarcidin chromophore exists in equilibrium with the corresponding 5,5,6-tricyclic cycloaromatized biradical. The rate of pseudo-first-order decay of this model enediyne is highly dependent on the solvent hydrogen-donor ability, indicating that the hydrogen abstraction step following biradical formation is kinetically significant in the cycloaromatization of the enediyne, as opposed to acyclic systems, where formation of the biradical itself is known to be the rate-limiting step. It is noteworthy that of the solvents examined, 506: 888:). Comparative studies of these biosynthetic apparatus have shown that the enediyne core of these molecules is initiated by a common enzyme, enediyne polyketide synthase (PKS). The polyene product of this enzyme is then divergently elaborated into the 9- or 10-membered cores of the enediynes depending on the specific PKS-associated enzymes present. A convergent biosynthetic strategy is then employed by the producing organisms, whereby the varying peripheral appendages of the enediynes are attached to the core structure to furnish the final product. 773: 489: 824: 24: 978: 923: 746: 677: 421:, chemical degradation, and derivatization experiments enabled the isolation team to identify the key structural features of kedarcidin chromophore, including the enediyne bicyclic core, the ansa-bridging chloropyridyl ring, the mycarose and kedarosamine sugars, and the naphthoamide appendage. However, due to the challenges posed by the complex structure, the initial report had several errors. The bicyclic core proved particularly difficult to deconvolute, as the interpretation of 571: 613: 97: 714: 33: 519: 188:
InChI=1S/C53H60ClN3O16/c1-25(2)67-38-18-29-17-35(58)32(20-31(29)46(64-8)47(38)65-9)51(62)56-34-21-42(60)66-24-40(71-43-22-36(59)45(57(6)7)26(3)68-43)28-11-10-12-41-53(73-41)30(14-13-28)19-39(70-37-16-15-33(34)55-50(37)54)49(53)72-44-23-52(5,63)48(61)27(4)69-44/h11,15-20,25-27,34,36,39-41,43-45,48-49,58-59,61,63H,21-24H2,1-9H3,(H,56,62)/b28-11+/t26-,27-,34+,36-,39-,40+,41-,43-,44-,45+,48-,49-,52+,53+/m0/s1
1055:, a calicheamicin-based antibody-drug conjugate for the treatment of non-Hodgkin lymphoma, reinforces the potential of enediynes to find critical use in the treatment of human disease. Thus, the biological potential and complex molecular architecture of kedarcidin may likely inspire further scientific inquiry into this substance, and possibly deliver new ordnance in the war against cancer. 851: 1037:
Owing to its non-specific cytotoxicity, instability under ambient conditions, and relative expense of isolation and manufacture, kedarcidin chromophore has not been investigated rigorously as a therapeutic candidate. However, the recent scientific advances discussed above have served to diminish this
595:
to C12 and consequent opening of the core epoxide has been hypothesized to trigger Bergman cyclization in kedarcidin chromophore. Nucleophilic activation is thought to diminish the ring strain incurred by formation of the cycloaromatized product, and thus activate kedarcidin chromophore toward DNA
1005:
substructures, respectively. Five genes, KedN1–N5, bear high sequence homology with the enzymes responsible for naphthonate synthesis in neocarzinostatin—consequently, the intermediacy of 3,6,8-trihydroxy-2-naphthoic acid is proposed in kedarcidin biosynthesis. This compound is believed to be
632:
note that the 5,9-fused enediyne core is susceptible to cycloaromatization–reduction in the absence of both thiol "activating agents" and (non-solvent) hydrogen donors. The kedarcidin chromophore aglycone similarly undergoes reductive cycloaromatization at comparable rates irrespective of the
604:
reduction of kedarcidin chromophore induced rapid cycloaromatization and so facilitated studies of the otherwise unstable natural product. Consequently, C12-nucleophilic activation is proposed extensively in review literature as a possible means for triggering the cycloaromatization event
501:
Like other enediynes, kedarcidin chromophore comprises a core structure that forms destructive free radicals, as well as appendages that deliver this "warhead" to its DNA target. Thus, the general mechanism by which kedarcidin chromophore damages DNA is known; however, the details of this
477:. to invert the other aglycone stereocenters as well, affording a revised structure of kedarcidin chromophore that differed only in the relative stereochemistry of the mycarose-bearing carbon, C10. Finally, in 2007, Myers and co-workers synthesized the structure proposed by Hirama 737:
of the C10 hydroxyl would lead to the desired α-face epoxidation product by steric occlusion of the β face of the olefin; however, without a directing group to accelerate the oxidation of a proximal alkene, this hypothetical reaction would likely suffer from poor
855:
Proposed component-based biosynthesis of kedarcidin chromophore. Inversion at C11 of the common enediyne core is invoked to explain the relative stereochemistry of the final product, which differs from most other enediynes, including neocarzinostatin
672:
that focused on the convergent coupling of components with roughly equal chemical complexity. Several of the major challenges of C10-epi-kedarcidin chromophore, as well as the strategies used in addressing these difficulties are discussed below.
546:
With considerable sequence selectivity, kedarcidin chromophore binds and cleaves DNA preferentially at TCCTn-mer sites, producing single-strand breaks. Puzzlingly, while the structure of kedarcidin chromophore is most closely related to that of
701:
installation of the olefin. Without this unsaturation linking the two alkynyl bridges, synthetic intermediates are not disposed toward Bergman-type decomposition, and risk of decomposition is mitigated. In this case, dehydration of a
542:
sugars of DNA. This generates a carbon-centered free radical on DNA, which undergoes oxidation by molecular oxygen. The resulting peroxide decomposes to form single- or double-stranded breaks in DNA, ultimately leading to cell death.
1050:
therapies, toxicity liabilities may be mitigated through targeted delivery of this potent cytotoxin, potentially enabling efficient therapies that use minimal quantities of this complex material. The recent development of
847:
substructure has not been identified in any other known natural product; and despite its seeming simplicity, little literature precedence exists for the biosynthesis of the isopropoxy substituent of the naphthonate group.
425:
correlations led the researchers to misassign the relative stereochemistry of the core stereotetrad. Moreover, as global absolute chemistry was assigned on the basis of NOE correlations between the stereodefined
835:
The means by which bacteria construct enediynes like kedarcidin continues to motivate research. Kedarcidin chromophore, beyond the carbocyclic core it shares with other enediynes, presents additional
761:. In the first incarnation, hydride delivery to a cyclic tetrayne was guided by aluminum coordination to a proximal alkoxide, thus generating the desired enediyne core in one step via two successive 780:
The bicyclic core of C10-epi-kedarcidin chromophore was prepared by the sequential application of three carbon-carbon bond forming reactions, as shown in the retrosynthetic schematic above. First, a
729:. sought to install the epoxide functionality syn to the adjacent C10 hydroxyl group. This was accomplished by vanadium-catalyzed epoxidation directed by the C10 hydroxyl group. Had the natural C10-( 628:
calculations show that the C1–C12 double bond in the bicyclic core imparts a considerable amount of ring strain (ca. 14 kcal·mol) to the tricycle formed upon Bergman cyclization–reduction, Hirama
574:
Borohydride-induced tandem epoxide opening–Bergman cycloaromatization of kedarcidin chromophore. Analogous nucleophilic "bioactivation" was initially implicated in the mechanism of action as well.
505: 772: 481:.; the corresponding NMR spectroscopic data were distinct from that of the natural product, leading the Myers group to revise the stereochemistry of the mycarose-bearing carbon to 10-( 453:. In 1997, en route to the originally reported structure, researchers under the direction of Masahiro Hirama discovered that the spectroscopic data of the proposed chloroazatyrosyl ( 375:
damage, however, kedarcidin is capable of harming tumor cells, as well. Kedarcidin is thus the subject of scientific research, both for its structural complexity as well as its
757:
Myers and co-workers have pioneered the application of transannular anionic cyclization reactions in the synthesis of the 5,9-fused bicyclic core of kedarcidin chromophore and
664:
In 2007, Myers and co-workers at Harvard University reported the synthesis of C10-epi-kedarcidin chromophore, corresponding to the 1997 revised structure advanced by Hirama
612: 1468:
Ahlert, J.; Shepard, E.; Lomovskaya, N.; Zazopoulos, E.; Staffa, A.; Bachmann, B. O.; Huang, K, Fonstein, L.; Czisny, A.; Whitwam, R. E.; Farnet, C. M.; Thorson, T. S.
620:
Recent evidence suggests that spontaneous cycloaromatization of kedarcidin chromophore is competitive with nucleophilic bioactivation, if not the predominant mechanism
860:
The biosynthetic gene clusters encoding the biological machinery responsible for producing enediynes have been cloned and characterized for five 9-membered enediynes (
839:
puzzles: The relative stereochemistry of the groups appended to the carbocyclic core of kedarcidin chomophore differs from that of closely related enediynes; the (
399:
bound chromophore from its apoprotein host. This isolate—kedarcidin chromophore—decomposed readily under ambient conditions and was shown to possess cytotoxicity (
922: 49:
N-oxy-14-oxy-11-oxo-4,12,20-trioxa-7-azapentacyclohexacosa-1,5,7,15,25-pentaen-17,22-diyn-9-yl]-3-hydroxy-7,8-dimethoxy-6-propan-2-yloxynaphthalene-2-carboxamide
977: 930:
The 2-aza-β-tyrosine subunit of kedarcidin chromophore is altogether unknown in any other natural product; this lack of precedence frustrates any attempt at
204: 1076:
Leet, J. E.; Schroeder, D. R.; Langley, D. R.; Colson, K. L.; Huang, S.; Klohr, S. E.; Lee, M. S.; Golik, J.; Hofstead, S. J.; Doyle, T. W.; Matson, J. A.
934:
identification of the genes responsible for synthesizing this structure. However, six genes are conserved among the biosynthetic clusters of kedarcidin,
391:
indicated the presence of a DNA-damaging chromoprotein in the fermentation broth of an Actinomycete strain. The involvement of a non-peptidic
212:(chromophore): C1((C(O1)O\2COC(=O)C(c3ccc(c(n3)Cl)O4C=C5C#C/C2=C\C#C65(4O7C(((O7)C)O)(C)O)O6)NC(=O)c8cc9c(cc8O)cc(c(c9OC)OC)OC(C)C)O)N(C)C 1379:
Liu, W.; Nonaka, K.; Nie, L.; Zhang, J.; Christenson, S. D.; Bae, J.; Van Lanen, S. G.; Zazopoulos, E.; Farnet, C. M.; Yang, C. F.; Shen, B.
434:, the errors of the stereotetrad propagated to the other two stereocenters of the aglycone. Connectivity of the naphthoamide group to the 784:
was carried out between a bromovinyl electrophile and alkynyl nucleophile; ring closure to give a cyclic triyne was then accomplished by
1570: 371:
appendages—kedarcidin was likely evolved to kill bacteria that compete with the producing organism. Because it achieves this by causing
559:. To this end, kedarcidin chromophore–induced DNA cleavage is diminished by the addition of divalent cations such as Ca and Mg, which 1488:(a) Zazopoulos, E.; Huang, K.; Staffa, A.; Liu, W.; Bachmann, B. O.; Nonaka, K.; Ahlert, J.; Thorson, J. S.; Shen, B.; Farnet, C. M. 809: 179: 900: 656:
independently remark that deoxyribose 4'-hydrogen abstraction is most likely operative in kedarcidin chromophore bioactivity.
295: 985:
Insight into the biosynthesis of the isopropoxy-2-naphthonate appendage was similarly gained by comparative analysis of the
563:
bind the naphthoic acid group of kedarcidin chromophore and thus lessen its affinity for DNA. Competition experiments with
1665: 322: 1705: 1700: 1690: 971: 896: 555:
enediyne antitumor antibiotic. The naphthoic acid substructure has been implicated in DNA binding, likely through
1544:
Kedarcidin, a new chromoprotein antitumor antibiotic. II. Isolation, purification and physico-chemical properties
805: 556: 422: 1448:
Lohman, J. R.; Huang, S.-X.; Horsman, G. P.; Dilfer, P. E.; Huang, T.; Chen, Y.; Wendt-Pienkowski, E.; Shen, B.
1675: 488: 958:-tyrosine. This α-amino acid is thus believed to be converted to the corresponding β-amino acid by KedY4, an 1563: 1047: 813: 680:
Retrosynthetic approach to 10-epi-kedarcidin chromophore employed by Ren, Hogan, Anderson, and Myers (2007).
669: 625: 1046:
routes toward scalable kedarcidin production are now within reach. Moreover, with the rising popularity of
23: 919:
led to the formation of a signature heptaene product previously implicated in enediyne core biosynthesis.
765:–type cyclizations. Later-generation syntheses of the core intercept this cascade cyclization, relying on 567:, a known binder of the DNA minor groove, indicate that kedarcidin likely binds the minor groove as well. 1685: 1052: 766: 45: 745: 676: 942:—while these later two enediynes do not contain a 2-aza-β-tyrosine subunit, they do feature similar ( 781: 698: 388: 954:
to propose a pathway for the synthesis of the corresponding kedarcidin subunit beginning with 2-aza-
570: 804:
The ansa-bridging macrolactone was constructed following the first Sonogashira coupling, using the
742:, as oxidation of other C–C unsaturations in the molecule would compete with the desired reaction. 690: 527: 396: 61: 1639: 1217:
Zein, N.; Colson, K. L.; Leet, J. E.; Schroeder, D. R.; Solomon, W.; Doyle, T. W.; Casazza, A. M.
1680: 1556: 1039: 601: 538:
biradical activated toward homolytic abstraction of hydrogen from suitable donors, including the
450: 823: 762: 907:, a gene in the cluster that encodes the previously isolated kedarcidin apoprotein, as well as 1695: 1670: 1026: 891:
In 2013, the successful cloning and characterization of the kedarcidin biosynthetic cluster ("
634: 446: 442: 418: 349: 118: 1608: 1499:, 187–190. (b) Liu, W.; Ahlert, J.; Gao, Q.; Wendt-Pienkowski, E.; Shen, B.; Thorson, J. S. 990: 865: 758: 739: 734: 713: 707: 548: 458: 227: 72: 461:
derivative were not consistent with those of the degradation product characterized by Leet
395:
was deduced by UV spectroscopy, and reverse-phase chromatography was used to separate this
1644: 967: 785: 638: 470: 776:
Transannular cyclization in the synthesis of the bicyclic core of kedarcidin chromophore.
769:
on a cyclic vinyl bromide to generate the vinyl anion precursor to the bicyclic product.
808:. This protocol was performed on the gram-scale without diminishing its yield employing 32: 998: 596:
scission. In the isolation and structural characterization studies carried out by Leet
376: 356: 345: 316: 530:, wherein the enediyne portion undergoes spontaneous cycloaromatization to generate a 1659: 1624: 877: 817: 552: 522:
Proposed mechanism of DNA scission by kedarcidin chromophore–induced 4'-H abstraction
338: 693:–reduction decomposition pathways poses a major threat to any proposed synthesis of 518: 473:
derivative was proposed and validated by the Hirama group. This revision led Hirama
165: 1603: 1043: 994: 939: 869: 836: 793: 407: 341: 616:
Ring strain associated with the C1-C12 double bond in kedarcidin chromophore core.
502:
process—particularly the necessity of nucleophilic activation—have been disputed.
359:
that serves to stabilize the toxin in the Actinomycete. Like other members of the
509:
Equilibrium of kedarcidin chromophore core and Bergman-cycloaromatized biradical.
1634: 1629: 1023: 885: 881: 642: 588: 539: 392: 363:
class of drugs—so named for the nine-or-ten-membered core structure bearing an
1543: 873: 264: 108: 645:—led to comparatively fast decomposition of the 5,9-fused enediyne scaffold ( 703: 564: 560: 966:
cluster. The resulting product is believed to be loaded onto the peptidyl
1579: 1002: 947: 844: 694: 592: 526:
The unifying mechanism of bioactivity in all enediyne antibiotics is the
431: 360: 352: 788:
of two terminal alkynes. The 5,9-fused bicyclic core was established by
551:, the former shares sequence-specificity with the structurally distinct 1014:-methyltransferase. To furnish the unique isopropoxy substituent, Shen 584: 535: 151: 822: 1593: 1399:
Van Lanen, S. G.; Oh, T.-J.; Liu, W.; Wendt-Pienkowski, E.; Shen, B.
959: 935: 861: 368: 364: 387:
Kedarcidin was first discovered in 1992 when bioassays conducted at
315:
Except where otherwise noted, data are given for materials in their
139: 675: 569: 517: 487: 96: 85: 400: 129: 1552: 1006:
oxygenated to the 3,6,7,8-tetrahydroxy derivative, then triply
903:. The identity of this cloned gene cluster was corroborated by 926:
Proposed biosynthesis of the activated aza-β-tyrosine subunit.
697:. Myers and co-workers addressed this liability by late-stage 414: 372: 492:
Evolution of the proposed structure of kedarcidin chromophore
1548: 976: 921: 850: 771: 744: 712: 611: 504: 796:
species that underwent transannular 5-exo-dig cyclization.
981:
Proposed biosynthesis of activated 2-naphthonate subunit.
1165: 1163: 1022:-methylation of the corresponding methoxy group by the 1119:
Ren, F.; Hogan, P. C.; Anderson, A. J.; Myers, A. G.
441:
These errors were later corrected by the independent
1359:
Liu, W.; Christenson, S. D.; Standage, S.; Shen, B.
1277:
Rossiter, B. E.; Verhoeven, T. R.; Sharpless, K. B.
876:, and kedarcidin), and three 10-membered enediynes ( 820:
as a base to promote intramolecular esterification.
1617: 1586: 1338:Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. 725:In targeting 10-epi-kedarcidin chromophore, Myers 438:bridge was also misjudged in the initial report. 970:KedY2 and subsequently chlorinated by KedY3, an 164: 668:. Critical to the success of this endeavor was 71: 733:)-epimer been desired, it is conceivable that 1564: 1142: 1140: 1138: 1136: 8: 1444: 1442: 1440: 1438: 1436: 1115: 1113: 408:HCT-116 human colorectal carcinoma cell line 1072: 1070: 1068: 1571: 1557: 1549: 1419:McGlinchey, R. P.; Nett, M.; Moore, B. S. 117: 15: 685:Inherent instability of the enediyne core 1237:Myers, A. G.; Hurd, A. R.; Hogan, P. C. 1064: 660:Synthesis of epi-kedarcidin chromophore 209: 184: 1213: 1211: 1209: 1191:, 553. (c) Zein, N.; Schroeder, D. R. 895:") was reported by researchers at the 706:alcohol was induced by treatment with 1096:Kawata, S.; Ashizawa, S.; Hirama, M. 191:Key: RSXFZXJOBQZOOM-WXIIGEIKSA-N 7: 1180:, 2103. (b) Xi, Z.; Goldberg, I. H. 383:Discovery and structure elucidation 154: 138: 1169:(a) Smith, A. L.; Nicolaou, K. C. 950:-derived components, leading Shen 355:chromophore (shown) as well as an 14: 1193:Adv. DNA Sequence-Specific Agents 810:2-methyl-6-nitrobenzoic anhydride 753:Construction of the bicyclic core 915:, the co-expression of which in 248: 245: 239: 31: 22: 1501:Proc. Natl. Acad. Sci. U. S. A. 901:University of Wisconsin-Madison 319:(at 25 Â°C , 100 kPa). 1318:Myers, A. G.; Goldberg, S. D. 1297:Myers, A. G.; Goldberg, S. D. 641:—structurally homologous with 296:Occupational safety and health 254: 233: 1: 1257:Jones, R. R.; Bergman, R. G. 284:Buff-colored amorphous solid 759:neocarzinostatin chromophore 549:neocarzinostatin chromophore 972:flavin adenine dinucleotide 1722: 1219:Proc. Natl. Acad. Sci. USA 897:Scripps Research Institute 800:Ansa-bridging macrolactone 1010:-methylated by KedN1, an 806:Shiina macrolactonization 367:directly attached to two 313: 293: 288: 220: 200: 175: 54: 44: 39: 30: 21: 1519:Gao, Q.; Thorson, J. S. 1146:Iida, K.-I.; Hirama, M. 767:lithium-halogen exchange 735:trialkylsilyl protection 430:-mycarose sugar and the 1048:antibody-drug conjugate 974:-dependent halogenase. 814:4-dimethylaminopyridine 721:Epoxide stereochemistry 689:The instability toward 670:retrosynthetic analysis 579:Nucleophilic activation 514:Free-radical DNA damage 348:in 1992, comprising an 344:first isolated from an 17:Kedarcidin chromophore 1182:Comp. Nat. Prod. Chem. 982: 927: 857: 827: 777: 749: 717: 681: 617: 575: 523: 510: 493: 1521:FEMS Microbiol. Lett. 1320:Angew. Chem. Int. Ed. 1053:inotuzumab ozogamicin 980: 925: 854: 826: 775: 748: 716: 679: 615: 573: 521: 508: 491: 1666:Antineoplastic drugs 989:cluster to those of 782:Sonogashira coupling 389:Bristol-Myers Squibb 342:antitumor antibiotic 163:(chromophore): 137:(chromophore): 116:(chromophore): 95:(chromophore): 70:(chromophore): 1706:Nine-membered rings 1701:Isopropyl compounds 843:)-2-aza-3-chloro-β- 691:Bergman cyclization 528:Bergman cyclization 497:Mechanism of action 309:Cytotoxic, mutagen 276: g·mol 18: 1691:Experimental drugs 983: 928: 858: 828: 778: 750: 718: 682: 618: 602:sodium borohydride 576: 524: 511: 494: 451:Harvard University 445:of researchers at 323:Infobox references 16: 1653: 1652: 1618:10 membered rings 1421:J. Am. Chem. Soc. 1401:J. Am. Chem. Soc. 1279:Tetrahedron Lett. 1259:J. Am. Chem. Soc. 1239:J. Am. Chem. Soc. 1148:J. Am. Chem. Soc. 1121:J. Am. Chem. Soc. 1098:J. Am. Chem. Soc. 1078:J. Am. Chem. Soc. 1027:methyltransferase 997:, enediynes with 957: 945: 635:β-mercaptoethanol 447:Tohoku University 443:synthetic efforts 429: 419:mass spectrometry 331:Chemical compound 329: 328: 98:Interactive image 1713: 1609:Neocarzinostatin 1587:9 membered rings 1573: 1566: 1559: 1550: 1531: 1517: 1511: 1490:Nat. Biotechnol. 1486: 1480: 1466: 1460: 1446: 1431: 1417: 1411: 1397: 1391: 1377: 1371: 1357: 1351: 1336: 1330: 1316: 1310: 1299:Tetrahedron Lett 1295: 1289: 1275: 1269: 1255: 1249: 1235: 1229: 1215: 1204: 1167: 1158: 1144: 1131: 1117: 1108: 1094: 1088: 1074: 1038:last hurdle, as 991:neocarzinostatin 955: 943: 866:neocarzinostatin 792:generation of a 740:regioselectivity 708:Martin sulfurane 652:= 68 min); Zein 427: 406:0.4 ng/ml, 275: 273: 256: 250: 247: 241: 235: 228:Chemical formula 168: 156: 142: 121: 100: 75: 35: 26: 19: 1721: 1720: 1716: 1715: 1714: 1712: 1711: 1710: 1676:Cancer research 1656: 1655: 1654: 1649: 1645:Shishijimicin A 1613: 1582: 1577: 1540: 1535: 1534: 1518: 1514: 1487: 1483: 1467: 1463: 1447: 1434: 1418: 1414: 1398: 1394: 1378: 1374: 1358: 1354: 1337: 1333: 1317: 1313: 1296: 1292: 1276: 1272: 1256: 1252: 1236: 1232: 1216: 1207: 1168: 1161: 1145: 1134: 1118: 1111: 1095: 1091: 1075: 1066: 1061: 1040:fully synthetic 1035: 968:carrier protein 962:encoded in the 833: 802: 786:Glaser coupling 755: 723: 687: 662: 651: 639:tetrahydrofuran 581: 516: 499: 465:. Instead, an ( 404: 385: 332: 325: 320: 306: 271: 269: 259: 253: 244: 238: 230: 216: 213: 208: 207: 196: 193: 192: 189: 183: 182: 171: 157: 145: 124: 103: 89: 78: 64: 50: 12: 11: 5: 1719: 1717: 1709: 1708: 1703: 1698: 1693: 1688: 1683: 1678: 1673: 1668: 1658: 1657: 1651: 1650: 1648: 1647: 1642: 1637: 1632: 1627: 1621: 1619: 1615: 1614: 1612: 1611: 1606: 1601: 1596: 1590: 1588: 1584: 1583: 1578: 1576: 1575: 1568: 1561: 1553: 1547: 1546: 1539: 1538:External links 1536: 1533: 1532: 1512: 1510:, 11959–11963. 1481: 1461: 1432: 1412: 1410:, 13082–13094. 1392: 1372: 1352: 1331: 1311: 1290: 1270: 1250: 1230: 1205: 1159: 1132: 1109: 1107:, 12012–12013. 1089: 1063: 1062: 1060: 1057: 1034: 1031: 1018:invoke double 832: 829: 801: 798: 754: 751: 722: 719: 686: 683: 661: 658: 649: 580: 577: 515: 512: 498: 495: 402: 384: 381: 330: 327: 326: 321: 317:standard state 314: 311: 310: 307: 304: 301: 300: 291: 290: 286: 285: 282: 278: 277: 267: 261: 260: 257: 251: 242: 236: 231: 226: 223: 222: 218: 217: 215: 214: 211: 203: 202: 201: 198: 197: 195: 194: 190: 187: 186: 178: 177: 176: 173: 172: 170: 169: 160: 158: 150: 147: 146: 144: 143: 134: 132: 126: 125: 123: 122: 113: 111: 105: 104: 102: 101: 92: 90: 83: 80: 79: 77: 76: 67: 65: 60: 57: 56: 52: 51: 48: 42: 41: 37: 36: 28: 27: 13: 10: 9: 6: 4: 3: 2: 1718: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1663: 1661: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1625:Calicheamicin 1623: 1622: 1620: 1616: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1591: 1589: 1585: 1581: 1574: 1569: 1567: 1562: 1560: 1555: 1554: 1551: 1545: 1542: 1541: 1537: 1529: 1525: 1522: 1516: 1513: 1509: 1505: 1502: 1498: 1494: 1491: 1485: 1482: 1478: 1474: 1471: 1465: 1462: 1458: 1454: 1451: 1450:Mol. BioSyst. 1445: 1443: 1441: 1439: 1437: 1433: 1429: 1425: 1422: 1416: 1413: 1409: 1405: 1402: 1396: 1393: 1389: 1385: 1382: 1376: 1373: 1369: 1365: 1362: 1356: 1353: 1349: 1345: 1341: 1340:J. Org. Chem. 1335: 1332: 1328: 1324: 1321: 1315: 1312: 1308: 1304: 1300: 1294: 1291: 1287: 1283: 1280: 1274: 1271: 1267: 1263: 1260: 1254: 1251: 1247: 1243: 1240: 1234: 1231: 1227: 1223: 1220: 1214: 1212: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1183: 1179: 1175: 1172: 1171:J. Med. Chem. 1166: 1164: 1160: 1156: 1152: 1149: 1143: 1141: 1139: 1137: 1133: 1129: 1125: 1122: 1116: 1114: 1110: 1106: 1102: 1099: 1093: 1090: 1086: 1082: 1079: 1073: 1071: 1069: 1065: 1058: 1056: 1054: 1049: 1045: 1041: 1032: 1030: 1028: 1025: 1021: 1017: 1013: 1009: 1004: 1000: 996: 992: 988: 979: 975: 973: 969: 965: 961: 953: 949: 941: 937: 933: 924: 920: 918: 914: 910: 906: 902: 898: 894: 889: 887: 883: 879: 878:calicheamicin 875: 871: 867: 863: 853: 849: 846: 842: 838: 830: 825: 821: 819: 818:triethylamine 815: 811: 807: 799: 797: 795: 791: 787: 783: 774: 770: 768: 764: 760: 752: 747: 743: 741: 736: 732: 728: 720: 715: 711: 709: 705: 700: 696: 692: 684: 678: 674: 671: 667: 659: 657: 655: 648: 644: 640: 636: 631: 627: 623: 614: 610: 608: 603: 599: 594: 590: 587: 586: 578: 572: 568: 566: 562: 558: 557:intercalation 554: 553:calicheamicin 550: 544: 541: 537: 533: 529: 520: 513: 507: 503: 496: 490: 486: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 439: 437: 433: 424: 420: 416: 411: 409: 405: 398: 397:noncovalently 394: 390: 382: 380: 378: 374: 370: 366: 362: 358: 354: 351: 347: 343: 340: 339:chromoprotein 336: 324: 318: 312: 308: 303: 302: 298: 297: 292: 287: 283: 280: 279: 268: 266: 263: 262: 232: 229: 225: 224: 219: 210: 206: 199: 185: 181: 174: 167: 162: 161: 159: 153: 149: 148: 141: 136: 135: 133: 131: 128: 127: 120: 115: 114: 112: 110: 107: 106: 99: 94: 93: 91: 87: 82: 81: 74: 69: 68: 66: 63: 59: 58: 53: 47: 43: 38: 34: 29: 25: 20: 1686:Naphthalenes 1640:Golfomycin A 1604:Maduropeptin 1598: 1527: 1523: 1520: 1515: 1507: 1503: 1500: 1496: 1492: 1489: 1484: 1479:, 1173–1176. 1476: 1472: 1469: 1464: 1456: 1452: 1449: 1430:, 2406–2407. 1427: 1423: 1420: 1415: 1407: 1403: 1400: 1395: 1387: 1383: 1380: 1375: 1370:, 1170–1173. 1367: 1363: 1360: 1355: 1347: 1343: 1339: 1334: 1329:, 2732–2735. 1326: 1322: 1319: 1314: 1309:, 9633–9636. 1306: 1302: 1298: 1293: 1285: 1281: 1278: 1273: 1265: 1261: 1258: 1253: 1248:, 4583–4585. 1245: 1241: 1238: 1233: 1228:, 2822–2826. 1225: 1221: 1218: 1200: 1196: 1192: 1188: 1184: 1181: 1177: 1173: 1170: 1157:, 8875–8876. 1154: 1150: 1147: 1130:, 5381–5383. 1127: 1123: 1120: 1104: 1100: 1097: 1092: 1087:, 8432–8443. 1084: 1080: 1077: 1044:biosynthetic 1036: 1019: 1015: 1011: 1007: 995:maduropeptin 986: 984: 963: 951: 940:maduropeptin 931: 929: 916: 912: 908: 904: 892: 890: 870:maduropeptin 859: 856:chromophore. 840: 837:biosynthetic 834: 831:Biosynthesis 803: 794:vinyllithium 789: 779: 756: 730: 726: 724: 688: 665: 663: 653: 646: 633:presence of 629: 621: 619: 606: 597: 591:addition of 589:nucelophilic 583: 582: 545: 531: 525: 500: 482: 478: 474: 471:β-amino acid 466: 462: 459:α-amino acid 454: 440: 435: 412: 386: 379:properties. 350:ansa-bridged 346:Actinomycete 334: 333: 305:Main hazards 294: 55:Identifiers 1635:Esperamicin 1630:Dynemicin A 1381:Chem. Biol. 1350:, 1822–1830 1024:radical SAM 999:naphthonate 960:aminomutase 882:esperamicin 704:propargylic 699:dehydrative 643:deoxyribose 561:chelatively 540:deoxyribose 413:Subsequent 393:chromophore 299:(OHS/OSH): 281:Appearance 221:Properties 73:143591-04-2 1660:Categories 1599:Kedarcidin 1530:, 105–114. 1459:, 478–491. 1390:, 293–302. 1268:, 660–661. 1059:References 1033:Conclusion 874:sporolides 377:anticancer 357:apoprotein 335:Kedarcidin 265:Molar mass 109:ChemSpider 84:3D model ( 62:CAS Number 46:IUPAC name 1681:Enediynes 1580:Enediynes 886:dynemicin 763:5-exo-dig 695:enediynes 593:thiolates 565:netropsin 1696:Lactones 1671:Epoxides 1003:benzoate 948:tyrosine 932:a priori 899:and the 845:tyrosine 624:. While 432:aglycone 361:enediyne 353:enediyne 289:Hazards 119:26286043 1470:Science 1361:Science 1288:, 4733. 1029:KedN5. 917:E. coli 790:in situ 622:in vivo 607:in vivo 600:., C12- 585:In vivo 536:benzyne 369:alkynyl 166:6444256 152:PubChem 1594:C-1027 1203:, 201. 1016:et al. 952:et al. 938:, and 936:C-1027 913:kedE10 884:, and 862:C-1027 816:, and 654:et al. 630:et al. 365:alkene 205:SMILES 140:C21301 40:Names 727:et al 666:et al 598:et al 479:et al 475:et al 463:et al 337:is a 180:InChI 86:JSmol 1524:2008 1504:2003 1493:2003 1473:2002 1453:2013 1424:2008 1404:2007 1384:2005 1364:2002 1344:2004 1323:2000 1303:1998 1282:1979 1262:1972 1242:2002 1222:1993 1197:1998 1185:1999 1174:1996 1151:1995 1124:2007 1101:1997 1081:1993 1042:and 993:and 911:and 909:kedE 905:kedA 532:para 449:and 436:ansa 130:KEGG 1528:282 1508:100 1477:297 1428:130 1408:129 1368:297 1246:124 1155:117 1128:129 1105:119 1085:115 1001:or 987:ked 964:ked 893:ked 626:MM2 485:). 423:NOE 415:NMR 410:). 373:DNA 274:.52 272:030 155:CID 1662:: 1526:, 1506:, 1497:21 1495:, 1475:, 1455:, 1435:^ 1426:, 1406:, 1388:12 1386:, 1366:, 1348:69 1346:, 1342:, 1327:39 1325:, 1307:39 1305:, 1301:. 1286:20 1284:, 1266:94 1264:, 1244:, 1226:90 1224:, 1208:^ 1199:, 1195:, 1187:, 1178:39 1176:, 1162:^ 1153:, 1135:^ 1126:, 1112:^ 1103:, 1083:, 1067:^ 946:)- 880:, 872:, 868:, 864:, 812:, 710:. 609:. 469:)- 457:)- 417:, 403:50 401:IC 258:16 246:Cl 243:60 237:53 1572:e 1565:t 1558:v 1457:9 1201:3 1189:7 1020:C 1012:O 1008:O 956:L 944:L 841:R 731:S 650:½ 647:t 534:- 483:S 467:R 455:S 428:L 270:1 255:O 252:3 249:N 240:H 234:C 88:)

Index



IUPAC name
CAS Number
143591-04-2
JSmol
Interactive image
ChemSpider
26286043
KEGG
C21301
PubChem
6444256
InChI
SMILES
Chemical formula
Molar mass
Occupational safety and health
standard state
Infobox references
chromoprotein
antitumor antibiotic
Actinomycete
ansa-bridged
enediyne
apoprotein
enediyne
alkene
alkynyl
DNA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑