Knowledge

Kirchhoff's theorem

Source 📝

2613: 259: 2205: 2608:{\displaystyle {\begin{aligned}q_{n-1}&=\lambda _{1}+\dots +\lambda _{n-1}=\mathrm {tr} Q=2|E|\\q_{n-2}&=\lambda _{1}\lambda _{2}+\lambda _{1}\lambda _{3}+\dots +\lambda _{n-2}\lambda _{n-1}\\q_{2}&=\lambda _{1}\dots \lambda _{n-2}+\lambda _{1}\dots \lambda _{n-3}\lambda _{n-1}+\dots +\lambda _{2}\dots \lambda _{n-1}\\q_{1}&=\lambda _{1}\dots \lambda _{n-1}\\\end{aligned}}} 1309: 857: 610:
First notice that the Laplacian matrix has the property that the sum of its entries across any row and any column is 0. Thus we can transform any minor into any other minor by adding rows and columns, switching them, and multiplying a row or a column by −1. Thus the cofactors are the same up to sign,
1050: 1455:
in the resulting expression represents a spanning tree consisting of the edges corresponding to the indeterminates appearing in that monomial. In this way, one can obtain explicit enumeration of all the spanning trees of the graph simply by computing the determinant.
2149: 1158: 1123:
follows from Kirchhoff's theorem as a special case, since every vector with 1 in one place, −1 in another place, and 0 elsewhere is an eigenvector of the Laplacian matrix of the complete graph, with the corresponding eigenvalue being
701: 245: 914: 1403:
Kirchhoff's theorem can be strengthened by altering the definition of the Laplacian matrix. Rather than merely counting edges emanating from each vertex or connecting a pair of vertices, label each edge with an
1935: 1737: 2210: 2006: 1304:{\displaystyle {\begin{bmatrix}n-1&-1&\cdots &-1\\-1&n-1&\cdots &-1\\\vdots &\vdots &\ddots &\vdots \\-1&-1&\cdots &n-1\\\end{bmatrix}}.} 1447:
The determinant of the modified Laplacian matrix by deleting any row and column (similar to finding the number of spanning trees from the original Laplacian matrix), above is then a
1795: 2692: 562: 1638: 2198: 1971: 434: 852:{\displaystyle E={\begin{bmatrix}1&1&0&0&0\\-1&0&1&1&0\\0&-1&-1&0&1\\0&0&0&-1&-1\\\end{bmatrix}}.} 2730: 1998: 1856: 1829: 1451:(the Kirchhoff polynomial) in the indeterminates corresponding to the edges of the graph. After collecting terms and performing all possible cancellations, each 1471:, so Kirchhoff's theorem provides a formula to count the number of bases in a graphic matroid. The same method may also be used to count the number of bases in 165: 1045:{\displaystyle \det \left(M_{11}\right)=\sum _{S}\det \left(F_{S}\right)\det \left(F_{S}^{\mathrm {T} }\right)=\sum _{S}\det \left(F_{S}\right)^{2}} 2949: 2866: 2825: 2902: 1094:− 1 edges of the original graph, and it can be shown that those edges induce a spanning tree if and only if the determinant of 3021: 2789:
O'Toole, J.B. "On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents".
88:
Kirchhoff's theorem relies on the notion of the Laplacian matrix of a graph, which is equal to the difference between the graph's
1590:
that contains all vertices and is cycle-free, i.e., there is at most one path between each pair of vertices. Given such a forest
1864: 3011: 20: 1643: 1101:
is +1 or −1, and that they do not induce a spanning tree if and only if the determinant is 0. This completes the proof.
51: 1487:
Kirchhoff's theorem can be modified to count the number of oriented spanning trees in directed multigraphs. The matrix
2749: 112: 2144:{\displaystyle q_{k}=\sum _{\{i_{1},\dots ,i_{n-k}\}\subset \{1\dots n-1\}}\lambda _{i_{1}}\dots \lambda _{i_{n-k}}.} 1416:)-th entry of the modified Laplacian matrix be the sum over the indeterminates corresponding to edges between the 3026: 2759: 2733: 680: 74: 905: 600: 1587: 1405: 1129: 2911:
Maurer, Stephen B. (1976), "Matrix generalizations of some theorems on trees, cycles and cocycles in graphs",
1138:
Alternatively, note that as Cayley's formula counts the number of distinct labeled trees of a complete graph
250:
An English translation of Kirchhoff's original 1847 paper was made by J. B. O'Toole and published in 1958.
3016: 1745: 1448: 604: 2764: 1576: 124: 97: 2647: 453: 258: 1597: 1365: 1120: 1115: 78: 2637:= 1 case corresponds to the original Kirchhoff theorem since the weight of every spanning tree is 262:
The Matrix-Tree Theorem can be used to compute the number of labeled spanning trees of this graph.
2769: 2165: 1943: 108:
with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).
2978: 2945: 2862: 2831: 2821: 283: 2968: 2920: 2854: 2798: 867: 298: 101: 67: 43: 2932: 2928: 1472: 1468: 93: 55: 1432:, and the negative sum over all indeterminates corresponding to edges emanating from the 2708: 1976: 1834: 1807: 82: 475: 3005: 2973: 2644:
The proof can be done analogously to the proof of Kirchhoff's theorem. An invertible
271: 89: 47: 2754: 240:{\displaystyle t(G)={\frac {1}{n}}\lambda _{1}\lambda _{2}\cdots \lambda _{n-1}\,.} 105: 31: 59: 27: 2858: 1327: 152: 2982: 2835: 2802: 2695: 871: 607:
argument for Kirchhoff's theorem can be found on page 654 of Moore (2011).)
63: 1391:
by same methods produced above, since a simple graph is a multigraph with
2996: 1452: 2702:-component spanning forest with a choice of vertex for each component. 2924: 1739:
to be the product of the number of vertices in each component. Then
77:
of the Laplacian matrix. Kirchhoff's theorem is a generalization of
2897:
Harris, John M.; Hirst, Jeffry L.; Mossinghoff, Michael J. (2008),
257: 1940:
The last factor in the polynomial is due to the zero eigenvalue
1459:
For a proof of this version of the theorem see Bollobás (1998).
611:
and it can be verified that, in fact, they have the same sign.
155:
of its Laplacian matrix. Then the number of spanning trees of
1135: − 1, so there are no other non-zero eigenvalues. 1145:
we need to compute any cofactor of the Laplacian matrix of
2959:
Chaiken, S.; Kleitman, D. (1978), "Matrix Tree Theorems",
1930:{\displaystyle (x+\lambda _{1})\dots (x+\lambda _{n-1})x.} 1548:
The number of oriented spanning trees rooted at a vertex
1732:{\textstyle w(F)=|V(F_{1})|\cdot \dots \cdot |V(F_{k})|} 1552:
is the determinant of the matrix gotten by removing the
641:
matrix, which may be defined as follows: suppose that (
2711: 2168: 1979: 1946: 1837: 1810: 1646: 1600: 1167: 716: 2650: 2208: 2009: 1867: 1748: 1161: 917: 704: 614:
We proceed to show that the determinant of the minor
456: 286: 168: 2820:. Oxford England New York: Oxford University Press. 447:. For example, deleting row 1 and column 1 yields 2724: 2686: 2629:−1 case states that the sum of the eigenvalues of 2607: 2192: 2143: 1992: 1965: 1929: 1850: 1823: 1789: 1731: 1632: 1467:The spanning trees of a graph form the bases of a 1303: 1044: 851: 556: 428: 239: 683:for understanding this modified incidence matrix 81:which provides the number of spanning trees in a 2621:−1 components corresponds to a single edge, the 1571:Kirchhoff's theorem can be generalized to count 1482: 1014: 973: 952: 918: 2694:submatrix of the incidence matrix corresponds 1583:-component spanning forest is a subgraph with 1372:Cayley's formula for a complete multigraph is 629:the number of its edges. The incidence matrix 54:, showing that this number can be computed in 1078:− 1) matrix whose columns are those of 579:), which is 8 for the diamond graph. (Notice 8: 2187: 2169: 2090: 2072: 2066: 2028: 1483:Kirchhoff's theorem for directed multigraphs 1475:, a generalization of the graphic matroids ( 625:be the number of vertices of the graph, and 2944:, Cambridge University Press, p. 138, 1364:when counting the degree of a vertex, all 1128:. These vectors together span a space of 16:On the number of spanning trees in a graph 2972: 2961:Journal of Combinatorial Theory, Series A 2716: 2710: 2649: 2589: 2576: 2559: 2539: 2526: 2501: 2485: 2472: 2453: 2440: 2423: 2403: 2387: 2368: 2358: 2345: 2335: 2312: 2299: 2291: 2274: 2259: 2240: 2217: 2209: 2207: 2167: 2124: 2119: 2104: 2099: 2054: 2035: 2027: 2014: 2008: 1984: 1978: 1951: 1945: 1906: 1881: 1866: 1842: 1836: 1815: 1809: 1778: 1753: 1747: 1724: 1715: 1700: 1686: 1677: 1662: 1645: 1624: 1605: 1599: 1162: 1160: 1036: 1026: 1008: 990: 989: 984: 963: 946: 929: 916: 711: 703: 621:counts the number of spanning trees. Let 474: 461: 455: 297: 285: 233: 221: 208: 198: 184: 167: 866:can be factored into the product of the 443:by deleting any row and any column from 254:An example using the matrix-tree theorem 2781: 2732:are up to sign the coefficients of the 1321: 1152:. The Laplacian matrix in this case is 70:; specifically, the number is equal to 1476: 1399:Explicit enumeration of spanning trees 675:= −1, and all other entries in column 266:First, construct the Laplacian matrix 7: 1790:{\displaystyle \sum _{F}w(F)=q_{k},} 1314:Any cofactor of the above matrix is 1105:Particular cases and generalizations 890:with its first row deleted, so that 687:). For the preceding example (with 2913:SIAM Journal on Applied Mathematics 1322:Kirchhoff's theorem for multigraphs 2903:Undergraduate Texts in Mathematics 2791:IRE Transactions on Circuit Theory 2633:is twice the number of edges. The 2278: 2275: 1059:ranges across subsets of of size 991: 14: 2687:{\displaystyle (n-k)\times (n-k)} 599:(The proof below is based on the 567:Finally, take the determinant of 46:is a theorem about the number of 1804:-component spanning forests and 557:{\displaystyle Q^{\ast }=\left.} 2750:List of topics related to trees 1633:{\textstyle F_{1},\dots ,F_{k}} 1353:is the number of edges between 653:th edge of the graph, and that 40:Kirchhoff's matrix tree theorem 2997:A proof of Kirchhoff's theorem 2899:Combinatorics and Graph Theory 2681: 2669: 2663: 2651: 2300: 2292: 1973:. More explicitly, the number 1918: 1893: 1887: 1868: 1768: 1762: 1725: 1721: 1708: 1701: 1687: 1683: 1670: 1663: 1656: 1650: 1326:Kirchhoff's theorem holds for 178: 172: 1: 2886:. Cambridge University Press. 2617:Since a spanning forest with 1540:minus the number of loops at 1318:, which is Cayley's formula. 2974:10.1016/0097-3165(78)90067-5 1518:is the number of edges from 21:Kirchhoff's integral theorem 2193:{\textstyle \{1,\dots ,n\}} 1966:{\textstyle \lambda _{n}=0} 1491:is constructed as follows: 587:) is the (1,1)-cofactor of 3043: 2816:Moore, Cristopher (2011). 2154:where the sum is over all 1800:where the sum is over all 1594:with connected components 1579:in an unweighted graph. A 1113: 862:Recall that the Laplacian 277:(see image on the right): 18: 2859:10.1007/978-1-4612-0619-4 2818:The nature of computation 2760:Markov chain tree theorem 2734:characteristic polynomial 681:oriented incidence matrix 439:Next, construct a matrix 3022:Theorems in graph theory 2905:(2nd ed.), Springer 2803:10.1109/TCT.1958.1086426 1334:is modified as follows: 429:{\displaystyle Q=\left.} 19:Not to be confused with 2849:Bollobás, Béla (1998). 1536:equals the indegree of 1109: 3012:Algebraic graph theory 2884:Algebraic Graph Theory 2853:. New York: Springer. 2726: 2688: 2609: 2194: 2145: 1994: 1967: 1931: 1852: 1831:is the coefficient of 1825: 1791: 1733: 1634: 1449:homogeneous polynomial 1305: 1046: 853: 558: 430: 263: 241: 2940:Tutte, W. T. (2001), 2765:Minimum spanning tree 2727: 2689: 2610: 2195: 2146: 1995: 1968: 1932: 1853: 1826: 1792: 1734: 1635: 1556:th row and column of 1306: 1047: 854: 559: 431: 261: 242: 2709: 2648: 2206: 2166: 2162:-element subsets of 2007: 1977: 1944: 1865: 1835: 1808: 1746: 1644: 1640:, define its weight 1598: 1588:connected components 1575:-component spanning 1330:as well; the matrix 1159: 915: 906:Cauchy–Binet formula 702: 601:Cauchy–Binet formula 454: 284: 166: 2851:Modern graph theory 2000:can be computed as 996: 908:allows us to write 882:. Furthermore, let 36:Kirchhoff's theorem 2882:Biggs, N. (1993). 2725:{\textstyle q_{k}} 2722: 2684: 2605: 2603: 2190: 2141: 2094: 1993:{\textstyle q_{k}} 1990: 1963: 1927: 1858:of the polynomial 1851:{\textstyle x^{k}} 1848: 1824:{\textstyle q_{k}} 1821: 1787: 1758: 1729: 1630: 1567:-component forests 1563:Counting spanning 1424:-th vertices when 1301: 1292: 1042: 1013: 980: 951: 849: 840: 591:in this example.) 554: 545: 426: 417: 264: 237: 2951:978-0-521-79489-3 2868:978-0-387-98488-9 2827:978-0-19-923321-2 2705:The coefficients 2023: 1749: 1004: 942: 192: 141:, ...,  3034: 3027:Gustav Kirchhoff 2985: 2976: 2954: 2935: 2906: 2888: 2887: 2879: 2873: 2872: 2846: 2840: 2839: 2813: 2807: 2806: 2786: 2731: 2729: 2728: 2723: 2721: 2720: 2693: 2691: 2690: 2685: 2614: 2612: 2611: 2606: 2604: 2600: 2599: 2581: 2580: 2564: 2563: 2550: 2549: 2531: 2530: 2512: 2511: 2496: 2495: 2477: 2476: 2464: 2463: 2445: 2444: 2428: 2427: 2414: 2413: 2398: 2397: 2373: 2372: 2363: 2362: 2350: 2349: 2340: 2339: 2323: 2322: 2303: 2295: 2281: 2270: 2269: 2245: 2244: 2228: 2227: 2199: 2197: 2196: 2191: 2150: 2148: 2147: 2142: 2137: 2136: 2135: 2134: 2111: 2110: 2109: 2108: 2093: 2065: 2064: 2040: 2039: 2019: 2018: 1999: 1997: 1996: 1991: 1989: 1988: 1972: 1970: 1969: 1964: 1956: 1955: 1936: 1934: 1933: 1928: 1917: 1916: 1886: 1885: 1857: 1855: 1854: 1849: 1847: 1846: 1830: 1828: 1827: 1822: 1820: 1819: 1803: 1796: 1794: 1793: 1788: 1783: 1782: 1757: 1738: 1736: 1735: 1730: 1728: 1720: 1719: 1704: 1690: 1682: 1681: 1666: 1639: 1637: 1636: 1631: 1629: 1628: 1610: 1609: 1586: 1582: 1574: 1473:regular matroids 1436:-th vertex when 1390: 1310: 1308: 1307: 1302: 1297: 1296: 1121:Cayley's formula 1116:Cayley's formula 1110:Cayley's formula 1051: 1049: 1048: 1043: 1041: 1040: 1035: 1031: 1030: 1012: 1000: 995: 994: 988: 972: 968: 967: 950: 938: 934: 933: 868:incidence matrix 858: 856: 855: 850: 845: 844: 603:. An elementary 563: 561: 560: 555: 550: 546: 466: 465: 435: 433: 432: 427: 422: 418: 270:for the example 246: 244: 243: 238: 232: 231: 213: 212: 203: 202: 193: 185: 151:be the non-zero 102:adjacency matrix 79:Cayley's formula 68:Laplacian matrix 44:Gustav Kirchhoff 3042: 3041: 3037: 3036: 3035: 3033: 3032: 3031: 3002: 3001: 2993: 2988: 2958: 2952: 2939: 2925:10.1137/0130017 2910: 2896: 2892: 2891: 2881: 2880: 2876: 2869: 2848: 2847: 2843: 2828: 2815: 2814: 2810: 2788: 2787: 2783: 2778: 2770:Prüfer sequence 2746: 2712: 2707: 2706: 2646: 2645: 2602: 2601: 2585: 2572: 2565: 2555: 2552: 2551: 2535: 2522: 2497: 2481: 2468: 2449: 2436: 2429: 2419: 2416: 2415: 2399: 2383: 2364: 2354: 2341: 2331: 2324: 2308: 2305: 2304: 2255: 2236: 2229: 2213: 2204: 2203: 2164: 2163: 2120: 2115: 2100: 2095: 2050: 2031: 2010: 2005: 2004: 1980: 1975: 1974: 1947: 1942: 1941: 1902: 1877: 1863: 1862: 1838: 1833: 1832: 1811: 1806: 1805: 1801: 1774: 1744: 1743: 1711: 1673: 1642: 1641: 1620: 1601: 1596: 1595: 1584: 1580: 1572: 1569: 1534: 1500: 1485: 1469:graphic matroid 1465: 1428:does not equal 1401: 1373: 1343: 1324: 1291: 1290: 1279: 1274: 1266: 1257: 1256: 1251: 1246: 1241: 1235: 1234: 1226: 1221: 1210: 1201: 1200: 1192: 1187: 1179: 1163: 1157: 1156: 1150: 1143: 1118: 1112: 1107: 1099: 1074:− 1)-by-( 1068: 1063:− 1, and 1022: 1018: 1017: 976: 959: 955: 925: 921: 913: 912: 900: 839: 838: 830: 822: 817: 812: 806: 805: 800: 795: 787: 779: 773: 772: 767: 762: 757: 752: 743: 742: 737: 732: 727: 722: 712: 700: 699: 673: 666: 620: 597: 544: 543: 538: 530: 521: 520: 512: 507: 498: 497: 489: 481: 470: 457: 452: 451: 416: 415: 410: 402: 394: 388: 387: 379: 374: 366: 357: 356: 348: 340: 335: 326: 325: 320: 312: 304: 293: 282: 281: 256: 217: 204: 194: 164: 163: 150: 146: 140: 133: 94:diagonal matrix 66:of the graph's 56:polynomial time 24: 17: 12: 11: 5: 3040: 3038: 3030: 3029: 3024: 3019: 3014: 3004: 3003: 3000: 2999: 2992: 2991:External links 2989: 2987: 2986: 2967:(3): 377–381, 2956: 2950: 2937: 2919:(1): 143–148, 2908: 2893: 2890: 2889: 2874: 2867: 2841: 2826: 2808: 2780: 2779: 2777: 2774: 2773: 2772: 2767: 2762: 2757: 2752: 2745: 2742: 2719: 2715: 2683: 2680: 2677: 2674: 2671: 2668: 2665: 2662: 2659: 2656: 2653: 2598: 2595: 2592: 2588: 2584: 2579: 2575: 2571: 2568: 2566: 2562: 2558: 2554: 2553: 2548: 2545: 2542: 2538: 2534: 2529: 2525: 2521: 2518: 2515: 2510: 2507: 2504: 2500: 2494: 2491: 2488: 2484: 2480: 2475: 2471: 2467: 2462: 2459: 2456: 2452: 2448: 2443: 2439: 2435: 2432: 2430: 2426: 2422: 2418: 2417: 2412: 2409: 2406: 2402: 2396: 2393: 2390: 2386: 2382: 2379: 2376: 2371: 2367: 2361: 2357: 2353: 2348: 2344: 2338: 2334: 2330: 2327: 2325: 2321: 2318: 2315: 2311: 2307: 2306: 2302: 2298: 2294: 2290: 2287: 2284: 2280: 2277: 2273: 2268: 2265: 2262: 2258: 2254: 2251: 2248: 2243: 2239: 2235: 2232: 2230: 2226: 2223: 2220: 2216: 2212: 2211: 2200:. For example 2189: 2186: 2183: 2180: 2177: 2174: 2171: 2152: 2151: 2140: 2133: 2130: 2127: 2123: 2118: 2114: 2107: 2103: 2098: 2092: 2089: 2086: 2083: 2080: 2077: 2074: 2071: 2068: 2063: 2060: 2057: 2053: 2049: 2046: 2043: 2038: 2034: 2030: 2026: 2022: 2017: 2013: 1987: 1983: 1962: 1959: 1954: 1950: 1938: 1937: 1926: 1923: 1920: 1915: 1912: 1909: 1905: 1901: 1898: 1895: 1892: 1889: 1884: 1880: 1876: 1873: 1870: 1845: 1841: 1818: 1814: 1798: 1797: 1786: 1781: 1777: 1773: 1770: 1767: 1764: 1761: 1756: 1752: 1727: 1723: 1718: 1714: 1710: 1707: 1703: 1699: 1696: 1693: 1689: 1685: 1680: 1676: 1672: 1669: 1665: 1661: 1658: 1655: 1652: 1649: 1627: 1623: 1619: 1616: 1613: 1608: 1604: 1568: 1561: 1546: 1545: 1532: 1527: 1498: 1484: 1481: 1464: 1461: 1400: 1397: 1370: 1369: 1362: 1341: 1323: 1320: 1312: 1311: 1300: 1295: 1289: 1286: 1283: 1280: 1278: 1275: 1273: 1270: 1267: 1265: 1262: 1259: 1258: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1236: 1233: 1230: 1227: 1225: 1222: 1220: 1217: 1214: 1211: 1209: 1206: 1203: 1202: 1199: 1196: 1193: 1191: 1188: 1186: 1183: 1180: 1178: 1175: 1172: 1169: 1168: 1166: 1148: 1141: 1114:Main article: 1111: 1108: 1106: 1103: 1097: 1082:with index in 1066: 1053: 1052: 1039: 1034: 1029: 1025: 1021: 1016: 1011: 1007: 1003: 999: 993: 987: 983: 979: 975: 971: 966: 962: 958: 954: 949: 945: 941: 937: 932: 928: 924: 920: 898: 886:be the matrix 860: 859: 848: 843: 837: 834: 831: 829: 826: 823: 821: 818: 816: 813: 811: 808: 807: 804: 801: 799: 796: 794: 791: 788: 786: 783: 780: 778: 775: 774: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 745: 744: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 717: 715: 710: 707: 671: 664: 618: 596: 593: 565: 564: 553: 549: 542: 539: 537: 534: 531: 529: 526: 523: 522: 519: 516: 513: 511: 508: 506: 503: 500: 499: 496: 493: 490: 488: 485: 482: 480: 477: 476: 473: 469: 464: 460: 437: 436: 425: 421: 414: 411: 409: 406: 403: 401: 398: 395: 393: 390: 389: 386: 383: 380: 378: 375: 373: 370: 367: 365: 362: 359: 358: 355: 352: 349: 347: 344: 341: 339: 336: 334: 331: 328: 327: 324: 321: 319: 316: 313: 311: 308: 305: 303: 300: 299: 296: 292: 289: 255: 252: 248: 247: 236: 230: 227: 224: 220: 216: 211: 207: 201: 197: 191: 188: 183: 180: 177: 174: 171: 148: 144: 138: 131: 83:complete graph 48:spanning trees 15: 13: 10: 9: 6: 4: 3: 2: 3039: 3028: 3025: 3023: 3020: 3018: 3017:Spanning tree 3015: 3013: 3010: 3009: 3007: 2998: 2995: 2994: 2990: 2984: 2980: 2975: 2970: 2966: 2962: 2957: 2953: 2947: 2943: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2909: 2904: 2900: 2895: 2894: 2885: 2878: 2875: 2870: 2864: 2860: 2856: 2852: 2845: 2842: 2837: 2833: 2829: 2823: 2819: 2812: 2809: 2804: 2800: 2796: 2792: 2785: 2782: 2775: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2747: 2743: 2741: 2739: 2735: 2717: 2713: 2703: 2701: 2697: 2678: 2675: 2672: 2666: 2660: 2657: 2654: 2642: 2640: 2636: 2632: 2628: 2624: 2620: 2615: 2596: 2593: 2590: 2586: 2582: 2577: 2573: 2569: 2567: 2560: 2556: 2546: 2543: 2540: 2536: 2532: 2527: 2523: 2519: 2516: 2513: 2508: 2505: 2502: 2498: 2492: 2489: 2486: 2482: 2478: 2473: 2469: 2465: 2460: 2457: 2454: 2450: 2446: 2441: 2437: 2433: 2431: 2424: 2420: 2410: 2407: 2404: 2400: 2394: 2391: 2388: 2384: 2380: 2377: 2374: 2369: 2365: 2359: 2355: 2351: 2346: 2342: 2336: 2332: 2328: 2326: 2319: 2316: 2313: 2309: 2296: 2288: 2285: 2282: 2271: 2266: 2263: 2260: 2256: 2252: 2249: 2246: 2241: 2237: 2233: 2231: 2224: 2221: 2218: 2214: 2201: 2184: 2181: 2178: 2175: 2172: 2161: 2157: 2138: 2131: 2128: 2125: 2121: 2116: 2112: 2105: 2101: 2096: 2087: 2084: 2081: 2078: 2075: 2069: 2061: 2058: 2055: 2051: 2047: 2044: 2041: 2036: 2032: 2024: 2020: 2015: 2011: 2003: 2002: 2001: 1985: 1981: 1960: 1957: 1952: 1948: 1924: 1921: 1913: 1910: 1907: 1903: 1899: 1896: 1890: 1882: 1878: 1874: 1871: 1861: 1860: 1859: 1843: 1839: 1816: 1812: 1784: 1779: 1775: 1771: 1765: 1759: 1754: 1750: 1742: 1741: 1740: 1716: 1712: 1705: 1697: 1694: 1691: 1678: 1674: 1667: 1659: 1653: 1647: 1625: 1621: 1617: 1614: 1611: 1606: 1602: 1593: 1589: 1578: 1566: 1562: 1560: 1559: 1555: 1551: 1543: 1539: 1535: 1528: 1525: 1521: 1517: 1513: 1509: 1505: 1502:for distinct 1501: 1494: 1493: 1492: 1490: 1480: 1478: 1474: 1470: 1462: 1460: 1457: 1454: 1450: 1445: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1408:and let the ( 1407: 1406:indeterminate 1398: 1396: 1394: 1388: 1384: 1380: 1376: 1368:are excluded. 1367: 1363: 1360: 1356: 1352: 1348: 1344: 1337: 1336: 1335: 1333: 1329: 1319: 1317: 1298: 1293: 1287: 1284: 1281: 1276: 1271: 1268: 1263: 1260: 1253: 1248: 1243: 1238: 1231: 1228: 1223: 1218: 1215: 1212: 1207: 1204: 1197: 1194: 1189: 1184: 1181: 1176: 1173: 1170: 1164: 1155: 1154: 1153: 1151: 1144: 1136: 1134: 1131: 1127: 1122: 1117: 1104: 1102: 1100: 1093: 1089: 1086:. Then every 1085: 1081: 1077: 1073: 1070:denotes the ( 1069: 1062: 1058: 1037: 1032: 1027: 1023: 1019: 1009: 1005: 1001: 997: 985: 981: 977: 969: 964: 960: 956: 947: 943: 939: 935: 930: 926: 922: 911: 910: 909: 907: 902: 897: 893: 889: 885: 881: 877: 873: 869: 865: 846: 841: 835: 832: 827: 824: 819: 814: 809: 802: 797: 792: 789: 784: 781: 776: 769: 764: 759: 754: 749: 746: 739: 734: 729: 724: 719: 713: 708: 705: 698: 697: 696: 694: 690: 686: 682: 678: 674: 667: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 617: 612: 608: 606: 602: 595:Proof outline 594: 592: 590: 586: 582: 578: 574: 570: 551: 547: 540: 535: 532: 527: 524: 517: 514: 509: 504: 501: 494: 491: 486: 483: 478: 471: 467: 462: 458: 450: 449: 448: 446: 442: 423: 419: 412: 407: 404: 399: 396: 391: 384: 381: 376: 371: 368: 363: 360: 353: 350: 345: 342: 337: 332: 329: 322: 317: 314: 309: 306: 301: 294: 290: 287: 280: 279: 278: 276: 273: 272:diamond graph 269: 260: 253: 251: 234: 228: 225: 222: 218: 214: 209: 205: 199: 195: 189: 186: 181: 175: 169: 162: 161: 160: 158: 154: 147: 137: 130: 126: 122: 118: 114: 109: 107: 103: 99: 95: 91: 90:degree matrix 86: 84: 80: 76: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 22: 2964: 2960: 2942:Graph Theory 2941: 2916: 2912: 2898: 2883: 2877: 2850: 2844: 2817: 2811: 2794: 2790: 2784: 2755:BEST theorem 2737: 2704: 2699: 2643: 2638: 2634: 2630: 2626: 2622: 2618: 2616: 2202: 2159: 2155: 2153: 1939: 1799: 1591: 1570: 1564: 1557: 1553: 1549: 1547: 1541: 1537: 1530: 1523: 1519: 1515: 1511: 1507: 1503: 1496: 1488: 1486: 1466: 1458: 1446: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1402: 1392: 1386: 1382: 1378: 1374: 1371: 1358: 1354: 1350: 1346: 1339: 1331: 1325: 1315: 1313: 1146: 1139: 1137: 1132: 1125: 1119: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1060: 1056: 1054: 903: 895: 891: 887: 883: 879: 875: 863: 861: 692: 688: 684: 676: 669: 662: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 615: 613: 609: 598: 588: 584: 580: 576: 572: 568: 566: 444: 440: 438: 274: 267: 265: 249: 156: 142: 135: 128: 120: 116: 111:For a given 110: 106:(0,1)-matrix 87: 71: 42:named after 39: 35: 32:graph theory 28:mathematical 25: 2696:bijectively 1477:Maurer 1976 1328:multigraphs 679:are 0 (see 153:eigenvalues 60:determinant 3006:Categories 2797:(1): 4–7. 2776:References 1529:The entry 1495:The entry 1338:The entry 1090:specifies 571:to obtain 100:) and its 96:of vertex 2983:0097-3165 2836:180753706 2676:− 2667:× 2658:− 2594:− 2587:λ 2583:… 2574:λ 2544:− 2537:λ 2533:… 2524:λ 2517:⋯ 2506:− 2499:λ 2490:− 2483:λ 2479:… 2470:λ 2458:− 2451:λ 2447:… 2438:λ 2408:− 2401:λ 2392:− 2385:λ 2378:⋯ 2366:λ 2356:λ 2343:λ 2333:λ 2317:− 2264:− 2257:λ 2250:⋯ 2238:λ 2222:− 2179:… 2129:− 2117:λ 2113:… 2097:λ 2085:− 2079:… 2070:⊂ 2059:− 2045:… 2025:∑ 1949:λ 1911:− 1904:λ 1891:… 1879:λ 1751:∑ 1698:⋅ 1695:⋯ 1692:⋅ 1615:… 1285:− 1277:⋯ 1269:− 1261:− 1254:⋮ 1249:⋱ 1244:⋮ 1239:⋮ 1229:− 1224:⋯ 1216:− 1205:− 1195:− 1190:⋯ 1182:− 1174:− 1130:dimension 1006:∑ 944:∑ 872:transpose 833:− 825:− 790:− 782:− 747:− 649:) is the 605:induction 533:− 525:− 515:− 502:− 492:− 484:− 463:∗ 405:− 397:− 382:− 369:− 361:− 351:− 343:− 330:− 315:− 307:− 226:− 219:λ 215:⋯ 206:λ 196:λ 113:connected 64:submatrix 58:from the 30:field of 2744:See also 1514:, where 1510:equals − 1463:Matroids 1453:monomial 1420:-th and 1349:, where 1345:equals − 904:Now the 874:, i.e., 870:and its 691:= 4 and 125:vertices 123:labeled 75:cofactor 2933:0392635 1577:forests 1440:equals 661:. Then 134:,  98:degrees 26:In the 2981:  2948:  2931:  2865:  2834:  2824:  1055:where 695:= 5): 633:is an 127:, let 115:graph 2698:to a 1395:= 1. 1366:loops 668:= 1, 657:< 119:with 92:(the 62:of a 52:graph 50:in a 2979:ISSN 2946:ISBN 2863:ISBN 2832:OCLC 2822:ISBN 1506:and 1357:and 637:-by- 2969:doi 2921:doi 2855:doi 2799:doi 2736:of 1533:i,i 1522:to 1499:i,j 1479:). 1385:−1) 1342:i,j 1015:det 974:det 953:det 919:det 159:is 104:(a 72:any 38:or 3008:: 2977:, 2965:24 2963:, 2929:MR 2927:, 2917:30 2915:, 2901:, 2861:. 2830:. 2793:. 2740:. 2641:. 2625:= 1444:. 1412:, 1381:−( 931:11 901:. 899:11 894:= 892:FF 880:EE 878:= 672:jk 665:ik 645:, 619:11 149:−1 85:. 34:, 2971:: 2955:. 2936:. 2923:: 2907:. 2871:. 2857:: 2838:. 2805:. 2801:: 2795:5 2738:Q 2718:k 2714:q 2700:k 2682:) 2679:k 2673:n 2670:( 2664:) 2661:k 2655:n 2652:( 2639:n 2635:k 2631:Q 2627:n 2623:k 2619:n 2597:1 2591:n 2578:1 2570:= 2561:1 2557:q 2547:1 2541:n 2528:2 2520:+ 2514:+ 2509:1 2503:n 2493:3 2487:n 2474:1 2466:+ 2461:2 2455:n 2442:1 2434:= 2425:2 2421:q 2411:1 2405:n 2395:2 2389:n 2381:+ 2375:+ 2370:3 2360:1 2352:+ 2347:2 2337:1 2329:= 2320:2 2314:n 2310:q 2301:| 2297:E 2293:| 2289:2 2286:= 2283:Q 2279:r 2276:t 2272:= 2267:1 2261:n 2253:+ 2247:+ 2242:1 2234:= 2225:1 2219:n 2215:q 2188:} 2185:n 2182:, 2176:, 2173:1 2170:{ 2160:k 2158:− 2156:n 2139:. 2132:k 2126:n 2122:i 2106:1 2102:i 2091:} 2088:1 2082:n 2076:1 2073:{ 2067:} 2062:k 2056:n 2052:i 2048:, 2042:, 2037:1 2033:i 2029:{ 2021:= 2016:k 2012:q 1986:k 1982:q 1961:0 1958:= 1953:n 1925:. 1922:x 1919:) 1914:1 1908:n 1900:+ 1897:x 1894:( 1888:) 1883:1 1875:+ 1872:x 1869:( 1844:k 1840:x 1817:k 1813:q 1802:k 1785:, 1780:k 1776:q 1772:= 1769:) 1766:F 1763:( 1760:w 1755:F 1726:| 1722:) 1717:k 1713:F 1709:( 1706:V 1702:| 1688:| 1684:) 1679:1 1675:F 1671:( 1668:V 1664:| 1660:= 1657:) 1654:F 1651:( 1648:w 1626:k 1622:F 1618:, 1612:, 1607:1 1603:F 1592:F 1585:k 1581:k 1573:k 1565:k 1558:Q 1554:i 1550:i 1544:. 1542:i 1538:i 1531:q 1526:; 1524:j 1520:i 1516:m 1512:m 1508:j 1504:i 1497:q 1489:Q 1442:j 1438:i 1434:i 1430:j 1426:i 1422:j 1418:i 1414:j 1410:i 1393:m 1389:) 1387:n 1383:n 1379:n 1377:( 1375:m 1361:; 1359:j 1355:i 1351:m 1347:m 1340:q 1332:Q 1316:n 1299:. 1294:] 1288:1 1282:n 1272:1 1264:1 1232:1 1219:1 1213:n 1208:1 1198:1 1185:1 1177:1 1171:n 1165:[ 1149:n 1147:K 1142:n 1140:K 1133:n 1126:n 1098:S 1096:F 1092:n 1088:S 1084:S 1080:F 1076:n 1072:n 1067:S 1065:F 1061:n 1057:S 1038:2 1033:) 1028:S 1024:F 1020:( 1010:S 1002:= 998:) 992:T 986:S 982:F 978:( 970:) 965:S 961:F 957:( 948:S 940:= 936:) 927:M 923:( 896:M 888:E 884:F 876:L 864:L 847:. 842:] 836:1 828:1 820:0 815:0 810:0 803:1 798:0 793:1 785:1 777:0 770:0 765:1 760:1 755:0 750:1 740:0 735:0 730:0 725:1 720:1 714:[ 709:= 706:E 693:m 689:n 685:E 677:k 670:E 663:E 659:j 655:i 651:k 647:j 643:i 639:m 635:n 631:E 627:m 623:n 616:M 589:Q 585:G 583:( 581:t 577:G 575:( 573:t 569:Q 552:. 548:] 541:2 536:1 528:1 518:1 510:3 505:1 495:1 487:1 479:3 472:[ 468:= 459:Q 445:Q 441:Q 424:. 420:] 413:2 408:1 400:1 392:0 385:1 377:3 372:1 364:1 354:1 346:1 338:3 333:1 323:0 318:1 310:1 302:2 295:[ 291:= 288:Q 275:G 268:Q 235:. 229:1 223:n 210:2 200:1 190:n 187:1 182:= 179:) 176:G 173:( 170:t 157:G 145:n 143:λ 139:2 136:λ 132:1 129:λ 121:n 117:G 23:.

Index

Kirchhoff's integral theorem
mathematical
graph theory
Gustav Kirchhoff
spanning trees
graph
polynomial time
determinant
submatrix
Laplacian matrix
cofactor
Cayley's formula
complete graph
degree matrix
diagonal matrix
degrees
adjacency matrix
(0,1)-matrix
connected
vertices
eigenvalues

diamond graph
Cauchy–Binet formula
induction
oriented incidence matrix
incidence matrix
transpose
Cauchy–Binet formula
Cayley's formula

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.