Knowledge

Orbit method

Source 📝

146:. Geometric invariants of the orbit translate into algebraic invariants of the corresponding representation. In this way the orbit method may be viewed as a precise mathematical manifestation of a vague physical principle of quantization. In the case of a nilpotent group 444:. The highest weight theory can be restated in the form of a bijection between the set of integral coadjoint orbits and the set of equivalence classes of irreducible unitary representations of 154:
additional restrictions on the orbit are necessary (polarizability, integrality, Pukánszky condition). This point of view has been significantly advanced by Kostant in his theory of
380: 279: 193: 741: 722: 647: 563:
The Orbit Method in Representation Theory: Proceedings of a Conference Held in Copenhagen, August to September 1988 (Progress in Mathematics)
110:
proposed that the orbit method should serve as a unifying principle in the description of the unitary duals of real reductive Lie groups.
714: 254: 519: 402:
have been completely classified. They are always finite-dimensional, unitarizable (i.e. admit an invariant positive definite
702: 258: 697: 142:
then the corresponding quantum mechanical system ought to be described via an irreducible unitary representation of
497: 476: 383: 329: 228: 167: 59: 387: 224: 332: 155: 47: 354: 250: 200: 196: 139: 665: 415: 290: 247: 123: 692: 236: 67: 91: 718: 643: 615: 579: 419: 399: 243: 204: 677: 607: 528: 319: 99: 657: 627: 591: 653: 639: 623: 587: 492: 322: 315: 282: 208: 87: 83: 79: 55: 480: 407: 403: 264: 178: 95: 735: 294: 17: 611: 682: 638:, Grundlehren der Mathematischen Wissenschaften, vol. 220, Berlin, New York: 549:
Proceedings of the International Congress of Mathematicians (Berkeley, California)
118:
One of the key observations of Kirillov was that coadjoint orbits of a Lie group
216: 131: 107: 63: 31: 242:
At its simplest, it states that a character of a Lie group may be given by the
426: 212: 619: 583: 281:. It does not apply to all Lie groups, but works for a number of classes of 46:
and by a few similar names) establishes a correspondence between irreducible
533: 325: 286: 173: 51: 598:
Kirillov, A. A. (1962), "Unitary representations of nilpotent Lie groups",
570:
Kirillov, A. A. (1961), "Unitary representations of nilpotent Lie groups",
390:
of the representation as a certain integral over the corresponding orbit.
410:, which are precisely the dominant integral weights for the group. If 232: 517:
Howe, Roger (1977), "Kirillov theory for compact p-adic groups",
547:
Vogan, David (1986), "Representations of reductive Lie groups",
717:, vol. 64, Providence, RI: American Mathematical Society, 253:
on the coadjoint orbits, weighted by the square-root of the
150:
the correspondence involves all orbits, but for a general
429:
and each of them intersects the positive Weyl chamber
357: 267: 181: 102:
found a version of the orbit method that applies to
479:amounts to the character formula earlier proved by 374: 328:. Kirillov proved that the equivalence classes of 273: 187: 440:if this point belongs to the weight lattice of 126:whose symplectic structure is invariant under 8: 467:corresponds to the integral coadjoint orbit 681: 666:"Merits and demerits of the orbit method" 636:Elements of the theory of representations 532: 366: 360: 359: 356: 266: 180: 75: 71: 509: 398:Complex irreducible representations of 27:Construction in representation theory 7: 448:: the highest weight representation 231:. The method got its name after the 742:Representation theory of Lie groups 375:{\displaystyle {\mathfrak {g}}^{*}} 361: 347:, that is the orbits of the action 25: 114:Relation with symplectic geometry 561:Dulfo; Pederson; Vergne (1990), 406:) and are parametrized by their 715:Graduate Studies in Mathematics 612:10.1070/RM1962v017n04ABEH004118 436:in a single point. An orbit is 66:. The theory was introduced by 520:Pacific Journal of Mathematics 425:then its coadjoint orbits are 44:the method of coadjoint orbits 1: 683:10.1090/s0273-0979-99-00849-6 711:Lectures on the orbit method 600:Russian Mathematical Surveys 199:gives a heuristic method in 698:Encyclopedia of Mathematics 229:irreducible representations 140:classical mechanical system 758: 572:Doklady Akademii Nauk SSSR 477:Kirillov character formula 384:Kirillov character formula 168:Kirillov character formula 165: 162:Kirillov character formula 122:have natural structure of 94:and others to the case of 691:Kirillov, A. A. (2001) , 634:Kirillov, A. A. (1976) , 339:are parametrized by the 62:on the dual space of its 709:Kirillov, A. A. (2004), 664:Kirillov, A. A. (1999), 388:Harish-Chandra character 382:of its Lie algebra. The 225:infinitesimal characters 534:10.2140/pjm.1977.73.365 333:unitary representations 48:unitary representations 670:Bull. Amer. Math. Soc. 456:) with highest weight 394:Compact Lie group case 376: 285:Lie groups, including 275: 189: 156:geometric quantization 82:and later extended by 377: 276: 201:representation theory 197:Kirillov orbit method 190: 158:of coadjoint orbits. 130:. If an orbit is the 18:Kirillov orbit theory 416:semisimple Lie group 355: 306:Nilpotent group case 265: 248:Dirac delta function 179: 124:symplectic manifolds 498:Pukánszky condition 211:, which lie in the 60:action of the group 38:(also known as the 400:compact Lie groups 372: 351:on the dual space 271: 237:Alexandre Kirillov 205:Fourier transforms 203:. It connects the 185: 106:-adic Lie groups. 724:978-0-8218-3530-2 649:978-0-387-07476-4 420:Cartan subalgebra 274:{\displaystyle j} 244:Fourier transform 188:{\displaystyle G} 16:(Redirected from 749: 727: 705: 686: 685: 660: 630: 594: 566: 553: 552: 544: 538: 537: 536: 514: 381: 379: 378: 373: 371: 370: 365: 364: 341:coadjoint orbits 320:simply connected 280: 278: 277: 272: 209:coadjoint orbits 194: 192: 191: 186: 80:nilpotent groups 58:: orbits of the 56:coadjoint orbits 21: 757: 756: 752: 751: 750: 748: 747: 746: 732: 731: 725: 708: 690: 663: 650: 640:Springer-Verlag 633: 597: 569: 560: 557: 556: 546: 545: 541: 516: 515: 511: 506: 493:Dixmier mapping 489: 466: 435: 408:highest weights 396: 358: 353: 352: 308: 303: 263: 262: 259:exponential map 177: 176: 170: 164: 116: 96:solvable groups 92:Lajos Pukánszky 88:Louis Auslander 84:Bertram Kostant 40:Kirillov theory 28: 23: 22: 15: 12: 11: 5: 755: 753: 745: 744: 734: 733: 730: 729: 723: 706: 693:"Orbit method" 688: 676:(4): 433–488, 661: 648: 631: 595: 567: 555: 554: 539: 527:(2): 365–381, 508: 507: 505: 502: 501: 500: 495: 488: 485: 481:Harish-Chandra 464: 433: 404:Hermitian form 395: 392: 386:expresses the 369: 363: 307: 304: 302: 299: 295:compact groups 270: 235:mathematician 184: 166:Main article: 163: 160: 115: 112: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 754: 743: 740: 739: 737: 726: 720: 716: 712: 707: 704: 700: 699: 694: 689: 684: 679: 675: 671: 667: 662: 659: 655: 651: 645: 641: 637: 632: 629: 625: 621: 617: 613: 609: 606:(4): 53–104, 605: 601: 596: 593: 589: 585: 581: 577: 573: 568: 564: 559: 558: 550: 543: 540: 535: 530: 526: 522: 521: 513: 510: 503: 499: 496: 494: 491: 490: 486: 484: 482: 478: 474: 470: 463: 459: 455: 451: 447: 443: 439: 432: 428: 424: 421: 417: 414:is a compact 413: 409: 405: 401: 393: 391: 389: 385: 367: 350: 346: 342: 338: 334: 331: 327: 324: 321: 317: 313: 305: 301:Special cases 300: 298: 296: 292: 288: 284: 268: 261:, denoted by 260: 256: 252: 249: 245: 240: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 182: 175: 169: 161: 159: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 113: 111: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 710: 696: 673: 669: 635: 603: 599: 575: 571: 565:, Birkhäuser 562: 548: 542: 524: 518: 512: 472: 468: 461: 457: 453: 449: 445: 441: 437: 430: 422: 411: 397: 348: 344: 340: 336: 311: 309: 293:groups, and 241: 220: 171: 151: 147: 143: 135: 127: 119: 117: 103: 43: 39: 36:orbit method 35: 29: 578:: 283–284, 330:irreducible 217:Lie algebra 138:-invariant 132:phase space 108:David Vogan 64:Lie algebra 32:mathematics 504:References 291:semisimple 213:dual space 100:Roger Howe 703:EMS Press 620:0042-1316 584:0002-3264 551:: 245–266 368:∗ 326:Lie group 323:nilpotent 316:connected 287:nilpotent 283:connected 251:supported 223:, to the 174:Lie group 52:Lie group 736:Category 487:See also 438:integral 255:Jacobian 68:Kirillov 54:and its 658:0412321 628:0142001 592:0125908 418:with a 289:, some 257:of the 246:of the 233:Russian 227:of the 215:of the 70: ( 721:  656:  646:  626:  618:  590:  582:  475:. The 427:closed 195:, the 172:For a 78:) for 34:, the 314:be a 134:of a 50:of a 719:ISBN 644:ISBN 616:ISSN 580:ISSN 310:Let 76:1962 72:1961 678:doi 608:doi 576:138 529:doi 343:of 335:of 219:of 207:of 30:In 738:: 713:, 701:, 695:, 674:36 672:, 668:, 654:MR 652:, 642:, 624:MR 622:, 614:, 604:17 602:, 588:MR 586:, 574:, 525:73 523:, 483:. 318:, 297:. 239:. 98:. 90:, 86:, 74:, 42:, 728:. 687:. 680:: 610:: 531:: 473:λ 471:· 469:G 465:+ 462:h 460:∈ 458:λ 454:λ 452:( 450:L 446:G 442:G 434:+ 431:h 423:h 412:G 362:g 349:G 345:G 337:G 312:G 269:j 221:G 183:G 152:G 148:G 144:G 136:G 128:G 120:G 104:p 20:)

Index

Kirillov orbit theory
mathematics
unitary representations
Lie group
coadjoint orbits
action of the group
Lie algebra
Kirillov
1961
1962
nilpotent groups
Bertram Kostant
Louis Auslander
Lajos Pukánszky
solvable groups
Roger Howe
David Vogan
symplectic manifolds
phase space
classical mechanical system
geometric quantization
Kirillov character formula
Lie group
Kirillov orbit method
representation theory
Fourier transforms
coadjoint orbits
dual space
Lie algebra
infinitesimal characters

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.