Knowledge (XXG)

Kinematic chain

Source 📝

50: 62: 20: 35: 657:
Two or more rigid bodies in space are collectively called a rigid body system. We can hinder the motion of these independent rigid bodies with kinematic constraints. Kinematic constraints are constraints between rigid bodies that result in the decrease of the degrees of freedom of rigid body system.
446:
to characterize the relative movement allowed at each joint and separate rigid transformations to define the dimensions of each link. In the case of a serial open chain, the result is a sequence of rigid transformations alternating joint and link transformations from the base of the chain to its
182:
degrees of freedom measured relative to a fixed frame. This frame is included in the count of bodies, so that mobility does not depend on link that forms the fixed frame. This means the degree-of-freedom of this system is
414: 208:
Joints that connect bodies impose constraints. Specifically, hinges and sliders each impose five constraints and therefore remove five degrees of freedom. It is convenient to define the number of constraints
97:
suggests, the rigid bodies, or links, are constrained by their connections to other links. An example is the simple open chain formed by links connected in series, like the usual chain, which is the
602:
Kinematic chains of a wide range of complexity are analyzed by equating the kinematics equations of serial chains that form loops within the kinematic chain. These equations are often called
666:
The constraint equations of a kinematic chain can be used in reverse to determine the dimensions of the links from a specification of the desired movement of the system. This is termed
595:
where is the transformation locating the end-link—notice that the chain includes a "zeroth" link consisting of the ground frame to which it is attached. These equations are called the
590: 720: 431:
The constraint equations of a kinematic chain couple the range of movement allowed at each joint to the dimensions of the links in the chain, and form
283: 896:
Sandor, G.N., and Erdman, A.G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Vol. 2. Prentice-Hall, Englewood Cliffs, NJ.
715: 950: 143:
The modern use of kinematic chains includes compliance that arises from flexure joints in precision mechanisms, link compliance in
798: 148: 935: 436: 164: 39: 930: 725: 960: 435:
that are solved to determine the configuration of the chain associated with specific values of input parameters, called
925: 940: 945: 778: 755: 735: 65:
A model of the human skeleton as a kinematic chain allows positioning using forward and inverse kinematics.
750: 683: 70: 171:
of a kinematic chain is the number of parameters that define the configuration of the chain. A system of
695: 133: 730: 687: 626: 443: 102: 686:
is often called the father of modern kinematics for his contributions to the kinematic synthesis of
630: 432: 144: 61: 49: 641: 614: 610: 596: 457: 86: 19: 955: 137: 90: 82: 54: 677: 673: 745: 740: 232: 121: 774: 645: 109: 919: 701:
This work has been generalized to the synthesis of spherical and spatial mechanisms.
57:
is studied as a system of rigid bodies connected by joints forming a kinematic chain.
447:
end link, which is equated to the specified position for the end link. A chain of
634: 27: 826: 813: 710: 108:
Mathematical models of the connections, or joints, between two links are termed
783:(trans. and annotated by A. B. W. Kennedy), reprinted by Dover, New York (1963) 152: 78: 98: 409:{\displaystyle M=6n-\sum _{i=1}^{j}(6-f_{i})=6(N-1-j)+\sum _{i=1}^{j}f_{i}} 34: 690:
beginning in the 1950s. His use of the newly developed computer to solve
622: 113: 42: 140:
is a schematic of the mechanical system that shows the kinematic chain.
112:. Kinematic pairs model the hinged and sliding joints fundamental to 672:
Perhaps the most developed formulation of kinematic synthesis is for
442:
The constraint equations for a kinematic chain are obtained using
228: 94: 60: 48: 30:
ATHLETE is a platform with six serial chain legs ending in wheels.
252:
The result is that the mobility of a kinematic chain formed from
125: 24: 617:) of the chain is determined by the following factors: 451:
links connected in series has the kinematic equations,
841:
J. J. Uicker, G. R. Pennock, and J. E. Shigley, 2003,
460: 286: 213:
that a joint imposes in terms of the joint's freedom
205:
is the number of moving bodies plus the fixed body.
584: 408: 581: 866: 864: 235:, which are one-degree-of-freedom joints, have 793: 791: 789: 8: 837: 835: 609:The complexity (in terms of calculating the 151:, and cable compliance in cable robotic and 120:and the surface contact joints critical to 85:to provide constrained motion that is the 16:Mathematical model for a mechanical system 909:, Oxford Engineering Science Series, 1979 569: 547: 528: 512: 496: 480: 459: 400: 390: 379: 336: 317: 306: 285: 33: 18: 870:R. S. Hartenberg and J. Denavit, 1964, 856:Introduction to Theoretical Kinematics, 767: 887:, John Wiley and Sons, New York, 1978. 132:These joints are generally modeled as 7: 858:MIT Press, Cambridge, Massachusetts. 797:J. M. McCarthy and G. S. Soh, 2010, 721:Chebychev–GrĂźbler–Kutzbach criterion 38:The arms, fingers, and head of the 883:Suh, C. H., and Radcliffe, C. W., 845:Oxford University Press, New York. 843:Theory of Machines and Mechanisms, 648:spatially connected to each other? 14: 175:rigid bodies moving in space has 907:Kinematic Geometry of Mechanisms 872:Kinematic Synthesis of Linkages, 149:micro-electro-mechanical systems 45:are modeled as kinematic chains. 885:Kinematics and Mechanism Design 599:equations of the serial chain. 55:Boulton & Watt steam engine 575: 562: 559: 540: 534: 521: 518: 505: 502: 489: 486: 473: 467: 461: 369: 351: 342: 323: 1: 800:Geometric Design of Linkages, 716:Denavit–Hartenberg parameters 662:Synthesis of kinematic chains 780:The Kinematics of Machinery, 427:Analysis of kinematic chains 644:form: how are neighbouring 585:{\displaystyle =\cdots ,\!} 977: 260:joints each with freedom 101:model for a typical robot 423:includes the fixed link. 951:Mechanisms (engineering) 827:Precision Machine Design 825:Alexander Slocum, 1992, 816:, John Wiley & Sons. 694:became the prototype of 812:Larry L. Howell, 2001, 756:Superposition principle 736:Mechanism (engineering) 692:Freudenstein's equation 874:McGraw-Hill, New York. 854:J. M. McCarthy, 1990, 751:Six degrees of freedom 684:Ferdinand Freudenstein 586: 410: 395: 322: 71:mechanical engineering 66: 58: 46: 31: 936:Computational physics 696:computer-aided design 587: 444:rigid transformations 411: 375: 302: 134:holonomic constraints 64: 52: 37: 22: 931:3D computer graphics 814:Compliant mechanisms 731:Machine (mechanical) 676:, which is known as 668:kinematic synthesis. 627:parallel manipulator 625:: a serial chain, a 458: 284: 145:compliant mechanisms 53:The movement of the 961:Classical mechanics 803:Springer, New York. 726:Configuration space 433:algebraic equations 227:. In the case of a 615:inverse kinematics 597:forward kinematics 582: 437:degrees of freedom 406: 165:degrees of freedom 87:mathematical model 77:is an assembly of 67: 59: 47: 32: 926:Computer graphics 674:four-bar linkages 256:moving links and 138:kinematic diagram 91:mechanical system 968: 941:Robot kinematics 910: 903: 897: 894: 888: 881: 875: 868: 859: 852: 846: 839: 830: 823: 817: 810: 804: 795: 784: 772: 678:Burmester theory 633:structure, or a 591: 589: 588: 583: 574: 573: 558: 557: 533: 532: 517: 516: 501: 500: 485: 484: 450: 422: 415: 413: 412: 407: 405: 404: 394: 389: 341: 340: 321: 316: 276: 266: 259: 255: 248: 241: 226: 216: 212: 204: 193: 181: 174: 159:Mobility formula 976: 975: 971: 970: 969: 967: 966: 965: 946:Virtual reality 916: 915: 914: 913: 904: 900: 895: 891: 882: 878: 869: 862: 853: 849: 840: 833: 824: 820: 811: 807: 796: 787: 773: 769: 764: 746:Simple machines 741:Six-bar linkage 707: 664: 565: 543: 524: 508: 492: 476: 456: 455: 448: 429: 420: 396: 332: 282: 281: 268: 265: 261: 257: 253: 243: 236: 218: 214: 210: 195: 184: 176: 172: 161: 116:, often called 110:kinematic pairs 93:. As the word 75:kinematic chain 17: 12: 11: 5: 974: 972: 964: 963: 958: 953: 948: 943: 938: 933: 928: 918: 917: 912: 911: 898: 889: 876: 860: 847: 831: 818: 805: 785: 766: 765: 763: 760: 759: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 706: 703: 663: 660: 650: 649: 638: 604:loop equations 593: 592: 580: 577: 572: 568: 564: 561: 556: 553: 550: 546: 542: 539: 536: 531: 527: 523: 520: 515: 511: 507: 504: 499: 495: 491: 488: 483: 479: 475: 472: 469: 466: 463: 428: 425: 417: 416: 403: 399: 393: 388: 385: 382: 378: 374: 371: 368: 365: 362: 359: 356: 353: 350: 347: 344: 339: 335: 331: 328: 325: 320: 315: 312: 309: 305: 301: 298: 295: 292: 289: 277:, is given by 263: 242:and therefore 160: 157: 15: 13: 10: 9: 6: 4: 3: 2: 973: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 923: 921: 908: 905:Hunt, K. H., 902: 899: 893: 890: 886: 880: 877: 873: 867: 865: 861: 857: 851: 848: 844: 838: 836: 832: 828: 822: 819: 815: 809: 806: 802: 801: 794: 792: 790: 786: 782: 781: 776: 771: 768: 761: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 708: 704: 702: 699: 697: 693: 689: 685: 681: 679: 675: 670: 669: 661: 659: 655: 654: 647: 643: 639: 636: 632: 628: 624: 620: 619: 618: 616: 612: 607: 605: 600: 598: 578: 570: 566: 554: 551: 548: 544: 537: 529: 525: 513: 509: 497: 493: 481: 477: 470: 464: 454: 453: 452: 445: 440: 438: 434: 426: 424: 401: 397: 391: 386: 383: 380: 376: 372: 366: 363: 360: 357: 354: 348: 345: 337: 333: 329: 326: 318: 313: 310: 307: 303: 299: 296: 293: 290: 287: 280: 279: 278: 275: 271: 250: 246: 239: 234: 230: 225: 221: 206: 202: 198: 191: 187: 180: 170: 166: 158: 156: 154: 150: 146: 141: 139: 135: 131: 130:higher pairs. 127: 123: 119: 115: 111: 106: 104: 100: 96: 92: 88: 84: 81:connected by 80: 76: 72: 63: 56: 51: 44: 41: 36: 29: 26: 21: 906: 901: 892: 884: 879: 871: 855: 850: 842: 821: 808: 799: 779: 775:Reuleaux, F. 770: 700: 691: 682: 671: 667: 665: 656: 652: 651: 608: 603: 601: 594: 441: 430: 419:Recall that 418: 273: 269: 251: 244: 237: 223: 219: 207: 200: 196: 189: 185: 178: 168: 162: 142: 129: 117: 107: 79:rigid bodies 74: 68: 28:mobile robot 711:Assur group 653:Explanation 642:geometrical 272:= 1, 2, …, 247:= 6 − 1 = 5 118:lower pairs 103:manipulator 920:Categories 762:References 153:tensegrity 698:systems. 552:− 538:⋯ 377:∑ 364:− 358:− 330:− 304:∑ 300:− 169:mobility, 155:systems. 128:, called 99:kinematic 956:Diagrams 705:See also 688:linkages 623:topology 217:, where 194:, where 114:robotics 43:Robonaut 777:, 1876 611:forward 126:gearing 646:joints 233:slider 222:= 6 − 89:for a 83:joints 829:, SME 635:graph 229:hinge 167:, or 136:. A 95:chain 640:Its 631:tree 629:, a 621:Its 613:and 192:− 1) 188:= 6( 163:The 147:and 124:and 122:cams 73:, a 23:The 240:= 1 231:or 203:+ 1 69:In 40:JSC 25:JPL 922:: 863:^ 834:^ 788:^ 680:. 606:. 439:. 267:, 249:. 199:= 105:. 637:. 579:, 576:] 571:n 567:Z 563:[ 560:] 555:1 549:n 545:X 541:[ 535:] 530:2 526:X 522:[ 519:] 514:2 510:Z 506:[ 503:] 498:1 494:X 490:[ 487:] 482:1 478:Z 474:[ 471:= 468:] 465:T 462:[ 449:n 421:N 402:i 398:f 392:j 387:1 384:= 381:i 373:+ 370:) 367:j 361:1 355:N 352:( 349:6 346:= 343:) 338:i 334:f 327:6 324:( 319:j 314:1 311:= 308:i 297:n 294:6 291:= 288:M 274:j 270:i 264:i 262:f 258:j 254:n 245:c 238:f 224:f 220:c 215:f 211:c 201:n 197:N 190:N 186:M 179:n 177:6 173:n

Index


JPL
mobile robot

JSC
Robonaut
Boulton & Watt Steam Engine
Boulton & Watt steam engine

mechanical engineering
rigid bodies
joints
mathematical model
mechanical system
chain
kinematic
manipulator
kinematic pairs
robotics
cams
gearing
holonomic constraints
kinematic diagram
compliant mechanisms
micro-electro-mechanical systems
tensegrity
degrees of freedom
hinge
slider
algebraic equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑