Knowledge (XXG)

Kerr frequency comb

Source đź“ť

78:
example, to stabilize the offset frequency of the Kerr frequency comb one can directly apply feedback to the pump laser frequency. In principle it is also possible to generate a Kerr frequency comb around a particular continuous wave laser in order to use the bandwidth of the frequency comb to determine the exact frequency of the continuous wave laser.
74:, is the large mode spacing of typical Kerr frequency combs. For mode-locked lasers this mode spacing, which defines the distance in between adjacent teeth of the frequency comb, is typically in the range of 10 MHz to 1 GHz. For Kerr frequency combs the typical range is from around 10 GHz to 1 THz. 51:
where the dominating gain stems from a conventional laser gain medium, which is pumped incoherently. Because Kerr frequency combs only rely on the nonlinear properties of the medium inside the microresonator and do not require a broadband laser gain medium, broad Kerr frequency combs can in principle
117:
can form. The most relevant type of solitons for Kerr frequency comb generation are bright dissipative cavity solitons, which are sometimes also called dissipative Kerr solitons (DKS). These bright solitons have helped to significantly advance the field of Kerr frequency combs as they provide a way
77:
The coherent generation of an optical frequency comb from a continuous wave pump laser is not a unique property of Kerr frequency combs. Optical frequency combs generated with cascaded optical modulators also possess this property. For certain application this property can be advantageous. For
81:
Since their first demonstration in silica micro-toroid resonators, Kerr frequency combs have been demonstrated in a variety of microresonator platforms which notably also include crystalline microresonators and integrated photonics platforms such as waveguide resonators made from
495:
Griffith, Austin G.; Lau, Ryan K. W.; Cardenas, Jaime; Okawachi, Yoshitomo; Mohanty, Aseema; Fain, Romy; Lee, Yoon Ho Daniel; Yu, Mengjie; Phare, Christopher T. (2015-02-24). "Silicon-chip mid-infrared frequency comb generation".
67:. These two features combined result in a large field enhancement of the pump laser inside the microresonator which allow the generation of broad Kerr frequency combs for reasonable powers of the pump laser. 55:
While the principle of Kerr frequency combs is applicable to any type of optical resonator, the requirement for Kerr frequency comb generation is a pump laser field intensity above the
234:
A. A. Savchenkov; A. B. Matsko; V. S. Ilchenko; I. Solomatine; D. Seidel; L. Maleki (2008). "Tunable Optical Frequency Comb with a Crystalline Whispering Gallery Mode Resonator".
297:
J. S. Levy; A. Gondarenko; M. A. Foster; A. C. Turner-Foster; A. L. Gaeta; M. Lipson (2010). "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects".
59:
of the nonlinear process. This requirement is easier to fulfill inside a microresonator because of the possible very low losses inside microresonators (and corresponding high
121:
In its simplest form with only the Kerr nonlinearity and second order dispersion the physics of Kerr frequency combs and dissipative solitons can be described well by the
47:
laser with the optical nonlinearity as a gain sets Kerr frequency combs apart from today's most common optical frequency combs. These frequency combs are generated by
377:
Jung, Hojoong; Xiong, Chi; Fong, King Y.; Zhang, Xufeng; Tang, Hong X. (2013-08-01). "Optical frequency comb generation from aluminum nitride microring resonator".
118:
to generate ultra-short pulses which in turn represent a coherent, broadband optical frequency comb, in a more reliable fashion than what was possible before.
557:
T. Herr; V. Brasch; J. D. Jost; C. Y. Wang; N. M. Kondratiev; M. L. Gorodetsky; T. J. Kippenberg (2014). "Temporal solitons in optical microresonators".
70:
One important property of Kerr frequency combs, which is a direct consequence of the small dimensions of the microresonators and their resulting large
171:; A. Schliesser; O. Arcizet; T. Wilken; R. Holzwarth; T. J. Kippenberg (2007). "Optical frequency comb generation from a monolithic microresonator". 446:
Y. He; Q.-F. Yang; J. Ling; R. Luo; H. Liang; M. Li; B. Shen; H. Wang; K. J. Vahala; Q. Lin (2019). "Self-starting bi-chromatic LiNbO
56: 148: 122: 113:
of the medium also plays a crucial role for these systems. As a result of the interplay of nonlinearity and dispersion,
640: 334:
Hausmann, B. J. M.; Bulu, I.; Venkataraman, V.; Deotare, P.; LonÄŤar, M. (2014-04-20). "Diamond nonlinear photonics".
744: 105:
Because both use the nonlinear effects of the propagation medium, the physics of Kerr frequency combs and of
236: 749: 754: 702: 655: 578: 515: 469: 396: 343: 308: 255: 192: 691:"Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities" 110: 71: 40: 759: 594: 568: 539: 505: 459: 428: 386: 279: 245: 216: 182: 168: 86:. More recent research has expanded the range of available platforms further which now includes 720: 671: 531: 420: 412: 359: 271: 208: 91: 36: 32: 710: 663: 621: 586: 559: 523: 477: 404: 351: 316: 299: 263: 200: 173: 114: 95: 83: 44: 706: 659: 582: 519: 473: 400: 347: 312: 259: 196: 138: 106: 60: 35:. This coherent conversion of the pump laser to a frequency comb takes place inside an 24: 738: 598: 283: 543: 432: 267: 220: 143: 126: 48: 39:
which is typically of micrometer to millimeter in size and is therefore termed a
667: 64: 129:
and higher order dispersion effects require additional terms in the equation.
625: 590: 416: 363: 320: 481: 355: 724: 675: 535: 424: 275: 212: 715: 690: 612:
Andrew M. Weiner (2017). "Frequency combs: Cavity solitons come of age".
408: 109:
from pulsed lasers is very similar. In addition to the nonlinearity, the
204: 527: 99: 87: 573: 464: 510: 391: 250: 187: 28: 641:"Spatial Dissipative Structures in Passive Optical Systems" 43:. The coherent generation of the frequency comb from a 689:
X. Yi; Q.-F. Yang; K. Y. Yang; K. J. Vahala (2016).
27:which are generated from a continuous wave pump 8: 63:) and because of the microresonators’ small 98:, and, for mid-infrared pump wavelengths, 714: 572: 509: 463: 390: 249: 186: 52:be generated around any pump frequency. 160: 7: 639:Lugiato, L. A.; Lefever, R. (1987). 14: 268:10.1103/PhysRevLett.101.093902 21:microresonator frequency combs 1: 125:. Other effects such as the 668:10.1103/PhysRevLett.58.2209 776: 72:free spectral ranges (FSR) 107:supercontinuum generation 626:10.1038/nphoton.2017.149 591:10.1038/nphoton.2013.343 321:10.1038/NPHOTON.2009.259 149:Lugiato–Lefever equation 123:Lugiato–Lefever equation 648:Physical Review Letters 482:10.1364/OPTICA.6.001138 356:10.1038/nphoton.2014.72 237:Physical Review Letters 25:optical frequency combs 498:Nature Communications 716:10.1364/OL.41.003419 450:soliton microcomb". 409:10.1364/OL.38.002810 111:chromatic dispersion 57:parametric threshold 17:Kerr frequency combs 707:2016OptL...41.3419Y 660:1987PhRvL..58.2209L 583:2014NaPho...8..145H 520:2015NatCo...6.6299G 474:2019Optic...6.1138H 401:2013OptL...38.2810J 348:2014NaPho...8..369H 313:2010NaPho...4...37L 260:2008PhRvL.101i3902S 205:10.1038/nature06401 197:2007Natur.450.1214D 528:10.1038/ncomms7299 49:mode-locked lasers 701:(15): 3419–3422. 654:(21): 2209–2211. 385:(15): 2810–2813. 37:optical resonator 33:Kerr nonlinearity 767: 745:Nonlinear optics 729: 728: 718: 686: 680: 679: 645: 636: 630: 629: 614:Nature Photonics 609: 603: 602: 576: 560:Nature Photonics 554: 548: 547: 513: 492: 486: 485: 467: 458:(9): 1138–1144. 443: 437: 436: 394: 374: 368: 367: 336:Nature Photonics 331: 325: 324: 300:Nature Photonics 294: 288: 287: 253: 231: 225: 224: 190: 181:(7173): 1214–7. 165: 92:aluminum nitride 775: 774: 770: 769: 768: 766: 765: 764: 735: 734: 733: 732: 688: 687: 683: 643: 638: 637: 633: 611: 610: 606: 556: 555: 551: 494: 493: 489: 449: 445: 444: 440: 376: 375: 371: 333: 332: 328: 296: 295: 291: 233: 232: 228: 167: 166: 162: 157: 135: 96:lithium niobate 84:silicon nitride 61:quality factors 45:continuous wave 19:(also known as 12: 11: 5: 773: 771: 763: 762: 757: 752: 747: 737: 736: 731: 730: 695:Optics Letters 681: 631: 620:(9): 533–535. 604: 549: 504:: ncomms7299. 487: 447: 438: 379:Optics Letters 369: 342:(5): 369–374. 326: 289: 226: 159: 158: 156: 153: 152: 151: 146: 141: 139:Frequency comb 134: 131: 41:microresonator 13: 10: 9: 6: 4: 3: 2: 772: 761: 758: 756: 753: 751: 750:Laser science 748: 746: 743: 742: 740: 726: 722: 717: 712: 708: 704: 700: 696: 692: 685: 682: 677: 673: 669: 665: 661: 657: 653: 649: 642: 635: 632: 627: 623: 619: 615: 608: 605: 600: 596: 592: 588: 584: 580: 575: 570: 566: 562: 561: 553: 550: 545: 541: 537: 533: 529: 525: 521: 517: 512: 507: 503: 499: 491: 488: 483: 479: 475: 471: 466: 461: 457: 453: 442: 439: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 393: 388: 384: 380: 373: 370: 365: 361: 357: 353: 349: 345: 341: 337: 330: 327: 322: 318: 314: 310: 306: 302: 301: 293: 290: 285: 281: 277: 273: 269: 265: 261: 257: 252: 247: 244:(9): 093902. 243: 239: 238: 230: 227: 222: 218: 214: 210: 206: 202: 198: 194: 189: 184: 180: 176: 175: 170: 164: 161: 154: 150: 147: 145: 142: 140: 137: 136: 132: 130: 128: 124: 119: 116: 112: 108: 103: 101: 97: 93: 89: 85: 79: 75: 73: 68: 66: 62: 58: 53: 50: 46: 42: 38: 34: 30: 26: 22: 18: 755:Spectroscopy 698: 694: 684: 651: 647: 634: 617: 613: 607: 564: 558: 552: 501: 497: 490: 455: 451: 441: 382: 378: 372: 339: 335: 329: 304: 298: 292: 241: 235: 229: 178: 172: 163: 144:Mode-locking 127:Raman effect 120: 104: 80: 76: 69: 65:mode volumes 54: 20: 16: 15: 169:P. Del'Haye 739:Categories 574:1508.04989 567:(2): 145. 465:1812.09610 155:References 760:Photonics 599:118546909 511:1408.1039 417:1539-4794 392:1307.6761 364:1749-4893 307:(1): 37. 251:0804.0263 188:0708.0611 725:27472583 676:10034681 536:25708922 425:23903149 284:33022368 276:18851613 213:18097405 133:See also 115:solitons 703:Bibcode 656:Bibcode 579:Bibcode 544:1089022 516:Bibcode 470:Bibcode 433:2349891 397:Bibcode 344:Bibcode 309:Bibcode 256:Bibcode 221:4426096 193:Bibcode 100:silicon 88:diamond 31:by the 723:  674:  597:  542:  534:  452:Optica 431:  423:  415:  362:  282:  274:  219:  211:  174:Nature 23:) are 644:(PDF) 595:S2CID 569:arXiv 540:S2CID 506:arXiv 460:arXiv 429:S2CID 387:arXiv 280:S2CID 246:arXiv 217:S2CID 183:arXiv 29:laser 721:PMID 672:PMID 532:PMID 421:PMID 413:ISSN 360:ISSN 272:PMID 209:PMID 711:doi 664:doi 622:doi 587:doi 524:doi 478:doi 405:doi 352:doi 317:doi 264:doi 242:101 201:doi 179:450 94:, 741:: 719:. 709:. 699:41 697:. 693:. 670:. 662:. 652:58 650:. 646:. 618:11 616:. 593:. 585:. 577:. 563:. 538:. 530:. 522:. 514:. 500:. 476:. 468:. 454:. 427:. 419:. 411:. 403:. 395:. 383:38 381:. 358:. 350:. 338:. 315:. 303:. 278:. 270:. 262:. 254:. 240:. 215:. 207:. 199:. 191:. 177:. 102:. 90:, 727:. 713:: 705:: 678:. 666:: 658:: 628:. 624:: 601:. 589:: 581:: 571:: 565:8 546:. 526:: 518:: 508:: 502:6 484:. 480:: 472:: 462:: 456:6 448:3 435:. 407:: 399:: 389:: 366:. 354:: 346:: 340:8 323:. 319:: 311:: 305:4 286:. 266:: 258:: 248:: 223:. 203:: 195:: 185::

Index

optical frequency combs
laser
Kerr nonlinearity
optical resonator
microresonator
continuous wave
mode-locked lasers
parametric threshold
quality factors
mode volumes
free spectral ranges (FSR)
silicon nitride
diamond
aluminum nitride
lithium niobate
silicon
supercontinuum generation
chromatic dispersion
solitons
Lugiato–Lefever equation
Raman effect
Frequency comb
Mode-locking
Lugiato–Lefever equation
P. Del'Haye
Nature
arXiv
0708.0611
Bibcode
2007Natur.450.1214D

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑