Knowledge (XXG)

Kepler–Poinsot polyhedron

Source 📝

3526: 1105: 1062: 1793: 1691: 80: 50: 1576: 1342: 1096: 1053: 1660: 1543: 1426: 1309: 36: 66: 1225: 3484: 2680: 1459: 2891: 2914: 1952: 1239: 2907: 2884: 2565: 1932: 1912: 1590: 1356: 1087: 1044: 3556: 3070: 3046: 2025: 2005: 1583: 1473: 3517: 3288: 3274: 1651: 1417: 1349: 3332: 3318: 3244: 3230: 3065: 3041: 2921: 2898: 3283: 3269: 3022: 3017: 3327: 3313: 3260: 3255: 1985: 3239: 3225: 3304: 3299: 1534: 1232: 1879: 3216: 3211: 1466: 1300: 1863: 1839: 3144: 3120: 2673: 2558: 2330: 2308: 2218: 2207: 2169: 2158: 1823: 3139: 3115: 2297: 2286: 2196: 2185: 2147: 2133: 3601: 3096: 3091: 2666: 2551: 2319: 2275: 2117: 2106: 3576: 3406:
the regular convex dodecahedron, for the first time treating it as a surface rather than a solid. He noticed that by extending the edges or faces of the convex dodecahedron until they met again, he could obtain star pentagons. Further, he recognized that these star pentagons are also regular. In this
498:
A Kepler–Poinsot polyhedron covers its circumscribed sphere more than once, with the centers of faces acting as winding points in the figures which have pentagrammic faces, and the vertices in the others. Because of this, they are not necessarily topologically equivalent to the sphere as Platonic
481:
which touch at five points around the pentagon. We could treat these triangles as 60 separate faces to obtain a new, irregular polyhedron which looks outwardly identical. Each edge would now be divided into three shorter edges (of two different kinds), and the 20 false vertices would become true
461:
In all cases, two faces can intersect along a line that is not an edge of either face, so that part of each face passes through the interior of the figure. Such lines of intersection are not part of the polyhedral structure and are sometimes called false edges. Likewise where three such lines
3407:
way he constructed the two stellated dodecahedra. Each has the central convex region of each face "hidden" within the interior, with only the triangular arms visible. Kepler's final step was to recognize that these polyhedra fit the definition of regularity, even though they were not
3422:
rediscovered Kepler's figures, by assembling star pentagons around each vertex. He also assembled convex polygons around star vertices to discover two more regular stars, the great icosahedron and great dodecahedron. Some people call these two the
3772:"These figures are so closely related the one to the dodecahedron the other to the icosahedron that the latter two figures, particularly the dodecahedron, seem somehow truncated or maimed when compared to the figures with spikes." ( 413: 340: 222: 2543: 2515: 1070: 1113: 555:
does not always hold. Schläfli held that all polyhedra must have χ = 2, and he rejected the small stellated dodecahedron and great dodecahedron as proper polyhedra. This view was never widely held.
2773: 2727: 2658: 2612: 1027: 980: 933: 884: 837: 790: 3787:"A small stellated dodecahedron can be constructed by cumulation of a dodecahedron, i.e., building twelve pentagonal pyramids and attaching them to the faces of the original dodecahedron." 3346:
Most, if not all, of the Kepler-Poinsot polyhedra were known of in some form or other before Kepler. A small stellated dodecahedron appears in a marble tarsia (inlay panel) on the floor of
3152: 3128: 3078: 3054: 268: 2454: 3104: 3030: 693: 462:
intersect at a point that is not a corner of any face, these points are false vertices. The images below show spheres at the true vertices, and blue rods along the true edges.
4191: 550: 726:. Two relationships described in the article below are also easily seen in the images: That the violet edges are the same, and that the green faces lie in the same planes. 2415: 622: 595: 482:
ones, so that we have a total of 32 vertices (again of two kinds). The hidden inner pentagons are no longer part of the polyhedral surface, and can disappear. Now
224:
times the original icosahedron edge length. The small stellated dodecahedron, great dodecahedron, and great stellated dodecahedron edge lengths are respectively
3892: 3819:"Another way to construct a great stellated dodecahedron via cumulation is to make 20 triangular pyramids and attach them to the sides of an icosahedron." 3525: 3183: 2256:
The great stellated dodecahedron shares its vertices with the dodecahedron. The other three Kepler–Poinsot polyhedra share theirs with the icosahedron.
4184: 345: 272: 154: 4291: 2842:
This is just a help to visualize the shape of these solids, and not actually a claim that the edge intersections (false vertices) are vertices.
4505: 4080: 3990: 3973: 3876: 2521: 2493: 1792: 1690: 2245: 1766:
changes pentagonal faces into pentagrams. (In this sense stellation is a unique operation, and not to be confused with the more general
1104: 1061: 4177: 3608:
Regular star polyhedra first appear in Renaissance art. A small stellated dodecahedron is depicted in a marble tarsia on the floor of
4409: 4394: 4379: 4296: 4096: 4054: 4424: 4399: 4384: 2949:
resemble the icosahedron and its dual in that they have faces and vertices on the 3-fold (yellow) and 5-fold (red) symmetry axes.
1630: 1483: 1396: 1249: 4419: 4414: 3543: 3363: 1610: 1600: 1575: 1513: 1493: 1376: 1366: 1341: 1279: 1259: 79: 49: 1620: 1503: 1386: 1269: 4374: 3981: 3852: 1625: 1508: 1391: 1274: 1615: 1605: 1498: 1488: 1381: 1371: 1264: 1254: 1095: 1052: 486:
holds: 60 − 90 + 32 = 2. However, this polyhedron is no longer the one described by the
2733: 2687: 2618: 2572: 4404: 3985:, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, 4515: 4341: 4331: 4271: 4261: 4231: 4221: 3538: 3483: 3469: 3388: 3376: 3194: 3190: 3006: 2995: 2956: 2946: 2382: 2378: 2334: 2312: 2222: 2211: 2173: 2162: 2081: 1725: 1567: 1333: 937: 747: 466: 432: 428: 85: 55: 1659: 4346: 4336: 4286: 989: 942: 895: 846: 799: 752: 1542: 1425: 1308: 4469: 4459: 4356: 4351: 3625: 2679: 3391:. It is clear from the general arrangement of the book that he regarded only the five Platonic solids as regular. 1224: 628:, and holds both for convex polyhedra (where the correction factors are all 1), and the Kepler–Poinsot polyhedra: 35: 4474: 4464: 3682: 3584: 2068: 2890: 1951: 1458: 65: 4510: 4484: 4479: 4266: 3652: 2913: 1238: 2838:
states that the two star polyhedra can be constructed by adding pyramids to the faces of the Platonic solids.
1931: 1911: 1589: 1355: 227: 2420: 4281: 4276: 3702: 3692: 3555: 2970: 3069: 3045: 2906: 2883: 2564: 4389: 3347: 3287: 3273: 1650: 1416: 1160: 490:{5/2, 5}, and so can not be a Kepler–Poinsot solid even though it still looks like one from outside. 634: 4068: 3961: 3934: 3633: 3516: 3384: 2963: 2850: 2024: 2004: 1582: 1472: 1348: 1086: 1043: 4153: 3609: 3492: 3331: 3317: 2826:
In his view the great stellation is related to the icosahedron as the small one is to the dodecahedron.
3243: 3229: 2959:
all faces and vertices are on 5-fold symmetry axes (so there are no yellow elements in these images).
3993: 2984: 2935: 2831: 2386: 2323: 2121: 2074: 1194: 1184: 508: 500: 3064: 3040: 2920: 2897: 4316: 3697: 3637: 3282: 3268: 2980: 2854: 2279: 2110: 2064: 984: 3021: 3016: 2786:
This implies that the pentagrams have the same size, and that the cores have the same edge length.
2395:
The pentagon faces of these cores are the invisible parts of the star polyhedra's pentagram faces.
4326: 4321: 4256: 4226: 4064: 3957: 3687: 3677: 3534: 3461: 3380: 2991: 2952: 2390: 2350: 2290: 2234: 2200: 2151: 1707: 1695: 1216: 1199: 794: 559: 478: 443: 103: 41: 3825: 3793: 3744:
Conway et al. (2008), p.405 Figure 26.1 Relationships among the three-dimensional star-polytopes
3326: 3312: 3259: 3254: 1154: 487: 3238: 3224: 4444: 4236: 4158: 4115: 4092: 4076: 4050: 3986: 3969: 3872: 3856: 3822: 3790: 3580: 3408: 3303: 3298: 3198: 3002: 2942: 2400: 2359: 2301: 2189: 2137: 2056: 1984: 1450: 890: 447: 138:. They can all be seen as three-dimensional analogues of the pentagram in one way or another. 117: 71: 2233:
If the intersections are treated as new edges and vertices, the figures obtained will not be
4454: 4449: 4042: 3864: 3774: 3759: 3672: 3561: 3372: 3215: 3210: 3201:
have the same edge length, namely the side length of a pentagram in the surrounding decagon.
1299: 2962:
The following table shows the solids in pairs of duals. In the top row they are shown with
1533: 1231: 600: 573: 4200: 3920: 3566: 3443: 3431: 3399: 3143: 3119: 2672: 2557: 2329: 2307: 2217: 2206: 2168: 2157: 1465: 1209: 841: 704: 131: 106: 4118: 3644: 17: 3623:'s interest in geometric forms often led to works based on or including regular solids; 1878: 4308: 3439: 3412: 1204: 1189: 708: 451: 1862: 1838: 4499: 4021: 4011: 3944: 3613: 3501: 3457:
gave the Kepler–Poinsot polyhedra the names by which they are generally known today.
3454: 3419: 3355: 2966:, in the bottom row with icosahedral symmetry (to which the mentioned colors refer). 2875: 1178: 715: 625: 567: 455: 135: 4147: 3660: 3620: 3138: 3114: 2459: 2296: 2285: 2195: 2184: 2146: 2132: 1822: 723: 483: 436: 120: 4137: 3861:
Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination
3600: 4038:, Cambridge University Press (1976) - discussion of proof of Euler characteristic 3656: 3095: 3090: 2665: 2550: 2318: 2274: 2116: 2105: 124: 711:, or more precisely, Petrie polygons with the same two dimensional projection. 4142: 3868: 3706: 3465: 3435: 3403: 2259: 2238: 2060: 1776:
maintains the type of faces, shifting and resizing them into parallel planes.
1767: 1721: 1694:
Conway's system of relations between the six polyhedra (ordered vertically by
1147: 113: 4123: 3830: 3798: 3427:. Poinsot did not know if he had discovered all the regular star polyhedra. 3173: 2835: 2781: 2467: 1799: 719: 470: 439: 424: 408:{\displaystyle \phi ^{5}={\tfrac {1}{2}}{\bigl (}11+5{\sqrt {5}}\,{\bigr )}} 128: 4169: 3575: 477:
part hidden inside the solid. The visible parts of each face comprise five
335:{\displaystyle \phi ^{2}={\tfrac {1}{2}}{\bigl (}3+{\sqrt {5}}\,{\bigr )},} 217:{\displaystyle \phi ^{4}={\tfrac {1}{2}}{\bigl (}7+3{\sqrt {5}}\,{\bigr )}} 3447: 2846: 2263: 2085: 474: 95: 2973:
from the 5-fold (red), 3-fold (yellow) and 2-fold (blue) symmetry axes.
2810:
i.e. as dodecahedron and icosahedron with pyramids added to their faces.
4163: 4132: 3778:, Book II, Proposition XXVI — p. 117 in the translation by E. J. Aiton) 3354:, Italy. It dates from the 15th century and is sometimes attributed to 3177: 2538:{\displaystyle {\frac {\text{core midradius}}{\text{hull midradius}}}} 2510:{\displaystyle {\frac {\text{hull midradius}}{\text{core midradius}}}} 3496: 3488: 3351: 3612:, Venice, Italy, dating from ca. 1430 and sometimes attributed to 3599: 3574: 3554: 3482: 2023: 2003: 1983: 1950: 1930: 1910: 3763:, Book V, Chapter III — p. 407 in the translation by E. J. Aiton) 3468:
for stellations in up to four dimensions. Within this scheme the
3733:
Star polytopes and the Schläfli function f(α,β,γ)
3394:
The small and great stellated dodecahedra, sometimes called the
2470:
is a common measure to compare the size of different polyhedra.)
4173: 4083:(Chapter 26. pp. 404: Regular star-polytopes Dimension 3) 4018:. San Carlos, CA: Wide World Publ./Tetra, p. 113, 1989. 4166:: Software used to create many of the images on this page. 3753:"augmented dodecahedron to which I have given the name of 2800:
Traditionally the two star polyhedra have been defined as
3903:
H.S.M. Coxeter, P. Du Val, H.T. Flather and J.F. Petrie;
3709:, 4-dimensional analogues of the Kepler–Poinsot polyhedra 2393:
with their edges and faces extended until they intersect.
3636:
of the great dodecahedron was used for the 1980s puzzle
4091:. California: University of California Press Berkeley. 3976:(Chapter 24, Regular Star-polytopes, pp. 404–408) 1798:
The polyhedra in this section are shown with the same
363: 290: 172: 3925:
Comptes rendus des séances de l'Académie des Sciences
2788:(Compare the 5-fold orthographic projections below.) 2768:{\displaystyle {\frac {3-{\sqrt {5}}}{2}}=0.38196...} 2736: 2722:{\displaystyle {\frac {3+{\sqrt {5}}}{2}}=2.61803...} 2690: 2653:{\displaystyle {\frac {{\sqrt {5}}-1}{2}}=0.61803...} 2621: 2607:{\displaystyle {\frac {{\sqrt {5}}+1}{2}}=1.61803...} 2575: 2524: 2496: 2423: 2403: 992: 945: 898: 849: 802: 755: 637: 603: 576: 511: 348: 275: 230: 157: 4138:
Free paper models (nets) of Kepler–Poinsot polyhedra
2417:
times bigger than the core, and for the great it is
4433: 4365: 4305: 4245: 4207: 2090:The three others are facetings of the icosahedron. 2767: 2721: 2652: 2606: 2537: 2509: 2448: 2409: 1021: 974: 927: 878: 831: 784: 687: 616: 589: 544: 407: 334: 262: 216: 4005:Star Polytopes and the Schlafli Function f(α,β,γ) 3442:, and almost half a century after that, in 1858, 3172:The platonic hulls in these images have the same 2780:The platonic hulls in these images have the same 2397:For the small stellated dodecahedron the hull is 427:(star pentagons) as faces or vertex figures. The 3855:(2013). "Regular and semiregular polyhedra". In 2073:The three others are all the stellations of the 1022:{\displaystyle \left\{{\frac {10}{3,5}}\right\}} 3923:, Note sur la théorie des polyèdres réguliers, 3655:. The star spans 14 meters, and consists of an 3176:, so all the 5-fold projections below are in a 975:{\displaystyle \left\{{\frac {5}{2}},3\right\}} 928:{\displaystyle \left\{3,{\frac {5}{2}}\right\}} 879:{\displaystyle \left\{{\frac {6}{1,3}}\right\}} 832:{\displaystyle \left\{5,{\frac {5}{2}}\right\}} 785:{\displaystyle \left\{{\frac {5}{2}},5\right\}} 2845:If they were, the two star polyhedra would be 722:. They also show that the Petrie polygons are 4185: 415:times the original dodecahedron edge length. 400: 376: 324: 303: 209: 185: 8: 3893:File:Perspectiva Corporum Regularium 27e.jpg 3629:is based on a small stellated dodecahedron. 4154:VRML models of the Kepler–Poinsot polyhedra 3941:J. de l'École Polytechnique 9, 68–86, 1813. 2477:Hull and core of the stellated dodecahedra 4192: 4178: 4170: 4159:Stellation and facetting - a brief history 4024:, Memoire sur les polygones et polyèdres. 3863:(2nd ed.). Springer. pp. 41–52. 3162: 2860: 2473: 2092: 1778: 558:A modified form of Euler's formula, using 127:, and differ from these in having regular 3596:Regular star polyhedra in art and culture 3371:), a book of woodcuts published in 1568, 2746: 2737: 2735: 2700: 2691: 2689: 2625: 2622: 2620: 2579: 2576: 2574: 2525: 2523: 2497: 2495: 2440: 2422: 2402: 1757:great stellated dodecahedron (sgD = gsD) 1686:Relationships among the regular polyhedra 997: 991: 951: 944: 910: 897: 854: 848: 814: 801: 761: 754: 664: 642: 636: 608: 602: 581: 575: 510: 399: 398: 397: 390: 375: 374: 362: 353: 347: 323: 322: 321: 314: 302: 301: 289: 280: 274: 250: 235: 229: 208: 207: 206: 199: 184: 183: 171: 162: 156: 4133:Paper models of Kepler–Poinsot polyhedra 3947:, On Poinsot's Four New Regular Solids. 2975: 2385:stellated dodecahedron can be seen as a 2269: 1734: 1710:defines the Kepler–Poinsot polyhedra as 1689: 1130: 728: 263:{\displaystyle \phi ^{3}=2+{\sqrt {5}},} 3724: 3663:inside a great stellated dodecahedron. 2934:All Kepler–Poinsot polyhedra have full 2864:Stellated dodecahedra as augmentations 2449:{\displaystyle \varphi +1=\varphi ^{2}} 1702: 4292:nonconvex great rhombicosidodecahedron 3735:p. 121 1. The Kepler–Poinsot polyhedra 3398:, were first recognized as regular by 703:The Kepler–Poinsot polyhedra exist in 2814:Kepler calls the small stellation an 2346: 151:The great icosahedron edge length is 7: 3980:Kaleidoscopes: Selected Writings of 3383:(both shown below). There is also a 2262:of the solids sharing vertices are 2246:List of Wenninger polyhedron models 2237:, but they can still be considered 688:{\displaystyle d_{v}V-E+d_{f}F=2D.} 4103:Chapter 8: Kepler Poisot polyhedra 3907:, 3rd Edition, Tarquin, 1999. p.11 3369:Perspectives of the regular solids 714:The following images show the two 499:solids are, and in particular the 454:polygonal faces, but pentagrammic 25: 4410:great stellapentakis dodecahedron 4395:medial pentagonal hexecontahedron 4380:small stellapentakis dodecahedron 4297:great truncated icosidodecahedron 3954:, pp. 123–127 and 209, 1859. 3446:provided a more elegant proof by 3402:around 1619. He obtained them by 2834:definitions are still used. E.g. 4425:great pentagonal hexecontahedron 4400:medial disdyakis triacontahedron 4385:medial deltoidal hexecontahedron 3524: 3515: 3330: 3325: 3316: 3311: 3302: 3297: 3286: 3281: 3272: 3267: 3258: 3253: 3242: 3237: 3228: 3223: 3214: 3209: 3142: 3137: 3118: 3113: 3094: 3089: 3068: 3063: 3044: 3039: 3020: 3015: 2938:, just like their convex hulls. 2919: 2912: 2905: 2896: 2889: 2882: 2678: 2671: 2664: 2563: 2556: 2549: 2328: 2317: 2306: 2295: 2284: 2273: 2216: 2205: 2194: 2183: 2167: 2156: 2145: 2131: 2115: 2104: 1877: 1861: 1837: 1821: 1791: 1703:Conway's operational terminology 1658: 1649: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1588: 1581: 1574: 1541: 1532: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1471: 1464: 1457: 1424: 1415: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1354: 1347: 1340: 1307: 1298: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1237: 1230: 1223: 1103: 1094: 1085: 1060: 1051: 1042: 78: 64: 48: 34: 4420:great disdyakis triacontahedron 4415:great deltoidal hexecontahedron 3544:Perspectiva Corporum Regularium 3364:Perspectiva corporum regularium 2358:share vertices, skeletons form 545:{\displaystyle \chi =V-E+F=2\ } 27:Any of 4 regular star polyhedra 4375:medial rhombic triacontahedron 4049:. Cambridge University Press. 4014:, (The Kepler–Poinsot Solids) 3826:"Great Stellated Dodecahedron" 3794:"Small Stellated Dodecahedron" 3005:)   and   {5/2, 3} ( 2994:)   and   {5/2, 5} ( 2226:(the one with yellow vertices) 1: 4405:great rhombic triacontahedron 3939:Recherches sur les polyèdres. 1782:Conway relations illustrated 1562:great stellated dodecahedron 1328:small stellated dodecahedron 4342:great dodecahemidodecahedron 4332:small dodecahemidodecahedron 4272:truncated dodecadodecahedron 4262:truncated great dodecahedron 4232:great stellated dodecahedron 4222:small stellated dodecahedron 4164:Stella: Polyhedron Navigator 4089:Polyhedra: A Visual Approach 3931:(1858), pp. 79–82, 117. 3619:In the 20th century, artist 3539:great stellated dodecahedron 3470:small stellated dodecahedron 3434:proved the list complete by 3389:small stellated dodecahedron 3377:great stellated dodecahedron 2983:)   and   {5, 3} ( 2335:great stellated dodecahedron 2313:small stellated dodecahedron 2082:great stellated dodecahedron 1749:stellated dodecahedron (sD) 1726:small stellated dodecahedron 1568:great stellated dodecahedron 1565: 1448: 1334:small stellated dodecahedron 1331: 1214: 938:great stellated dodecahedron 748:small stellated dodecahedron 467:small stellated dodecahedron 433:great stellated dodecahedron 86:Great stellated dodecahedron 56:Small stellated dodecahedron 4347:great icosihemidodecahedron 4337:small icosihemidodecahedron 4287:truncated great icosahedron 4026:J. de l'École Polytechnique 4003:(Paper 10) H.S.M. Coxeter, 2141:(the one with yellow faces) 707:pairs. Duals have the same 699:Duality and Petrie polygons 4532: 4470:great dodecahemidodecacron 4460:small dodecahemidodecacron 4357:small dodecahemicosahedron 4352:great dodecahemicosahedron 3997:(Paper 1) H.S.M. Coxeter, 3184:projection of the compound 2096:Stellations and facetings 4475:great icosihemidodecacron 4465:small icosihemidodecacron 3905:The Fifty-Nine Icosahedra 3869:10.1007/978-0-387-92714-5 3683:List of regular polytopes 3170: 3166:orthographic projections 3165: 2863: 2778: 2476: 2368:The stellated dodecahedra 2357: 2344:share vertices and edges 2343: 2341:share vertices and edges 2340: 2252:Shared vertices and edges 2215: 2130: 2114: 2103: 2095: 2069:The Fifty-Nine Icosahedra 2051:Stellations and facetings 1781: 100:Kepler–Poinsot polyhedron 18:Kepler-Poinsot polyhedron 4506:Kepler–Poinsot polyhedra 4485:small dodecahemicosacron 4480:great dodecahemicosacron 4267:rhombidodecadodecahedron 4201:Star-polyhedra navigator 4073:The Symmetries of Things 3883:See in particular p. 42. 3653:Oslo Airport, Gardermoen 2971:orthographic projections 2410:{\displaystyle \varphi } 1746:great dodecahedron (gD) 1136:(Conway's abbreviation) 733:horizontal edge in front 112:They may be obtained by 4282:great icosidodecahedron 4277:snub dodecadodecahedron 4031:, pp. 16–48, 1810. 3999:The Nine Regular Solids 3705:– the ten regular star 3703:Regular star 4-polytope 3693:Uniform star polyhedron 3559:Stellated dodecahedra, 3460:A hundred years later, 1754:great icosahedron (gI) 473:faces with the central 4436:uniform polyhedra with 4390:small rhombidodecacron 4119:"Kepler–Poinsot solid" 4036:Proofs and Refutations 4016:The Joy of Mathematics 3966:The Symmetry of Things 3605: 3588: 3570: 3506: 3474:stellated dodecahedron 3466:systematic terminology 2969:The table below shows 2816:augmented dodecahedron 2769: 2723: 2654: 2608: 2539: 2511: 2450: 2411: 2039: 2019: 1999: 1966: 1946: 1926: 1730:stellated dodecahedron 1699: 1114:Compound of gI and gsD 1023: 976: 929: 880: 833: 786: 738:vertical edge in front 689: 618: 591: 546: 494:Euler characteristic χ 409: 336: 264: 218: 4148:Kepler-Poinsot Solids 4143:The Uniform Polyhedra 4087:Anthony Pugh (1976). 4069:Chaim Goodman-Strauss 3962:Chaim Goodman-Strauss 3935:Augustin-Louis Cauchy 3603: 3579:Cardboard model of a 3578: 3558: 3486: 3411:, as the traditional 2964:pyritohedral symmetry 2851:pentakis dodecahedron 2770: 2724: 2655: 2609: 2540: 2512: 2451: 2412: 2027: 2007: 1987: 1954: 1934: 1914: 1718:of the convex solids. 1693: 1116:with Petrie decagrams 1071:Compound of sD and gD 1024: 977: 930: 881: 834: 787: 690: 619: 617:{\displaystyle d_{f}} 592: 590:{\displaystyle d_{v}} 547: 410: 337: 265: 219: 4438:infinite stellations 4246:Uniform truncations 3453:The following year, 2936:icosahedral symmetry 2818:(then nicknaming it 2734: 2688: 2619: 2573: 2522: 2494: 2421: 2401: 2088:of the dodecahedron. 1073:with Petrie hexagons 990: 943: 896: 847: 800: 753: 635: 601: 574: 509: 346: 273: 228: 155: 4516:Nonconvex polyhedra 4366:Duals of nonconvex 4317:tetrahemihexahedron 4150:in Visual Polyhedra 3698:Polyhedral compound 3610:St. Mark's Basilica 3585:Tübingen University 3430:Three years later, 3348:St. Mark's Basilica 2855:triakis icosahedron 1445:great dodecahedron 479:isosceles triangles 423:These figures have 4434:Duals of nonconvex 4327:octahemioctahedron 4322:cubohemioctahedron 4306:Nonconvex uniform 4257:dodecadodecahedron 4248:of Kepler-Poinsot 4227:great dodecahedron 4215:regular polyhedra) 4116:Weisstein, Eric W. 3857:Senechal, Marjorie 3823:Weisstein, Eric W. 3791:Weisstein, Eric W. 3688:Uniform polyhedron 3678:Regular polyhedron 3651:is displayed near 3606: 3589: 3571: 3535:Great dodecahedron 3507: 3381:great dodecahedron 3189:This implies that 3180:of the same size. 2953:great dodecahedron 2849:equivalent to the 2765: 2719: 2650: 2604: 2535: 2507: 2446: 2407: 2391:great dodecahedron 2351:dodecahedral graph 2291:great dodecahedron 2040: 2020: 2000: 1967: 1947: 1927: 1770:described below.) 1700: 1679:great icosahedron 1217:great dodecahedron 1019: 972: 925: 876: 829: 795:great dodecahedron 782: 685: 614: 587: 542: 444:great dodecahedron 405: 372: 332: 299: 260: 214: 181: 42:Great dodecahedron 4493: 4492: 4445:tetrahemihexacron 4368:uniform polyhedra 4237:great icosahedron 4081:978-1-56881-220-5 4067:, Heidi Burgiel, 4061:, pp. 39–41. 4043:Wenninger, Magnus 3991:978-0-471-01003-6 3974:978-1-56881-220-5 3960:, Heidi Burgiel, 3878:978-0-387-92713-8 3853:Coxeter, H. S. M. 3643:Norwegian artist 3593: 3592: 3581:great icosahedron 3505: 3425:Poinsot polyhedra 3339: 3338: 3161: 3160: 3156: 3132: 3108: 3082: 3058: 3034: 2943:great icosahedron 2927: 2926: 2793: 2792: 2757: 2751: 2711: 2705: 2642: 2630: 2596: 2584: 2533: 2532: 2529: 2505: 2504: 2501: 2471: 2365: 2364: 2360:icosahedral graph 2302:great icosahedron 2231: 2230: 2227: 2142: 2057:great icosahedron 2048: 2047: 2044: 2043: 1971: 1970: 1898: 1897: 1803: 1761: 1760: 1741:dodecahedron (D) 1722:naming convention 1683: 1682: 1451:great icosahedron 1124: 1123: 1032: 1031: 1013: 959: 918: 891:great icosahedron 870: 822: 769: 541: 465:For example, the 448:great icosahedron 437:nonconvex regular 395: 371: 319: 298: 255: 204: 180: 72:Great icosahedron 16:(Redirected from 4523: 4455:octahemioctacron 4450:hexahemioctacron 4194: 4187: 4180: 4171: 4129: 4128: 4102: 4060: 3982:H. S. M. Coxeter 3908: 3901: 3895: 3890: 3884: 3882: 3849: 3843: 3842: 3841: 3839: 3838: 3817: 3811: 3810: 3809: 3807: 3806: 3785: 3779: 3775:Harmonices Mundi 3770: 3764: 3760:Harmonices Mundi 3751: 3745: 3742: 3736: 3729: 3673:Regular polytope 3638:Alexander's Star 3604:Alexander's Star 3562:Harmonices Mundi 3528: 3519: 3499: 3479: 3478: 3396:Kepler polyhedra 3373:Wenzel Jamnitzer 3335: 3334: 3329: 3321: 3320: 3315: 3307: 3306: 3301: 3291: 3290: 3285: 3277: 3276: 3271: 3263: 3262: 3257: 3247: 3246: 3241: 3233: 3232: 3227: 3219: 3218: 3213: 3202: 3187: 3163: 3150: 3147: 3146: 3141: 3126: 3123: 3122: 3117: 3102: 3099: 3098: 3093: 3076: 3073: 3072: 3067: 3052: 3049: 3048: 3043: 3028: 3025: 3024: 3019: 2976: 2923: 2916: 2909: 2900: 2893: 2886: 2872:Star polyhedron 2861: 2858: 2843: 2827: 2811: 2774: 2772: 2771: 2766: 2758: 2753: 2752: 2747: 2738: 2728: 2726: 2725: 2720: 2712: 2707: 2706: 2701: 2692: 2682: 2675: 2668: 2659: 2657: 2656: 2651: 2643: 2638: 2631: 2626: 2623: 2613: 2611: 2610: 2605: 2597: 2592: 2585: 2580: 2577: 2567: 2560: 2553: 2544: 2542: 2541: 2536: 2534: 2530: 2527: 2526: 2516: 2514: 2513: 2508: 2506: 2502: 2499: 2498: 2485:Star polyhedron 2474: 2465: 2463: 2455: 2453: 2452: 2447: 2445: 2444: 2416: 2414: 2413: 2408: 2353: 2347:share vertices, 2332: 2321: 2310: 2299: 2288: 2277: 2270: 2267: 2225: 2220: 2209: 2198: 2187: 2171: 2160: 2149: 2140: 2135: 2119: 2108: 2093: 2038: 2032: 2018: 2012: 1998: 1992: 1980: 1979: 1965: 1959: 1945: 1939: 1925: 1919: 1907: 1906: 1889: 1881: 1872: 1865: 1848: 1841: 1832: 1825: 1813: 1812: 1796: 1795: 1779: 1738:icosahedron (I) 1735: 1662: 1653: 1633: 1632: 1631: 1627: 1626: 1622: 1621: 1617: 1616: 1612: 1611: 1607: 1606: 1602: 1601: 1592: 1585: 1578: 1545: 1536: 1516: 1515: 1514: 1510: 1509: 1505: 1504: 1500: 1499: 1495: 1494: 1490: 1489: 1485: 1484: 1475: 1468: 1461: 1428: 1419: 1399: 1398: 1397: 1393: 1392: 1388: 1387: 1383: 1382: 1378: 1377: 1373: 1372: 1368: 1367: 1358: 1351: 1344: 1311: 1302: 1282: 1281: 1280: 1276: 1275: 1271: 1270: 1266: 1265: 1261: 1260: 1256: 1255: 1251: 1250: 1241: 1234: 1227: 1131: 1107: 1098: 1089: 1064: 1055: 1046: 1034: 1033: 1028: 1026: 1025: 1020: 1018: 1014: 1012: 998: 981: 979: 978: 973: 971: 967: 960: 952: 934: 932: 931: 926: 924: 920: 919: 911: 885: 883: 882: 877: 875: 871: 869: 855: 838: 836: 835: 830: 828: 824: 823: 815: 791: 789: 788: 783: 781: 777: 770: 762: 739: 734: 729: 694: 692: 691: 686: 669: 668: 647: 646: 623: 621: 620: 615: 613: 612: 596: 594: 593: 588: 586: 585: 551: 549: 548: 543: 539: 414: 412: 411: 406: 404: 403: 396: 391: 380: 379: 373: 364: 358: 357: 341: 339: 338: 333: 328: 327: 320: 315: 307: 306: 300: 291: 285: 284: 269: 267: 266: 261: 256: 251: 240: 239: 223: 221: 220: 215: 213: 212: 205: 200: 189: 188: 182: 173: 167: 166: 82: 68: 52: 38: 21: 4531: 4530: 4526: 4525: 4524: 4522: 4521: 4520: 4511:Johannes Kepler 4496: 4495: 4494: 4489: 4437: 4435: 4429: 4367: 4361: 4307: 4301: 4249: 4247: 4241: 4214: 4210: 4209:Kepler-Poinsot 4203: 4198: 4114: 4113: 4110: 4099: 4086: 4057: 4041: 4034:Lakatos, Imre; 3917: 3912: 3911: 3902: 3898: 3891: 3887: 3879: 3851: 3850: 3846: 3836: 3834: 3821: 3820: 3818: 3814: 3804: 3802: 3789: 3788: 3786: 3782: 3771: 3767: 3752: 3748: 3743: 3739: 3730: 3726: 3721: 3716: 3669: 3649:The Kepler Star 3598: 3567:Johannes Kepler 3551: 3550: 3549: 3548: 3531: 3530: 3529: 3521: 3520: 3440:Platonic solids 3432:Augustin Cauchy 3413:Platonic solids 3400:Johannes Kepler 3387:version of the 3344: 3324: 3310: 3296: 3280: 3266: 3252: 3236: 3222: 3208: 3188: 3181: 3148: 3136: 3124: 3112: 3100: 3088: 3074: 3062: 3050: 3038: 3026: 3014: 2950: 2932: 2844: 2841: 2825: 2809: 2798: 2787: 2785: 2739: 2732: 2731: 2693: 2686: 2685: 2624: 2617: 2616: 2578: 2571: 2570: 2520: 2519: 2492: 2491: 2464: 2457: 2436: 2419: 2418: 2399: 2398: 2396: 2394: 2375: 2370: 2349:skeletons form 2348: 2333: 2322: 2311: 2300: 2289: 2278: 2257: 2254: 2221: 2210: 2199: 2188: 2172: 2161: 2150: 2136: 2120: 2109: 2089: 2072: 2053: 2034: 2028: 2014: 2008: 1994: 1988: 1961: 1955: 1941: 1935: 1921: 1915: 1894: 1893: 1892: 1891: 1890: 1884: 1882: 1874: 1873: 1868: 1866: 1853: 1852: 1851: 1850: 1849: 1844: 1842: 1834: 1833: 1828: 1826: 1797: 1719: 1705: 1688: 1676: 1663: 1654: 1645: 1637: 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1597: 1596: 1570: 1559: 1546: 1537: 1528: 1520: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1480: 1479: 1453: 1442: 1429: 1420: 1411: 1403: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1363: 1362: 1336: 1325: 1312: 1303: 1294: 1286: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1246: 1245: 1219: 1183: 1180: 1174: 1166: 1159: 1158:{p, q} and 1157: 1150: 1143: 1135: 1129: 1120: 1119: 1118: 1117: 1110: 1109: 1108: 1100: 1099: 1091: 1090: 1077: 1076: 1075: 1074: 1067: 1066: 1065: 1057: 1056: 1048: 1047: 1002: 993: 988: 987: 950: 946: 941: 940: 903: 899: 894: 893: 859: 850: 845: 844: 807: 803: 798: 797: 760: 756: 751: 750: 742:Petrie polygon 737: 732: 701: 660: 638: 633: 632: 624:) was given by 604: 599: 598: 577: 572: 571: 507: 506: 496: 488:Schläfli symbol 484:Euler's formula 421: 349: 344: 343: 276: 271: 270: 231: 226: 225: 158: 153: 152: 149: 144: 142:Characteristics 102:is any of four 92: 91: 90: 89: 88: 83: 75: 74: 69: 60: 59: 58: 53: 45: 44: 39: 28: 23: 22: 15: 12: 11: 5: 4529: 4527: 4519: 4518: 4513: 4508: 4498: 4497: 4491: 4490: 4488: 4487: 4482: 4477: 4472: 4467: 4462: 4457: 4452: 4447: 4441: 4439: 4431: 4430: 4428: 4427: 4422: 4417: 4412: 4407: 4402: 4397: 4392: 4387: 4382: 4377: 4371: 4369: 4363: 4362: 4360: 4359: 4354: 4349: 4344: 4339: 4334: 4329: 4324: 4319: 4313: 4311: 4303: 4302: 4300: 4299: 4294: 4289: 4284: 4279: 4274: 4269: 4264: 4259: 4253: 4251: 4243: 4242: 4240: 4239: 4234: 4229: 4224: 4218: 4216: 4205: 4204: 4199: 4197: 4196: 4189: 4182: 4174: 4168: 4167: 4161: 4156: 4151: 4145: 4140: 4135: 4130: 4109: 4108:External links 4106: 4105: 4104: 4097: 4084: 4065:John H. Conway 4062: 4055: 4039: 4032: 4019: 4009: 4008: 4007: 4001: 3977: 3958:John H. Conway 3955: 3942: 3932: 3916: 3913: 3910: 3909: 3896: 3885: 3877: 3844: 3812: 3780: 3765: 3746: 3737: 3723: 3722: 3720: 3717: 3715: 3712: 3711: 3710: 3700: 3695: 3690: 3685: 3680: 3675: 3668: 3665: 3597: 3594: 3591: 3590: 3572: 3552: 3533: 3532: 3523: 3522: 3514: 3513: 3512: 3511: 3510: 3508: 3343: 3340: 3337: 3336: 3322: 3308: 3293: 3292: 3278: 3264: 3249: 3248: 3234: 3220: 3205: 3204: 3168: 3167: 3159: 3158: 3134: 3110: 3085: 3084: 3060: 3036: 3011: 3010: 2999: 2988: 2931: 2928: 2925: 2924: 2917: 2910: 2902: 2901: 2894: 2887: 2879: 2878: 2873: 2870: 2866: 2865: 2797: 2794: 2791: 2790: 2776: 2775: 2764: 2761: 2756: 2750: 2745: 2742: 2729: 2718: 2715: 2710: 2704: 2699: 2696: 2683: 2676: 2669: 2661: 2660: 2649: 2646: 2641: 2637: 2634: 2629: 2614: 2603: 2600: 2595: 2591: 2588: 2583: 2568: 2561: 2554: 2546: 2545: 2531:hull midradius 2528:core midradius 2517: 2503:core midradius 2500:hull midradius 2489: 2486: 2483: 2479: 2478: 2456:times bigger. 2443: 2439: 2435: 2432: 2429: 2426: 2406: 2374: 2371: 2369: 2366: 2363: 2362: 2355: 2354: 2345: 2342: 2338: 2337: 2326: 2315: 2304: 2293: 2282: 2253: 2250: 2229: 2228: 2214: 2203: 2192: 2181: 2177: 2176: 2165: 2154: 2143: 2129: 2125: 2124: 2113: 2102: 2098: 2097: 2059:is one of the 2052: 2049: 2046: 2045: 2042: 2041: 2021: 2001: 1977: 1973: 1972: 1969: 1968: 1948: 1928: 1904: 1900: 1899: 1896: 1895: 1883: 1876: 1875: 1867: 1860: 1859: 1858: 1857: 1856: 1854: 1843: 1836: 1835: 1827: 1820: 1819: 1818: 1817: 1816: 1810: 1806: 1805: 1788: 1784: 1783: 1759: 1758: 1755: 1751: 1750: 1747: 1743: 1742: 1739: 1704: 1701: 1687: 1684: 1681: 1680: 1677: 1674: 1671: 1668: 1665: 1656: 1647: 1642: 1639: 1634: 1593: 1586: 1579: 1572: 1564: 1563: 1560: 1557: 1554: 1551: 1548: 1539: 1530: 1525: 1522: 1517: 1476: 1469: 1462: 1455: 1447: 1446: 1443: 1440: 1437: 1434: 1431: 1422: 1413: 1408: 1405: 1400: 1359: 1352: 1345: 1338: 1330: 1329: 1326: 1323: 1320: 1317: 1314: 1305: 1296: 1291: 1288: 1283: 1242: 1235: 1228: 1221: 1213: 1212: 1207: 1202: 1197: 1192: 1190:Petrie polygon 1187: 1176: 1171: 1168: 1163: 1161:Coxeter-Dynkin 1152: 1145: 1140: 1137: 1128: 1125: 1122: 1121: 1112: 1111: 1102: 1101: 1093: 1092: 1084: 1083: 1082: 1081: 1080: 1078: 1069: 1068: 1059: 1058: 1050: 1049: 1041: 1040: 1039: 1038: 1037: 1030: 1029: 1017: 1011: 1008: 1005: 1001: 996: 982: 970: 966: 963: 958: 955: 949: 935: 923: 917: 914: 909: 906: 902: 887: 886: 874: 868: 865: 862: 858: 853: 839: 827: 821: 818: 813: 810: 806: 792: 780: 776: 773: 768: 765: 759: 744: 743: 740: 735: 718:with the same 716:dual compounds 709:Petrie polygon 700: 697: 696: 695: 684: 681: 678: 675: 672: 667: 663: 659: 656: 653: 650: 645: 641: 611: 607: 584: 580: 568:vertex figures 553: 552: 538: 535: 532: 529: 526: 523: 520: 517: 514: 501:Euler relation 495: 492: 456:vertex figures 420: 417: 402: 394: 389: 386: 383: 378: 370: 367: 361: 356: 352: 331: 326: 318: 313: 310: 305: 297: 294: 288: 283: 279: 259: 254: 249: 246: 243: 238: 234: 211: 203: 198: 195: 192: 187: 179: 176: 170: 165: 161: 148: 145: 143: 140: 136:vertex figures 107:star polyhedra 84: 77: 76: 70: 63: 62: 61: 54: 47: 46: 40: 33: 32: 31: 30: 29: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4528: 4517: 4514: 4512: 4509: 4507: 4504: 4503: 4501: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4446: 4443: 4442: 4440: 4432: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4376: 4373: 4372: 4370: 4364: 4358: 4355: 4353: 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4328: 4325: 4323: 4320: 4318: 4315: 4314: 4312: 4310: 4309:hemipolyhedra 4304: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4254: 4252: 4244: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4219: 4217: 4212: 4206: 4202: 4195: 4190: 4188: 4183: 4181: 4176: 4175: 4172: 4165: 4162: 4160: 4157: 4155: 4152: 4149: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4126: 4125: 4120: 4117: 4112: 4111: 4107: 4100: 4098:0-520-03056-7 4094: 4090: 4085: 4082: 4078: 4074: 4070: 4066: 4063: 4058: 4056:0-521-54325-8 4052: 4048: 4044: 4040: 4037: 4033: 4030: 4027: 4023: 4022:Louis Poinsot 4020: 4017: 4013: 4012:Theoni Pappas 4010: 4006: 4002: 4000: 3996: 3995: 3994: 3992: 3988: 3984: 3983: 3978: 3975: 3971: 3967: 3963: 3959: 3956: 3953: 3950: 3946: 3945:Arthur Cayley 3943: 3940: 3936: 3933: 3930: 3926: 3922: 3919: 3918: 3914: 3906: 3900: 3897: 3894: 3889: 3886: 3880: 3874: 3870: 3866: 3862: 3858: 3854: 3848: 3845: 3833: 3832: 3827: 3824: 3816: 3813: 3801: 3800: 3795: 3792: 3784: 3781: 3777: 3776: 3769: 3766: 3762: 3761: 3756: 3750: 3747: 3741: 3738: 3734: 3728: 3725: 3718: 3713: 3708: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3670: 3666: 3664: 3662: 3658: 3654: 3650: 3647:'s sculpture 3646: 3641: 3639: 3635: 3630: 3628: 3627: 3622: 3617: 3615: 3614:Paulo Uccello 3611: 3602: 3595: 3587:(around 1860) 3586: 3582: 3577: 3573: 3568: 3564: 3563: 3557: 3553: 3546: 3545: 3540: 3536: 3527: 3518: 3509: 3503: 3502:Paolo Uccello 3500:(possibly by 3498: 3494: 3490: 3485: 3481: 3480: 3477: 3475: 3471: 3467: 3463: 3458: 3456: 3455:Arthur Cayley 3451: 3449: 3445: 3441: 3437: 3433: 3428: 3426: 3421: 3420:Louis Poinsot 3416: 3414: 3410: 3405: 3401: 3397: 3392: 3390: 3386: 3382: 3378: 3374: 3370: 3366: 3365: 3359: 3357: 3356:Paolo Uccello 3353: 3349: 3341: 3333: 3328: 3323: 3319: 3314: 3309: 3305: 3300: 3295: 3294: 3289: 3284: 3279: 3275: 3270: 3265: 3261: 3256: 3251: 3250: 3245: 3240: 3235: 3231: 3226: 3221: 3217: 3212: 3207: 3206: 3203: 3200: 3196: 3192: 3185: 3179: 3175: 3169: 3164: 3157: 3154: 3145: 3140: 3135: 3133: 3130: 3121: 3116: 3111: 3109: 3106: 3097: 3092: 3087: 3086: 3083: 3080: 3071: 3066: 3061: 3059: 3056: 3047: 3042: 3037: 3035: 3032: 3023: 3018: 3013: 3012: 3008: 3004: 3000: 2997: 2993: 2989: 2986: 2982: 2978: 2977: 2974: 2972: 2967: 2965: 2960: 2958: 2954: 2948: 2944: 2939: 2937: 2929: 2922: 2918: 2915: 2911: 2908: 2904: 2903: 2899: 2895: 2892: 2888: 2885: 2881: 2880: 2877: 2876:Catalan solid 2874: 2871: 2868: 2867: 2862: 2859: 2856: 2852: 2848: 2847:topologically 2839: 2837: 2833: 2828: 2823: 2821: 2817: 2812: 2807: 2803: 2802:augmentations 2796:Augmentations 2795: 2789: 2783: 2777: 2762: 2759: 2754: 2748: 2743: 2740: 2730: 2716: 2713: 2708: 2702: 2697: 2694: 2684: 2681: 2677: 2674: 2670: 2667: 2663: 2662: 2647: 2644: 2639: 2635: 2632: 2627: 2615: 2601: 2598: 2593: 2589: 2586: 2581: 2569: 2566: 2562: 2559: 2555: 2552: 2548: 2547: 2518: 2490: 2487: 2484: 2481: 2480: 2475: 2472: 2469: 2461: 2441: 2437: 2433: 2430: 2427: 2424: 2404: 2392: 2388: 2384: 2380: 2373:Hull and core 2372: 2367: 2361: 2356: 2352: 2339: 2336: 2331: 2327: 2325: 2320: 2316: 2314: 2309: 2305: 2303: 2298: 2294: 2292: 2287: 2283: 2281: 2276: 2272: 2271: 2268: 2265: 2264:topologically 2261: 2251: 2249: 2247: 2242: 2240: 2236: 2224: 2219: 2213: 2208: 2204: 2202: 2197: 2193: 2191: 2186: 2182: 2179: 2178: 2175: 2170: 2166: 2164: 2159: 2155: 2153: 2148: 2144: 2139: 2134: 2127: 2126: 2123: 2118: 2112: 2107: 2100: 2099: 2094: 2091: 2087: 2083: 2078: 2076: 2070: 2066: 2062: 2058: 2050: 2037: 2031: 2026: 2022: 2017: 2011: 2006: 2002: 1997: 1991: 1986: 1982: 1981: 1978: 1975: 1974: 1964: 1958: 1953: 1949: 1944: 1938: 1933: 1929: 1924: 1918: 1913: 1909: 1908: 1905: 1902: 1901: 1888: 1880: 1871: 1864: 1855: 1847: 1840: 1831: 1824: 1815: 1814: 1811: 1808: 1807: 1804: 1801: 1794: 1789: 1786: 1785: 1780: 1777: 1775: 1771: 1769: 1765: 1756: 1753: 1752: 1748: 1745: 1744: 1740: 1737: 1736: 1733: 1731: 1727: 1723: 1717: 1713: 1709: 1697: 1692: 1685: 1678: 1672: 1669: 1666: 1661: 1657: 1652: 1648: 1643: 1640: 1635: 1595:{5/2, 3} 1594: 1591: 1587: 1584: 1580: 1577: 1573: 1569: 1566: 1561: 1555: 1552: 1549: 1544: 1540: 1535: 1531: 1526: 1523: 1518: 1478:{3, 5/2} 1477: 1474: 1470: 1467: 1463: 1460: 1456: 1452: 1449: 1444: 1438: 1435: 1432: 1427: 1423: 1418: 1414: 1409: 1406: 1401: 1361:{5/2, 5} 1360: 1357: 1353: 1350: 1346: 1343: 1339: 1335: 1332: 1327: 1321: 1318: 1315: 1310: 1306: 1301: 1297: 1292: 1289: 1284: 1244:{5, 5/2} 1243: 1240: 1236: 1233: 1229: 1226: 1222: 1218: 1215: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1182: 1177: 1172: 1169: 1164: 1162: 1156: 1153: 1149: 1146: 1141: 1138: 1133: 1132: 1126: 1115: 1106: 1097: 1088: 1079: 1072: 1063: 1054: 1045: 1036: 1035: 1015: 1009: 1006: 1003: 999: 994: 986: 983: 968: 964: 961: 956: 953: 947: 939: 936: 921: 915: 912: 907: 904: 900: 892: 889: 888: 872: 866: 863: 860: 856: 851: 843: 840: 825: 819: 816: 811: 808: 804: 796: 793: 778: 774: 771: 766: 763: 757: 749: 746: 745: 741: 736: 731: 730: 727: 725: 721: 717: 712: 710: 706: 698: 682: 679: 676: 673: 670: 665: 661: 657: 654: 651: 648: 643: 639: 631: 630: 629: 627: 626:Arthur Cayley 609: 605: 597:) and faces ( 582: 578: 569: 565: 561: 556: 536: 533: 530: 527: 524: 521: 518: 515: 512: 505: 504: 503: 502: 493: 491: 489: 485: 480: 476: 472: 468: 463: 459: 457: 453: 449: 445: 441: 438: 434: 430: 426: 419:Non-convexity 418: 416: 392: 387: 384: 381: 368: 365: 359: 354: 350: 329: 316: 311: 308: 295: 292: 286: 281: 277: 257: 252: 247: 244: 241: 236: 232: 201: 196: 193: 190: 177: 174: 168: 163: 159: 146: 141: 139: 137: 133: 130: 126: 122: 119: 115: 110: 108: 105: 101: 97: 87: 81: 73: 67: 57: 51: 43: 37: 19: 4208: 4122: 4088: 4072: 4046: 4035: 4028: 4025: 4015: 4004: 3998: 3979: 3965: 3951: 3948: 3938: 3928: 3924: 3915:Bibliography 3904: 3899: 3888: 3860: 3847: 3835:. Retrieved 3829: 3815: 3803:. Retrieved 3797: 3783: 3773: 3768: 3758: 3754: 3749: 3740: 3732: 3727: 3661:dodecahedron 3648: 3645:Vebjørn Sand 3642: 3631: 3624: 3621:M. C. Escher 3618: 3607: 3560: 3542: 3473: 3472:is just the 3464:developed a 3459: 3452: 3429: 3424: 3417: 3395: 3393: 3375:depicts the 3368: 3362: 3360: 3345: 3171: 3149: 3125: 3101: 3075: 3051: 3027: 2968: 2961: 2940: 2933: 2840: 2829: 2824: 2819: 2815: 2813: 2805: 2801: 2799: 2779: 2460:Golden ratio 2376: 2324:dodecahedron 2255: 2243: 2232: 2128:Stellations 2122:dodecahedron 2079: 2075:dodecahedron 2054: 2035: 2029: 2015: 2009: 1995: 1989: 1962: 1956: 1942: 1936: 1922: 1916: 1886: 1869: 1845: 1829: 1790: 1773: 1772: 1763: 1762: 1729: 1728:is just the 1715: 1711: 1706: 1571:(sgD = gsD) 713: 702: 563: 557: 554: 497: 464: 460: 422: 150: 129:pentagrammic 121:dodecahedron 116:the regular 111: 99: 93: 4213:(nonconvex 4047:Dual Models 3921:J. Bertrand 3707:4-polytopes 3657:icosahedron 3626:Gravitation 3462:John Conway 2806:cumulations 2280:icosahedron 2266:equivalent. 2239:stellations 2111:icosahedron 2065:icosahedron 2061:stellations 1903:greatening 1809:stellation 1716:stellations 1712:greatenings 1708:John Conway 720:edge radius 442:faces. The 125:icosahedron 4500:Categories 3949:Phil. Mag. 3837:2018-09-21 3805:2018-09-21 3714:References 3634:dissection 3436:stellating 3404:stellating 3153:animations 3129:animations 3105:animations 3079:animations 3055:animations 3031:animations 3001:{3, 5/2} ( 2990:{5, 5/2} ( 2763:0.38196... 2717:2.61803... 2648:0.61803... 2602:1.61803... 2244:(See also 2180:Facetings 1774:Greatening 1768:stellation 1764:Stellation 1148:Stellation 475:pentagonal 425:pentagrams 114:stellating 4250:polyhedra 4211:polyhedra 4124:MathWorld 3831:MathWorld 3799:MathWorld 3731:Coxeter, 3493:St Mark's 3418:In 1809, 3385:truncated 3182:(Compare 3174:midradius 2836:MathWorld 2782:midradius 2744:− 2633:− 2468:midradius 2438:φ 2425:φ 2405:φ 2260:skeletons 1800:midradius 1185:(config.) 1142:Spherical 652:− 566:) of the 522:− 513:χ 471:pentagram 440:pentagram 351:ϕ 278:ϕ 233:ϕ 160:ϕ 4045:(1983). 3667:See also 3448:faceting 3444:Bertrand 2979:{3, 5} ( 2957:its dual 2947:its dual 2930:Symmetry 2853:and the 2820:hedgehog 2086:faceting 1976:duality 1787:diagram 1205:Symmetry 1173:Vertices 1155:Schläfli 1151:diagram 1139:Picture 985:decagram 96:geometry 3859:(ed.). 3755:Echinus 3361:In his 3342:History 3178:decagon 2951:In the 2387:regular 2235:regular 2101:Convex 2067:. (See 2063:of the 1720:In his 1696:density 1664:{10/3} 1547:{10/3} 1200:Density 1144:tiling 1127:Summary 842:hexagon 560:density 469:has 12 104:regular 4095:  4079:  4075:2008, 4053:  3989:  3972:  3968:2008, 3875:  3659:and a 3569:(1619) 3547:(1568) 3497:Venice 3489:mosaic 3487:Floor 3450:them. 3415:were. 3409:convex 3379:and a 3352:Venice 2830:These 2389:and a 1885:sgD = 1655:(5/2) 1638:{5/2} 1538:(3)/2 1421:(5/2) 1404:{5/2} 1304:(5)/2 1181:figure 1179:Vertex 1170:Edges 540:  452:convex 118:convex 3719:Notes 3583:from 2869:Core 2832:naïve 2488:Core 2482:Hull 2466:(The 2458:(See 2383:great 2379:small 2084:is a 1529:{5/2} 1454:(gI) 1337:(sD) 1295:{5/2} 1220:(gD) 1165:Faces 450:have 435:have 429:small 147:Sizes 132:faces 4093:ISBN 4077:ISBN 4051:ISBN 3987:ISBN 3970:ISBN 3873:ISBN 3537:and 3438:the 3197:and 2955:and 2945:and 2941:The 2804:(or 2381:and 2377:The 2258:The 2080:The 2055:The 2033:and 2013:and 1993:and 1960:and 1940:and 1920:and 1724:the 1714:and 1521:{3} 1430:{6} 1313:{6} 1287:{5} 1210:Dual 1175:{q} 1167:{p} 1134:Name 724:skew 705:dual 446:and 431:and 342:and 123:and 98:, a 3865:doi 3757:" ( 3565:by 3541:in 3491:in 3195:gsD 3007:gsD 2822:). 2808:), 2223:gsD 2174:gsD 2036:gsD 1963:gsD 1887:gsD 1646:{3} 1412:{5} 134:or 94:In 4502:: 4121:. 4071:, 3964:, 3952:17 3937:, 3929:46 3927:, 3871:. 3828:. 3796:. 3640:. 3632:A 3616:. 3495:, 3476:. 3358:. 3350:, 3199:gI 3193:, 3191:sD 3186:.) 3009:) 3003:gI 2998:) 2996:sD 2992:gD 2987:) 2248:) 2241:. 2212:sD 2201:gD 2190:gI 2163:sD 2152:gD 2138:gI 2077:. 2030:gI 2016:sD 2010:gD 1957:sD 1943:gI 1923:gD 1870:gD 1846:sD 1732:. 1644:20 1641:30 1636:12 1527:12 1524:30 1519:20 1433:−6 1410:12 1407:30 1402:12 1316:−6 1293:12 1290:30 1285:12 1000:10 458:. 382:11 109:. 4193:e 4186:t 4179:v 4127:. 4101:. 4059:. 4029:9 3881:. 3867:: 3840:. 3808:. 3504:) 3367:( 3155:) 3151:( 3131:) 3127:( 3107:) 3103:( 3081:) 3077:( 3057:) 3053:( 3033:) 3029:( 2985:D 2981:I 2857:. 2784:. 2760:= 2755:2 2749:5 2741:3 2714:= 2709:2 2703:5 2698:+ 2695:3 2645:= 2640:2 2636:1 2628:5 2599:= 2594:2 2590:1 2587:+ 2582:5 2462:) 2442:2 2434:= 2431:1 2428:+ 2071:) 1996:I 1990:D 1937:I 1917:D 1830:D 1802:. 1698:) 1675:h 1673:I 1670:7 1667:2 1558:h 1556:I 1553:7 1550:2 1441:h 1439:I 1436:3 1324:h 1322:I 1319:3 1195:χ 1016:} 1010:5 1007:, 1004:3 995:{ 969:} 965:3 962:, 957:2 954:5 948:{ 922:} 916:2 913:5 908:, 905:3 901:{ 873:} 867:3 864:, 861:1 857:6 852:{ 826:} 820:2 817:5 812:, 809:5 805:{ 779:} 775:5 772:, 767:2 764:5 758:{ 683:. 680:D 677:2 674:= 671:F 666:f 662:d 658:+ 655:E 649:V 644:v 640:d 610:f 606:d 583:v 579:d 570:( 564:D 562:( 537:2 534:= 531:F 528:+ 525:E 519:V 516:= 401:) 393:5 388:5 385:+ 377:( 369:2 366:1 360:= 355:5 330:, 325:) 317:5 312:+ 309:3 304:( 296:2 293:1 287:= 282:2 258:, 253:5 248:+ 245:2 242:= 237:3 210:) 202:5 197:3 194:+ 191:7 186:( 178:2 175:1 169:= 164:4 20:)

Index

Kepler-Poinsot polyhedron

Great dodecahedron

Small stellated dodecahedron

Great icosahedron

Great stellated dodecahedron
geometry
regular
star polyhedra
stellating
convex
dodecahedron
icosahedron
pentagrammic
faces
vertex figures
pentagrams
small
great stellated dodecahedron
nonconvex regular
pentagram
great dodecahedron
great icosahedron
convex
vertex figures
small stellated dodecahedron
pentagram

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.