Knowledge (XXG)

Klein quartic

Source 📝

31: 2444: 2405: 1073: 2507: 2503:{3,7|,4}, with 56 faces, 84 edges, and 24 vertices), which cannot be realized as equilateral, with twists in the arms of the tetrahedron; while others have 24 heptagons – these heptagons can be taken to be planar, though non-convex, and the models are more complex than the triangular ones because the complexity is reflected in the shapes of the (non-flexible) heptagonal faces, rather than in the (flexible) vertices. 865: 2479:, made of marble and serpentine, and unveiled on November 14, 1993. The title refers to the fact that starting at any vertex of the triangulated surface and moving along any edge, if you alternately turn left and right when reaching a vertex, you always return to the original point after eight edges. The acquisition of the sculpture led in due course to the publication of a book of papers ( 1782: 291:. The open quartic may be obtained (topologically) from the closed quartic by puncturing at the 24 centers of the tiling by regular heptagons, as discussed below. The open and closed quartics have different metrics, though they are both hyperbolic and complete – geometrically, the cusps are "points at infinity", not holes, hence the open quartic is still complete. 1412: 1225: 1760: 2439:
However, many 3-dimensional models of the Klein quartic have been given, starting in Klein's original paper, which seek to demonstrate features of the quartic and preserve the symmetries topologically, though not all geometrically. The resulting models most often have either tetrahedral (order 12) or
1801:
in genus 2, it has been conjectured that it maximises the first positive eigenvalue of the Laplace operator among all compact Riemann surfaces of genus 3 with constant negative curvature. It also maximizes mutliplicity of the first positive eigenvalue (8) among all such surfaces, a fact that has been
1415:
A pants decomposition of the Klein quartic. The figure on the left shows the boundary geodesics in the (2,3,7) tessellation of the fundamental domain. In the figure to the right, the pants have each been coloured differently to make it clear which part of the fundamental domain belongs to which pair
2458:
Most often, the quartic is modeled either by a smooth genus 3 surface with tetrahedral symmetry (replacing the edges of a regular tetrahedron with tubes/handles yields such a shape), which have been dubbed "tetruses", or by polyhedral approximations, which have been dubbed "tetroids"; in both cases
884:
for the group action (for the full, orientation-reversing symmetry group, a (2,3,7) triangle), the reflection domains (images of this domain under the group) give a tiling of the quartic such that the automorphism group of the tiling equals the automorphism group of the surface – reflections in the
2599:), where the 56 vertices (black points in dessin) lie over 0, the midpoints of the 84 edges (white points in dessin) lie over 1, and the centers of the 24 heptagons lie over infinity. The resulting dessin is a "platonic" dessin, meaning edge-transitive and "clean" (each white point has valence 2). 1080:
Within the tessellation by (2,3,7) triangles is a tessellation by 24 regular heptagons. The systole of the surface passes through the midpoints of 8 heptagon sides; for this reason it has been referred to as an "eight step geodesic" in the literature, and is the reason for the title of the book in
961:
from a tiling) – the vertices, edges, and faces of the polyhedron are equal as sets to the vertices, edges, and faces of the tiling, with the same incidence relations, and the (combinatorial) automorphism group of the abstract polyhedron equals the (geometric) automorphism group of the quartic. In
974:
quartic (a closed manifold); the affine quartic has 24 cusps (topologically, punctures), which correspond to the 24 vertices of the regular triangular tiling, or equivalently the centers of the 24 heptagons in the heptagonal tiling, and can be realized as follows.
1087: 1492: 239:. This set of conformally equivalent Riemannian surfaces is precisely the same as all compact Riemannian surfaces of genus 3 whose conformal automorphism group is isomorphic to the unique simple group of order 168. This group is also known as 1331: 2578:
on the Klein quartic associated with the quotient map by its automorphism group (with quotient the Riemann sphere) is precisely the 1-skeleton of the order-3 heptagonal tiling. That is, the quotient map is ramified over the points
1406: 2518:
Alternatively, the quartic can be modeled by a polyhedron with octahedral symmetry: Klein modeled the quartic by a shape with octahedral symmetries and with points at infinity (an "open polyhedron"), namely three
1802:
recently proved. Eigenvalues of the Klein quartic have been calculated to varying degrees of accuracy. The first 15 distinct positive eigenvalues are shown in the following table, along with their multiplicities.
201:
is not constant. But more commonly (as in this article) it is now thought of as any Riemann surface that is conformally equivalent to this algebraic curve, and especially the one that is a quotient of the
2641:
X(7) and the projective Klein quartic is its compactification, just as the dodecahedron (with a cusp in the center of each face) is the modular curve X(5); this explains the relevance for number theory.
1769:
corresponding to this pants decomposition is the tetrahedral graph, that is, the graph of 4 nodes, each connected to the other 3. The tetrahedral graph is similar to the graph for the projective
885:
lines of the tiling correspond to the reflections in the group (reflections in the lines of a given fundamental triangle give a set of 3 generating reflections). This tiling is a quotient of the
800: 699: 744: 1081:
the section below. All the coloured curves in the figure showing the pants decomposition are systoles, however, this is just a subset; there are 21 in total. The length of the systole is
584: 2412:
showing an embedding of Klein's Quartic Curve in three dimensions, starting in a form that has the symmetries of a tetrahedron, and turning inside out to demonstrate a further symmetry.
478: 1336:
Whilst the Klein quartic maximises the symmetry group for surfaces of genus 3, it does not maximise the systole length. The conjectured maximiser is the surface referred to as "M3" (
399: 1220:{\displaystyle 16\sinh ^{-1}\left(\left({\tfrac {1}{2}}{\sqrt {\csc ^{2}\left({\tfrac {\pi }{7}}\right)-4}}\right)\sin \left({\tfrac {\pi }{7}}\right)\right)\approx 3.93594624883.} 916:, each of degree 7 (meeting at 24 vertices). The order of the automorphism group is related, being the number of polygons times the number of edges in the polygon in both cases. 850: 3284: 1755:{\displaystyle \left\{l(S),{\tfrac {l(S)}{8}};l(S),{\tfrac {l(S)}{8}};l(S),{\tfrac {l(S)}{8}};l(S),{\tfrac {l(S)}{8}};l(S),{\tfrac {l(S)}{8}};l(S),{\tfrac {l(S)}{8}}\right\}.} 1455: 2386: 2350: 2314: 2278: 2242: 2206: 2170: 2134: 2098: 2062: 2026: 1990: 1954: 1918: 1882: 1846: 3356: 1785:
The eight functions corresponding to the first positive eigenvalue of the Klein quartic. The functions are zero along the light blue lines. These plots were produced in
1236: 2543:
at right. The small cubicuboctahedron immersion is obtained by joining some of the triangles (2 triangles form a square, 6 form an octagon), which can be visualized by
2672:
PSL(2,5), PSL(2,7), and PSL(2,11) (orders 60, 168, 660) are analogous. Note that 4 × 5 × 6/2 = 60, 6 × 7 × 8/2 = 168, and 10 × 11 × 12/2 = 660. These correspond to
1063: 1484: 2483:), detailing properties of the quartic and containing the first English translation of Klein's paper. Polyhedral models with tetrahedral symmetry most often have 2472: 2943: 1069:. This can be seen in the adjoining figure, which also includes the 336 (2,3,7) triangles that tessellate the surface and generate its group of symmetries. 3972: 1346: 287:
or "punctured" quartic is of interest in number theory; topologically it is a genus 3 surface with 24 punctures, and geometrically these punctures are
3779: 2547: 3508: 3871: 3468: 3349: 3139: 3112: 3072: 2650: 2440:
octahedral (order 24) symmetries; the remaining order 7 symmetry cannot be as easily visualized, and in fact is the title of Klein's paper.
2622:(3 surfaces of genus 14). More generally, it is the most symmetric surface of a given genus (being a Hurwitz surface); in this class, the 2693: 3153: 905: 3937: 3559: 3458: 886: 105: 3927: 3216: 2884: 623:
is a subgroup of the group of elements of unit norm in the quaternion algebra generated as an associative algebra by the generators
1797:
of the Klein quartic. Because the Klein quartic has the largest symmetry group of surfaces in its topological class, much like the
908:
can be used (and will have the same automorphism group); of these, the two regular tilings are the tiling by 24 regular hyperbolic
3246: 3637: 3342: 150: 2669: 2555: 3784: 3695: 3148: 2566:
by adding to PSL(2,7) the permutation which interchanges opposite points of the bisecting lines of the squares and octagons.
957:, which abstracts from the geometry and only reflects the combinatorics of the tiling (this is a general way of obtaining an 3705: 3632: 3382: 3602: 3498: 987: 757: 154: 3861: 3825: 938:
The automorphism group can be augmented (by a symmetry which is not realized by a symmetry of the tiling) to yield the
3524: 3437: 1425: 1421: 633: 710: 3328: 1428:, where the length parameters are all equal to the length of the systole, and the twist parameters are all equal to 3977: 3835: 3473: 3131: 3104: 877: 519: 220: 146: 3967: 3881: 2949: 1038:
The Klein quartic can be obtained as the quotient of the hyperbolic plane by the action of a Fuchsian group. The
932: 928: 52: 3794: 3774: 3710: 3627: 3488: 2499:) for examples and illustrations. Some of these models consist of 20 triangles or 56 triangles (abstractly, the 3529: 705: 445: 165: 3493: 2443: 1000: 142: 1076:
The fundamental domain of the Klein quartic. The surface is obtained by associating sides with equal numbers.
336: 3962: 3685: 2540: 2511: 2500: 316: 880:"), and these are used in understanding the symmetry group, dating back to Klein's original paper. Given a 3478: 2420:
as a 3-dimensional figure, in the sense that no 3-dimensional figure has (rotational) symmetries equal to
608: 3856: 3592: 2627: 3392: 2723: 2619: 2488: 813: 134: 3554: 3503: 3127: 2544: 1340:). M3 comes from a tessellation of (2,3,12) triangles, and its systole has multiplicity 24 and length 3932: 3804: 3715: 3463: 2680:(genus 70). These are further connected to many other exceptional phenomena, which is elaborated at " 2673: 2665: 2527:(have self-intersections), not embedded. Such polyhedra may have various convex hulls, including the 2476: 1431: 1066: 913: 3769: 3647: 3612: 3569: 3549: 2536: 2364: 2328: 2292: 2256: 2220: 2184: 1326:{\displaystyle 8\cosh ^{-1}\left({\tfrac {3}{2}}-2\sin ^{2}\left({\tfrac {\pi }{7}}\right)\right).} 1015: 996: 954: 890: 439: 424: 183: 82: 63: 3166: 2928: 2148: 2112: 2076: 2040: 2004: 1968: 1932: 1896: 1860: 1824: 30: 3899: 3483: 3322: 3266: 3233: 3086: 3050: 3025: 2681: 2657: 1039: 1027: 881: 300: 198: 89: 3690: 3670: 3642: 2797:"The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian" 2575: 2436:) – it does not have a (non-trivial) 3-dimensional linear representation over the real numbers. 1773:; indeed, the automorphism group of the Klein quartic is isomorphic to that of the Fano plane. 3799: 3746: 3617: 3432: 3427: 3278: 3135: 3108: 3068: 2890: 2880: 2677: 2523:
meeting on orthogonal axes, while it can also be modeled as a closed polyhedron which must be
958: 853: 288: 256: 119: 45: 3098: 2869: 3789: 3675: 3652: 3258: 3225: 3178: 3060: 3017: 2978: 2718: 2713: 2615: 2468: 2451: 1026:
consisting of matrices that are congruent to the identity matrix when all entries are taken
901: 869: 203: 3122: 3082: 2404: 1045: 3904: 3720: 3662: 3564: 3387: 3366: 3144: 3118: 3078: 2703: 2661: 2631: 2611: 2551: 1794: 1460: 894: 303: 273: 138: 101: 78: 3587: 2834: 2506: 1072: 3412: 3397: 3374: 2588: 2528: 612: 428: 307: 248: 3049:, Lecture Notes in Computer Science, vol. 1423, Berlin: Springer, pp. 1–47, 2514:
is a polyhedral immersion of the tiling of the Klein quartic with octahedral symmetry.
2463:
of the shape in 3 dimensions. The most notable smooth model (tetrus) is the sculpture
277:
quartic is what is generally meant in geometry; topologically it has genus 3 and is a
229:
by isometries. This gives the Klein quartic a Riemannian metric of constant curvature
3956: 3919: 3680: 3607: 3402: 3293: 3270: 3237: 3029: 2708: 2698: 2646: 2638: 2623: 2559: 1798: 939: 283: 278: 212: 75: 24: 3090: 3866: 3840: 3830: 3820: 3622: 3442: 3196: 3162: 2808: 897:
of the quartic), and all Hurwitz surfaces are tiled in the same way, as quotients.
115: 35: 2877:
BRIDGES Mathematical Connections in Art, Music, and Science Conference Proceedings
1424:
by cutting along six of its systoles. This decomposition gives a symmetric set of
3214:
Schmutz, P. (1993). "Riemann surfaces with shortest geodesic of maximal length".
1806:
Numerical computations of the first 15 positive eigenvalues of the Klein quartic
1786: 1401:{\displaystyle 2\cosh ^{-1}\left(2+{\sqrt {3}}\right)\approx 3.9833047820988736.} 100:
automorphisms if orientation may be reversed. As such, the Klein quartic is the
3741: 3579: 3042: 3001: 2520: 2484: 1766: 71: 3182: 904:), and often regular tilings are used instead. A quotient of any tiling in the 864: 3736: 1781: 1770: 133:
Klein's quartic occurs in many branches of mathematics, in contexts including
3334: 2894: 3597: 2924: 2812: 2532: 2409: 3316: 164:
Originally, the "Klein quartic" referred specifically to the subset of the
2649:(as are the Hurwitz surfaces of genus 7 and 14), and as such parametrizes 909: 110: 3055: 3006:"Ueber die Transformation siebenter Ordnung der elliptischen Functionen" 3909: 3894: 3262: 3229: 3103:, Mathematical Sciences Research Institute Publications, vol. 35, 3064: 3021: 1411: 912:, each of degree 3 (meeting at 56 vertices), and the dual tiling by 56 876:
The Klein quartic admits tilings connected with the symmetry group (a "
271:
It is important to distinguish two different forms of the quartic. The
3889: 2554:(the corresponding tiling is topologically but not geometrically the 953:
of the quartic (partition of the quartic variety into subsets) is an
868:
The tiling of the quartic by reflection domains is a quotient of the
3005: 2849: 423:
The compact Klein quartic can be constructed as the quotient of the
108:. Its (orientation-preserving) automorphism group is isomorphic to 3008:[On the order-seven transformation of elliptic functions]. 2796: 2676:(genus 0), the symmetries of the Klein quartic (genus 3), and the 2558:). This immersion can also be used to geometrically construct the 2505: 2442: 2403: 1780: 1410: 1071: 863: 802:. The least absolute value of a trace of a hyperbolic element in 2607:
The Klein quartic is related to various other Riemann surfaces.
3338: 773: 717: 1003:, the affine Klein quartic can be realized as the quotient 3245:
Scholl, P.; SchĂŒrmann, A.; Wills, J. M. (September 2002),
596:
as a prime factor of 7 in the ring of algebraic integers.
415:
is the original Riemannian surface that Klein described.
3149:"The Eightfold Way: The Beauty of Klein's Quartic Curve" 856:
of the Klein quartic, one of the highest in this genus.
2879:. Bridges 2006. London, UK: Tarquin. pp. 245–254. 2656:
More exceptionally, the Klein quartic forms part of a "
1722: 1681: 1640: 1599: 1558: 1517: 1436: 1300: 1265: 1191: 1152: 1121: 3167:"A Polyhedral Realization of Felix Klein's Map {3, 7} 2367: 2331: 2295: 2259: 2223: 2187: 2151: 2115: 2079: 2043: 2007: 1971: 1935: 1899: 1863: 1827: 1495: 1463: 1434: 1349: 1239: 1090: 1048: 927:
The covering tilings on the hyperbolic plane are the
816: 760: 713: 636: 522: 448: 339: 40:(14-gon edges marked with the same number are equal.) 2980:
From Biplanes to the Klein quartic and the Buckyball
2765: 2496: 1457:
of the length of the systole. In particular, taking
3918: 3880: 3849: 3813: 3762: 3755: 3729: 3661: 3578: 3542: 3517: 3451: 3420: 3411: 3373: 2977:Martin, David; Singerman, Pablo (April 17, 2008), 2380: 2344: 2308: 2272: 2236: 2200: 2164: 2128: 2092: 2056: 2020: 1984: 1948: 1912: 1876: 1840: 1754: 1478: 1449: 1400: 1325: 1219: 1057: 844: 795:{\displaystyle 1+I{\mathcal {Q}}_{\mathrm {Hur} }} 794: 738: 693: 578: 472: 393: 2645:More subtly, the (projective) Klein quartic is a 2637:Algebraically, the (affine) Klein quartic is the 900:This tiling is uniform but not regular (it is by 3283:: CS1 maint: bot: original URL status unknown ( 962:this way the geometry reduces to combinatorics. 694:{\displaystyle i^{2}=j^{2}=\eta ,\qquad ij=-ji.} 739:{\displaystyle {\mathcal {Q}}_{\mathrm {Hur} }} 315:, defined by the following quartic equation in 3047:Algorithmic number theory (Portland, OR, 1998) 1486:to be the systole length, the coordinates are 1420:The Klein quartic can be decomposed into four 3350: 3292:Singerman, David; Syddall, Robert I. (2003), 2626:is the most symmetric genus 2 surface, while 2473:Simons Laufer Mathematical Sciences Institute 579:{\displaystyle (2-\eta )^{3}=7(\eta -1)^{2},} 8: 2911: 2828: 2826: 2630:is a highly symmetric genus 4 surface – see 2492: 467: 455: 3759: 3417: 3357: 3343: 3335: 3273:, archived from the original on 2007-06-11 3247:"Polyhedral Models of Felix Klein's Group" 1034:Fundamental domain and pants decomposition 179: 96:orientation-preserving automorphisms, and 3294:"The Riemann Surface of a Uniform Dessin" 3054: 2906: 2904: 2875:. In Sarhangi, Reza; Sharp, John (eds.). 2778: 2776: 2774: 2372: 2366: 2336: 2330: 2300: 2294: 2264: 2258: 2228: 2222: 2192: 2186: 2156: 2150: 2120: 2114: 2084: 2078: 2048: 2042: 2012: 2006: 1976: 1970: 1940: 1934: 1904: 1898: 1868: 1862: 1832: 1826: 1721: 1680: 1639: 1598: 1557: 1516: 1494: 1462: 1435: 1433: 1380: 1357: 1348: 1299: 1286: 1264: 1247: 1238: 1190: 1151: 1138: 1132: 1120: 1098: 1089: 1047: 821: 815: 779: 778: 772: 771: 759: 723: 722: 716: 715: 712: 654: 641: 635: 567: 539: 521: 473:{\displaystyle I=\langle \eta -2\rangle } 447: 376: 360: 344: 338: 2863: 2861: 2859: 2760: 2758: 2756: 2754: 2752: 1804: 852:, corresponding the value 3.936 for the 754:is then the group of norm 1 elements in 29: 2870:"Patterns on the Genus-3 Klein Quartic" 2735: 2651:principally polarized abelian varieties 1337: 394:{\displaystyle x^{3}y+y^{3}z+z^{3}x=0.} 56:(compare the 7-regular graph in violet) 44:The Klein quartic is a quotient of the 3780:Clifford's theorem on special divisors 3276: 3045:(1998), "Shimura curve computations", 2835:"Platonic tilings of Riemann surfaces" 127: 126:. The quartic was first described in ( 49:(compare the 3-regular graph in green) 299:The Klein quartic can be viewed as a 255:mentioned above is isomorphic to the 7: 3035: 2964: 2963:Elkies, section 4.4 (pp. 94–97) in ( 2795:Maxime Fortier Bourque, Bram Petri. 2743: 2618:(genus 7), and the following is the 2480: 1042:is a regular 14-gon, which has area 186:(that makes it a minimal surface in 158: 34:The Klein quartic with the two dual 3154:Mathematical Association of America 2783: 2664:, which can also be described as a 243:, and also as the isomorphic group 3938:Vector bundles on algebraic curves 3872:Weber's theorem (Algebraic curves) 3469:Hasse's theorem on elliptic curves 3459:Counting points on elliptic curves 3298:BeitrĂ€ge zur Algebra und Geometrie 2766:Scholl, SchĂŒrmann & Wills 2002 2610:Geometrically, it is the smallest 2497:Scholl, SchĂŒrmann & Wills 2002 887:order-3 bisected heptagonal tiling 845:{\displaystyle \eta ^{2}+3\eta +2} 786: 783: 780: 730: 727: 724: 480:in the ring of algebraic integers 114:, the second-smallest non-abelian 16:Compact Riemann surface of genus 3 14: 3973:Differential geometry of surfaces 2942:le Bruyn, Lieven (7 March 2007), 1793:Little has been proved about the 151:imaginary quadratic number fields 3171:on a Riemann Surface of Genus 3" 2670:projective special linear groups 2614:(lowest genus); the next is the 2428:does not embed as a subgroup of 1230:An equivalent closed formula is 259:of the compact surface of genus 88:with the highest possible order 3560:Hurwitz's automorphisms theorem 3198:How to Make the Mathieu Group M 2945:The best rejected proposal ever 1450:{\displaystyle {\tfrac {1}{8}}} 669: 419:Quaternion algebra construction 106:Hurwitz's automorphisms theorem 3785:Gonality of an algebraic curve 3696:Differential of the first kind 3331:, by Greg Egan – illustrations 3325:, by Greg Egan – illustrations 3251:The Mathematical Intelligencer 2632:isometries of Riemann surfaces 1734: 1728: 1715: 1709: 1693: 1687: 1674: 1668: 1652: 1646: 1633: 1627: 1611: 1605: 1592: 1586: 1570: 1564: 1551: 1545: 1529: 1523: 1510: 1504: 1473: 1467: 564: 551: 536: 523: 404:The locus of this equation in 161:) for a survey of properties. 104:of lowest possible genus; see 1: 3928:Birkhoff–Grothendieck theorem 3638:Nagata's conjecture on curves 3509:Schoof–Elkies–Atkin algorithm 3383:Five points determine a conic 3165:; Wills, J. M. (1985-12-01), 2381:{\displaystyle \lambda _{15}} 2345:{\displaystyle \lambda _{14}} 2309:{\displaystyle \lambda _{13}} 2273:{\displaystyle \lambda _{12}} 2237:{\displaystyle \lambda _{11}} 2201:{\displaystyle \lambda _{10}} 970:The above is a tiling of the 92:for this genus, namely order 3499:Supersingular elliptic curve 2694:GrĂŒnbaum–Rigby configuration 2587:; dividing by 1728 yields a 2416:The Klein quartic cannot be 2165:{\displaystyle \lambda _{9}} 2129:{\displaystyle \lambda _{8}} 2093:{\displaystyle \lambda _{7}} 2057:{\displaystyle \lambda _{6}} 2021:{\displaystyle \lambda _{5}} 1985:{\displaystyle \lambda _{4}} 1949:{\displaystyle \lambda _{3}} 1913:{\displaystyle \lambda _{2}} 1877:{\displaystyle \lambda _{1}} 1841:{\displaystyle \lambda _{0}} 427:by the action of a suitable 3706:Riemann's existence theorem 3633:Hilbert's sixteenth problem 3525:Elliptic curve cryptography 3438:Fundamental pair of periods 1426:Fenchel-Nielsen coordinates 746:in the quaternion algebra, 3994: 3836:Moduli of algebraic curves 3319:, John Baez, July 28, 2006 3132:Cambridge University Press 3105:Cambridge University Press 3097:Levy, Silvio, ed. (1999), 2668:. In this collection, the 978:Considering the action of 442:associated with the ideal 18: 3329:Klein's Quartic Equations 2868:SĂ©quin, Carlo H. (2006). 933:order-7 triangular tiling 929:order-3 heptagonal tiling 3603:Cayley–Bacharach theorem 3530:Elliptic curve primality 3183:10.1112/jlms/s2-32.3.539 2912:Schulte & Wills 1985 2634:for further discussion. 2603:Related Riemann surfaces 2493:Schulte & Wills 1985 706:Hurwitz quaternion order 166:complex projective plane 3862:Riemann–Hurwitz formula 3826:Gromov–Witten invariant 3686:Compact Riemann surface 3474:Mazur's torsion theorem 2929:"Klein's Quartic Curve" 2813:"Klein's Quartic Curve" 2541:small cubicuboctahedron 2512:small cubicuboctahedron 2501:regular skew polyhedron 704:One chooses a suitable 438:which is the principal 317:homogeneous coordinates 3479:Modular elliptic curve 3177:, s2-32 (3): 539–547, 2545:coloring the triangles 2515: 2455: 2454:and accompanying book. 2413: 2382: 2346: 2310: 2274: 2238: 2202: 2166: 2130: 2094: 2058: 2022: 1986: 1950: 1914: 1878: 1842: 1790: 1756: 1480: 1451: 1417: 1402: 1327: 1221: 1077: 1059: 1001:Möbius transformations 988:upper half-plane model 949:Corresponding to each 873: 846: 796: 740: 695: 580: 474: 395: 233:that it inherits from 182:. This has a specific 59: 3393:Rational normal curve 3323:Klein's Quartic Curve 3317:Klein's Quartic Curve 3010:Mathematische Annalen 2724:First Hurwitz triplet 2620:First Hurwitz triplet 2569: 2509: 2489:truncated tetrahedron 2446: 2407: 2383: 2347: 2311: 2275: 2239: 2203: 2167: 2131: 2095: 2059: 2023: 1987: 1951: 1915: 1879: 1843: 1784: 1757: 1481: 1452: 1414: 1403: 1328: 1222: 1075: 1060: 1058:{\displaystyle 8\pi } 914:equilateral triangles 867: 847: 797: 741: 696: 607:is a subgroup of the 581: 513:. Note the identity 475: 396: 295:As an algebraic curve 267:Closed and open forms 180:an algebraic equation 147:Stark–Heegner theorem 143:Fermat's Last Theorem 135:representation theory 33: 3933:Stable vector bundle 3805:Weil reciprocity law 3795:Riemann–Roch theorem 3775:Brill–Noether theory 3711:Riemann–Roch theorem 3628:Genus–degree formula 3489:Mordell–Weil theorem 3464:Division polynomials 3175:J. London Math. Soc. 2833:Westendorp, Gerard. 2674:icosahedral symmetry 2666:McKay correspondence 2477:Berkeley, California 2400:3-dimensional models 2365: 2329: 2293: 2257: 2221: 2185: 2149: 2113: 2077: 2041: 2005: 1969: 1933: 1897: 1861: 1825: 1493: 1479:{\displaystyle l(S)} 1461: 1432: 1347: 1237: 1088: 1067:Gauss-Bonnet theorem 1046: 814: 758: 711: 634: 520: 446: 337: 3756:Structure of curves 3648:Quartic plane curve 3570:Hyperelliptic curve 3550:De Franchis theorem 3494:Nagell–Lutz theorem 3195:Richter, David A., 2952:on 27 February 2014 2556:3 4 | 4 tiling 2537:rhombicuboctahedron 1807: 1396:3.9833047820988736. 1016:congruence subgroup 955:abstract polyhedron 440:congruence subgroup 197:), under which its 64:hyperbolic geometry 3763:Divisors on curves 3555:Faltings's theorem 3504:Schoof's algorithm 3484:Modularity theorem 3263:10.1007/BF03024730 3230:10.1007/BF01896258 3065:10.1007/BFb0054850 3022:10.1007/BF01677143 2660:" in the sense of 2550:2016-03-03 at the 2516: 2456: 2414: 2378: 2342: 2306: 2270: 2234: 2198: 2162: 2126: 2090: 2054: 2018: 1982: 1946: 1910: 1874: 1838: 1805: 1791: 1752: 1742: 1701: 1660: 1619: 1578: 1537: 1476: 1447: 1445: 1418: 1398: 1323: 1309: 1274: 1217: 1200: 1161: 1130: 1078: 1055: 1040:fundamental domain 882:fundamental domain 874: 842: 792: 736: 691: 576: 470: 391: 251:theory, the group 199:Gaussian curvature 90:automorphism group 60: 3978:Systolic geometry 3950: 3949: 3946: 3945: 3857:Hasse–Witt matrix 3800:Weierstrass point 3747:Smooth completion 3716:TeichmĂŒller space 3618:Cubic plane curve 3538: 3537: 3452:Arithmetic theory 3433:Elliptic integral 3428:Elliptic function 3140:978-0-521-00419-0 3128:Paperback edition 3114:978-0-521-66066-2 3100:The Eightfold Way 3074:978-3-540-64657-0 2850:"Klein's quartic" 2817:John Baez's stuff 2678:buckyball surface 2465:The Eightfold Way 2448:The Eightfold Way 2397: 2396: 1741: 1700: 1659: 1618: 1577: 1536: 1444: 1385: 1308: 1273: 1199: 1173: 1160: 1129: 959:abstract polytope 902:scalene triangles 257:fundamental group 184:Riemannian metric 120:alternating group 57: 53:triangular tiling 50: 46:heptagonal tiling 41: 3985: 3968:Riemann surfaces 3790:Jacobian variety 3760: 3663:Riemann surfaces 3653:Real plane curve 3613:Cramer's paradox 3593:BĂ©zout's theorem 3418: 3367:algebraic curves 3359: 3352: 3345: 3336: 3305: 3288: 3282: 3274: 3241: 3210: 3209: 3208: 3191: 3190: 3189: 3158: 3147:(31 July 2000). 3145:Michler, Ruth I. 3125: 3093: 3058: 3033: 2987: 2986: 2985: 2974: 2968: 2961: 2955: 2953: 2948:, archived from 2939: 2933: 2932: 2931:. Science Notes. 2921: 2915: 2908: 2899: 2898: 2874: 2865: 2854: 2853: 2845: 2839: 2838: 2830: 2821: 2820: 2805: 2799: 2793: 2787: 2780: 2769: 2762: 2747: 2740: 2719:Macbeath surface 2653:of dimension 6. 2616:Macbeath surface 2598: 2594: 2586: 2582: 2570:Dessin d'enfants 2469:Helaman Ferguson 2452:Helaman Ferguson 2435: 2431: 2427: 2423: 2408:An animation by 2387: 2385: 2384: 2379: 2377: 2376: 2351: 2349: 2348: 2343: 2341: 2340: 2315: 2313: 2312: 2307: 2305: 2304: 2279: 2277: 2276: 2271: 2269: 2268: 2243: 2241: 2240: 2235: 2233: 2232: 2207: 2205: 2204: 2199: 2197: 2196: 2171: 2169: 2168: 2163: 2161: 2160: 2135: 2133: 2132: 2127: 2125: 2124: 2099: 2097: 2096: 2091: 2089: 2088: 2063: 2061: 2060: 2055: 2053: 2052: 2027: 2025: 2024: 2019: 2017: 2016: 1991: 1989: 1988: 1983: 1981: 1980: 1955: 1953: 1952: 1947: 1945: 1944: 1919: 1917: 1916: 1911: 1909: 1908: 1883: 1881: 1880: 1875: 1873: 1872: 1847: 1845: 1844: 1839: 1837: 1836: 1814:Numerical value 1808: 1761: 1759: 1758: 1753: 1748: 1744: 1743: 1737: 1723: 1702: 1696: 1682: 1661: 1655: 1641: 1620: 1614: 1600: 1579: 1573: 1559: 1538: 1532: 1518: 1485: 1483: 1482: 1477: 1456: 1454: 1453: 1448: 1446: 1437: 1407: 1405: 1404: 1399: 1391: 1387: 1386: 1381: 1365: 1364: 1332: 1330: 1329: 1324: 1319: 1315: 1314: 1310: 1301: 1291: 1290: 1275: 1266: 1255: 1254: 1226: 1224: 1223: 1218: 1210: 1206: 1205: 1201: 1192: 1179: 1175: 1174: 1166: 1162: 1153: 1143: 1142: 1133: 1131: 1122: 1106: 1105: 1064: 1062: 1061: 1056: 1025: 1013: 1009: 997:hyperbolic plane 994: 985: 891:hyperbolic plane 870:3-7 kisrhombille 851: 849: 848: 843: 826: 825: 809: 801: 799: 798: 793: 791: 790: 789: 777: 776: 753: 745: 743: 742: 737: 735: 734: 733: 721: 720: 700: 698: 697: 692: 659: 658: 646: 645: 626: 622: 606: 595: 585: 583: 582: 577: 572: 571: 544: 543: 512: 501: 490: 479: 477: 476: 471: 437: 425:hyperbolic plane 414: 400: 398: 397: 392: 381: 380: 365: 364: 349: 348: 329: 314: 262: 254: 246: 242: 238: 232: 228: 218: 210: 204:hyperbolic plane 196: 177: 113: 99: 95: 87: 55: 48: 39: 3993: 3992: 3988: 3987: 3986: 3984: 3983: 3982: 3953: 3952: 3951: 3942: 3914: 3905:Delta invariant 3876: 3845: 3809: 3770:Abel–Jacobi map 3751: 3725: 3721:Torelli theorem 3691:Dessin d'enfant 3671:Belyi's theorem 3657: 3643:PlĂŒcker formula 3574: 3565:Hurwitz surface 3534: 3513: 3447: 3421:Analytic theory 3413:Elliptic curves 3407: 3388:Projective line 3375:Rational curves 3369: 3363: 3313: 3308: 3291: 3275: 3244: 3213: 3206: 3204: 3201: 3194: 3187: 3185: 3170: 3161: 3143: 3142:. Reviewed by: 3115: 3096: 3075: 3056:math.NT/0005160 3041: 3000: 2996: 2991: 2990: 2983: 2976: 2975: 2971: 2962: 2958: 2941: 2940: 2936: 2927:(5 June 2017). 2923: 2922: 2918: 2909: 2902: 2887: 2872: 2867: 2866: 2857: 2847: 2846: 2842: 2832: 2831: 2824: 2811:(23 May 2013). 2807: 2806: 2802: 2794: 2790: 2781: 2772: 2763: 2750: 2741: 2737: 2732: 2704:Hurwitz surface 2690: 2662:Vladimir Arnold 2628:Bring's surface 2612:Hurwitz surface 2605: 2596: 2592: 2584: 2580: 2576:dessin d'enfant 2572: 2565: 2552:Wayback Machine 2450:– sculpture by 2433: 2429: 2425: 2421: 2402: 2368: 2363: 2362: 2332: 2327: 2326: 2296: 2291: 2290: 2260: 2255: 2254: 2224: 2219: 2218: 2188: 2183: 2182: 2152: 2147: 2146: 2116: 2111: 2110: 2080: 2075: 2074: 2044: 2039: 2038: 2008: 2003: 2002: 1972: 1967: 1966: 1936: 1931: 1930: 1900: 1895: 1894: 1864: 1859: 1858: 1828: 1823: 1822: 1795:spectral theory 1779: 1777:Spectral theory 1724: 1683: 1642: 1601: 1560: 1519: 1500: 1496: 1491: 1490: 1459: 1458: 1430: 1429: 1373: 1369: 1353: 1345: 1344: 1295: 1282: 1263: 1259: 1243: 1235: 1234: 1186: 1147: 1134: 1119: 1115: 1114: 1110: 1094: 1086: 1085: 1044: 1043: 1036: 1019: 1011: 1004: 990: 979: 968: 945: 895:universal cover 862: 817: 812: 811: 803: 770: 756: 755: 747: 714: 709: 708: 650: 637: 632: 631: 624: 616: 600: 590: 563: 535: 518: 517: 503: 492: 481: 444: 443: 431: 421: 405: 372: 356: 340: 335: 334: 320: 310: 308:complex numbers 304:algebraic curve 297: 269: 260: 252: 244: 240: 234: 230: 224: 216: 206: 187: 168: 139:homology theory 125: 109: 102:Hurwitz surface 97: 93: 85: 79:Riemann surface 43: 42: 38: 28: 17: 12: 11: 5: 3991: 3989: 3981: 3980: 3975: 3970: 3965: 3963:Quartic curves 3955: 3954: 3948: 3947: 3944: 3943: 3941: 3940: 3935: 3930: 3924: 3922: 3920:Vector bundles 3916: 3915: 3913: 3912: 3907: 3902: 3897: 3892: 3886: 3884: 3878: 3877: 3875: 3874: 3869: 3864: 3859: 3853: 3851: 3847: 3846: 3844: 3843: 3838: 3833: 3828: 3823: 3817: 3815: 3811: 3810: 3808: 3807: 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3766: 3764: 3757: 3753: 3752: 3750: 3749: 3744: 3739: 3733: 3731: 3727: 3726: 3724: 3723: 3718: 3713: 3708: 3703: 3698: 3693: 3688: 3683: 3678: 3673: 3667: 3665: 3659: 3658: 3656: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3620: 3615: 3610: 3605: 3600: 3595: 3590: 3584: 3582: 3576: 3575: 3573: 3572: 3567: 3562: 3557: 3552: 3546: 3544: 3540: 3539: 3536: 3535: 3533: 3532: 3527: 3521: 3519: 3515: 3514: 3512: 3511: 3506: 3501: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3461: 3455: 3453: 3449: 3448: 3446: 3445: 3440: 3435: 3430: 3424: 3422: 3415: 3409: 3408: 3406: 3405: 3400: 3398:Riemann sphere 3395: 3390: 3385: 3379: 3377: 3371: 3370: 3364: 3362: 3361: 3354: 3347: 3339: 3333: 3332: 3326: 3320: 3312: 3311:External links 3309: 3307: 3306: 3289: 3242: 3224:(6): 564–631. 3211: 3199: 3192: 3168: 3159: 3157:. MAA reviews. 3113: 3094: 3073: 3039: 3034:Translated in 3016:(3): 428–471. 2997: 2995: 2992: 2989: 2988: 2969: 2956: 2934: 2916: 2900: 2885: 2855: 2840: 2822: 2800: 2788: 2770: 2748: 2734: 2733: 2731: 2728: 2727: 2726: 2721: 2716: 2711: 2706: 2701: 2696: 2689: 2686: 2604: 2601: 2589:Belyi function 2571: 2568: 2563: 2529:truncated cube 2401: 2398: 2395: 2394: 2391: 2388: 2375: 2371: 2359: 2358: 2355: 2352: 2339: 2335: 2323: 2322: 2319: 2316: 2303: 2299: 2287: 2286: 2283: 2280: 2267: 2263: 2251: 2250: 2247: 2244: 2231: 2227: 2215: 2214: 2211: 2208: 2195: 2191: 2179: 2178: 2175: 2172: 2159: 2155: 2143: 2142: 2139: 2136: 2123: 2119: 2107: 2106: 2103: 2100: 2087: 2083: 2071: 2070: 2067: 2064: 2051: 2047: 2035: 2034: 2031: 2028: 2015: 2011: 1999: 1998: 1995: 1992: 1979: 1975: 1963: 1962: 1959: 1956: 1943: 1939: 1927: 1926: 1923: 1920: 1907: 1903: 1891: 1890: 1887: 1884: 1871: 1867: 1855: 1854: 1851: 1848: 1835: 1831: 1819: 1818: 1815: 1812: 1778: 1775: 1763: 1762: 1751: 1747: 1740: 1736: 1733: 1730: 1727: 1720: 1717: 1714: 1711: 1708: 1705: 1699: 1695: 1692: 1689: 1686: 1679: 1676: 1673: 1670: 1667: 1664: 1658: 1654: 1651: 1648: 1645: 1638: 1635: 1632: 1629: 1626: 1623: 1617: 1613: 1610: 1607: 1604: 1597: 1594: 1591: 1588: 1585: 1582: 1576: 1572: 1569: 1566: 1563: 1556: 1553: 1550: 1547: 1544: 1541: 1535: 1531: 1528: 1525: 1522: 1515: 1512: 1509: 1506: 1503: 1499: 1475: 1472: 1469: 1466: 1443: 1440: 1422:pairs of pants 1409: 1408: 1397: 1394: 1390: 1384: 1379: 1376: 1372: 1368: 1363: 1360: 1356: 1352: 1334: 1333: 1322: 1318: 1313: 1307: 1304: 1298: 1294: 1289: 1285: 1281: 1278: 1272: 1269: 1262: 1258: 1253: 1250: 1246: 1242: 1228: 1227: 1216: 1215:3.93594624883. 1213: 1209: 1204: 1198: 1195: 1189: 1185: 1182: 1178: 1172: 1169: 1165: 1159: 1156: 1150: 1146: 1141: 1137: 1128: 1125: 1118: 1113: 1109: 1104: 1101: 1097: 1093: 1054: 1051: 1035: 1032: 967: 966:Affine quartic 964: 943: 925: 924: 921: 906:(2,3,7) family 861: 858: 841: 838: 835: 832: 829: 824: 820: 788: 785: 782: 775: 769: 766: 763: 732: 729: 726: 719: 702: 701: 690: 687: 684: 681: 678: 675: 672: 668: 665: 662: 657: 653: 649: 644: 640: 627:and relations 613:triangle group 587: 586: 575: 570: 566: 562: 559: 556: 553: 550: 547: 542: 538: 534: 531: 528: 525: 469: 466: 463: 460: 457: 454: 451: 429:Fuchsian group 420: 417: 402: 401: 390: 387: 384: 379: 375: 371: 368: 363: 359: 355: 352: 347: 343: 296: 293: 268: 265: 249:covering space 123: 70:, named after 19:For the Klein 15: 13: 10: 9: 6: 4: 3: 2: 3990: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3960: 3958: 3939: 3936: 3934: 3931: 3929: 3926: 3925: 3923: 3921: 3917: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3887: 3885: 3883: 3882:Singularities 3879: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3854: 3852: 3848: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3818: 3816: 3812: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3767: 3765: 3761: 3758: 3754: 3748: 3745: 3743: 3740: 3738: 3735: 3734: 3732: 3730:Constructions 3728: 3722: 3719: 3717: 3714: 3712: 3709: 3707: 3704: 3702: 3701:Klein quartic 3699: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3681:Bolza surface 3679: 3677: 3676:Bring's curve 3674: 3672: 3669: 3668: 3666: 3664: 3660: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3608:Conic section 3606: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3588:AF+BG theorem 3586: 3585: 3583: 3581: 3577: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3547: 3545: 3541: 3531: 3528: 3526: 3523: 3522: 3520: 3516: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3456: 3454: 3450: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3425: 3423: 3419: 3416: 3414: 3410: 3404: 3403:Twisted cubic 3401: 3399: 3396: 3394: 3391: 3389: 3386: 3384: 3381: 3380: 3378: 3376: 3372: 3368: 3360: 3355: 3353: 3348: 3346: 3341: 3340: 3337: 3330: 3327: 3324: 3321: 3318: 3315: 3314: 3310: 3303: 3299: 3295: 3290: 3286: 3280: 3272: 3268: 3264: 3260: 3256: 3252: 3248: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3218: 3212: 3203: 3202: 3193: 3184: 3180: 3176: 3172: 3164: 3163:Schulte, Egon 3160: 3156: 3155: 3150: 3146: 3141: 3137: 3133: 3129: 3124: 3120: 3116: 3110: 3106: 3102: 3101: 3095: 3092: 3088: 3084: 3080: 3076: 3070: 3066: 3062: 3057: 3052: 3048: 3044: 3040: 3037: 3031: 3027: 3023: 3019: 3015: 3011: 3007: 3003: 2999: 2998: 2993: 2982: 2981: 2973: 2970: 2966: 2960: 2957: 2951: 2947: 2946: 2938: 2935: 2930: 2926: 2920: 2917: 2913: 2907: 2905: 2901: 2896: 2892: 2888: 2886:0-9665201-7-3 2882: 2878: 2871: 2864: 2862: 2860: 2856: 2851: 2844: 2841: 2836: 2829: 2827: 2823: 2818: 2814: 2810: 2809:Baez, John C. 2804: 2801: 2798: 2792: 2789: 2785: 2779: 2777: 2775: 2771: 2767: 2761: 2759: 2757: 2755: 2753: 2749: 2745: 2739: 2736: 2729: 2725: 2722: 2720: 2717: 2715: 2714:Bring's curve 2712: 2710: 2709:Bolza surface 2707: 2705: 2702: 2700: 2699:Shimura curve 2697: 2695: 2692: 2691: 2687: 2685: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2654: 2652: 2648: 2647:Shimura curve 2643: 2640: 2639:modular curve 2635: 2633: 2629: 2625: 2624:Bolza surface 2621: 2617: 2613: 2608: 2602: 2600: 2591:(ramified at 2590: 2577: 2567: 2561: 2560:Mathieu group 2557: 2553: 2549: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2513: 2508: 2504: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2453: 2449: 2445: 2441: 2437: 2419: 2411: 2406: 2399: 2392: 2389: 2373: 2369: 2361: 2360: 2356: 2353: 2337: 2333: 2325: 2324: 2320: 2317: 2301: 2297: 2289: 2288: 2284: 2281: 2265: 2261: 2253: 2252: 2248: 2245: 2229: 2225: 2217: 2216: 2212: 2209: 2193: 2189: 2181: 2180: 2176: 2173: 2157: 2153: 2145: 2144: 2140: 2137: 2121: 2117: 2109: 2108: 2104: 2101: 2085: 2081: 2073: 2072: 2068: 2065: 2049: 2045: 2037: 2036: 2032: 2029: 2013: 2009: 2001: 2000: 1996: 1993: 1977: 1973: 1965: 1964: 1960: 1957: 1941: 1937: 1929: 1928: 1924: 1921: 1905: 1901: 1893: 1892: 1888: 1885: 1869: 1865: 1857: 1856: 1852: 1849: 1833: 1829: 1821: 1820: 1817:Multiplicity 1816: 1813: 1810: 1809: 1803: 1800: 1799:Bolza surface 1796: 1788: 1783: 1776: 1774: 1772: 1768: 1749: 1745: 1738: 1731: 1725: 1718: 1712: 1706: 1703: 1697: 1690: 1684: 1677: 1671: 1665: 1662: 1656: 1649: 1643: 1636: 1630: 1624: 1621: 1615: 1608: 1602: 1595: 1589: 1583: 1580: 1574: 1567: 1561: 1554: 1548: 1542: 1539: 1533: 1526: 1520: 1513: 1507: 1501: 1497: 1489: 1488: 1487: 1470: 1464: 1441: 1438: 1427: 1423: 1413: 1395: 1392: 1388: 1382: 1377: 1374: 1370: 1366: 1361: 1358: 1354: 1350: 1343: 1342: 1341: 1339: 1320: 1316: 1311: 1305: 1302: 1296: 1292: 1287: 1283: 1279: 1276: 1270: 1267: 1260: 1256: 1251: 1248: 1244: 1240: 1233: 1232: 1231: 1214: 1211: 1207: 1202: 1196: 1193: 1187: 1183: 1180: 1176: 1170: 1167: 1163: 1157: 1154: 1148: 1144: 1139: 1135: 1126: 1123: 1116: 1111: 1107: 1102: 1099: 1095: 1091: 1084: 1083: 1082: 1074: 1070: 1068: 1052: 1049: 1041: 1033: 1031: 1029: 1023: 1017: 1008: 1002: 998: 993: 989: 983: 976: 973: 965: 963: 960: 956: 952: 947: 941: 940:Mathieu group 936: 934: 930: 922: 919: 918: 917: 915: 911: 907: 903: 898: 896: 892: 888: 883: 879: 871: 866: 859: 857: 855: 839: 836: 833: 830: 827: 822: 818: 807: 767: 764: 761: 751: 707: 688: 685: 682: 679: 676: 673: 670: 666: 663: 660: 655: 651: 647: 642: 638: 630: 629: 628: 620: 614: 610: 604: 597: 594: 573: 568: 560: 557: 554: 548: 545: 540: 532: 529: 526: 516: 515: 514: 510: 506: 499: 495: 491:of the field 488: 484: 464: 461: 458: 452: 449: 441: 435: 430: 426: 418: 416: 412: 408: 388: 385: 382: 377: 373: 369: 366: 361: 357: 353: 350: 345: 341: 333: 332: 331: 327: 323: 318: 313: 309: 305: 302: 294: 292: 290: 286: 285: 280: 279:compact space 276: 275: 266: 264: 258: 250: 237: 227: 222: 214: 211:by a certain 209: 205: 200: 194: 190: 185: 181: 175: 171: 167: 162: 160: 156: 152: 148: 144: 140: 136: 131: 129: 121: 117: 112: 107: 103: 98:168 × 2 = 336 91: 84: 80: 77: 73: 69: 68:Klein quartic 65: 54: 51:and its dual 47: 37: 32: 26: 25:Klein quadric 22: 3867:Prym variety 3841:Stable curve 3831:Hodge bundle 3821:ELSV formula 3700: 3623:Fermat curve 3580:Plane curves 3543:Higher genus 3518:Applications 3443:Modular form 3304:(2): 413–430 3301: 3297: 3257:(3): 37–42, 3254: 3250: 3221: 3215: 3205:, retrieved 3197: 3186:, retrieved 3174: 3152: 3099: 3046: 3013: 3009: 2979: 2972: 2959: 2950:the original 2944: 2937: 2919: 2876: 2848:Stay, Mike. 2843: 2816: 2803: 2791: 2738: 2655: 2644: 2636: 2609: 2606: 2573: 2539:, as in the 2524: 2521:hyperboloids 2517: 2464: 2460: 2457: 2447: 2438: 2417: 2415: 1792: 1764: 1419: 1338:Schmutz 1993 1335: 1229: 1079: 1037: 1021: 1006: 991: 981: 977: 971: 969: 950: 948: 937: 926: 923:56 × 3 = 168 920:24 × 7 = 168 899: 875: 805: 749: 703: 618: 602: 598: 592: 588: 508: 504: 497: 493: 486: 482: 433: 422: 410: 406: 403: 325: 321: 311: 298: 282: 272: 270: 235: 225: 207: 192: 188: 173: 169: 163: 155:class number 132: 116:simple group 67: 61: 36:Klein graphs 20: 3742:Polar curve 2485:convex hull 2459:this is an 1811:Eigenvalue 1767:cubic graph 878:regular map 615:. Namely, 611:hyperbolic 589:exhibiting 178:defined by 128:Klein 1878b 72:Felix Klein 3957:Categories 3737:Dual curve 3365:Topics in 3207:2010-04-15 3188:2010-04-17 3043:Elkies, N. 2994:Literature 2925:Egan, Greg 2730:References 1771:Fano plane 972:projective 599:The group 301:projective 219:that acts 157:one; see ( 145:, and the 118:after the 3850:Morphisms 3598:Bitangent 3271:122330024 3238:120508826 3036:Levy 1999 3030:121407539 3002:Klein, F. 2965:Levy 1999 2895:1099-6702 2744:Levy 1999 2682:trinities 2535:, or the 2533:snub cube 2481:Levy 1999 2461:embedding 2410:Greg Egan 2370:λ 2334:λ 2298:λ 2262:λ 2226:λ 2190:λ 2154:λ 2118:λ 2082:λ 2046:λ 2010:λ 1974:λ 1938:λ 1902:λ 1866:λ 1830:λ 1787:FreeFEM++ 1416:of pants. 1393:≈ 1367:⁡ 1359:− 1303:π 1293:⁡ 1277:− 1257:⁡ 1249:− 1212:≈ 1194:π 1184:⁡ 1168:− 1155:π 1145:⁡ 1108:⁡ 1100:− 1053:π 910:heptagons 834:η 819:η 680:− 664:η 558:− 555:η 533:η 530:− 507:= 2 cos(2 468:⟩ 462:− 459:η 456:⟨ 306:over the 245:PSL(3, 2) 241:PSL(2, 7) 213:cocompact 159:Levy 1999 111:PSL(2, 7) 3279:citation 3134:, 2001, 3091:18251612 3004:(1878). 2746:, p. 24) 2688:See also 2548:Archived 2525:immersed 2426:PSL(2,7) 2424:, since 2422:PSL(2,7) 2418:realized 2390:50.6283 2354:49.0429 2318:44.8884 2282:41.5131 2246:37.4246 2210:36.4555 2174:30.8039 2138:25.9276 2102:24.0811 2066:21.9705 2030:17.2486 1994:12.1844 1958:10.8691 1922:6.62251 1886:2.67793 1010:. (Here 931:and the 3910:Tacnode 3895:Crunode 3123:1722410 3083:1726059 2784:Richter 2658:trinity 2581:0, 1728 2495:) and ( 2491:– see ( 2471:at the 1065:by the 1014:is the 995:of the 986:on the 889:of the 854:systole 609:(2,3,7) 76:compact 74:, is a 21:quadric 3890:Acnode 3814:Moduli 3269:  3236:  3138:  3121:  3111:  3089:  3081:  3071:  3028:  2893:  2883:  2595:, and 2583:, and 2531:, the 1028:modulo 1020:SL(2, 980:SL(2, 951:tiling 860:Tiling 502:where 281:. The 274:closed 221:freely 215:group 66:, the 23:, see 3267:S2CID 3234:S2CID 3087:S2CID 3051:arXiv 3026:S2CID 2984:(PDF) 2873:(PDF) 2430:SO(3) 1005:Γ(7)\ 893:(the 289:cusps 247:. By 83:genus 3900:Cusp 3285:link 3217:GAFA 3136:ISBN 3109:ISBN 3069:ISBN 2891:ISSN 2881:ISBN 2593:0, 1 2574:The 2510:The 2434:O(3) 2432:(or 1765:The 1355:cosh 1245:cosh 1096:sinh 1030:7.) 1012:Γ(7) 591:2 – 284:open 3259:doi 3226:doi 3179:doi 3061:doi 3018:doi 2684:". 2475:in 2467:by 1284:sin 1181:sin 1136:csc 1018:of 999:by 810:is 625:i,j 511:/7) 319:on 223:on 153:of 149:on 130:). 94:168 81:of 62:In 3959:: 3302:44 3300:, 3296:, 3281:}} 3277:{{ 3265:, 3255:24 3253:, 3249:, 3232:. 3220:. 3200:24 3173:, 3151:. 3130:, 3126:. 3119:MR 3117:, 3107:, 3085:, 3079:MR 3077:, 3067:, 3059:, 3024:. 3014:14 3012:. 2967:). 2903:^ 2889:. 2858:^ 2825:^ 2815:. 2773:^ 2751:^ 2564:24 2487:a 2393:6 2374:15 2357:6 2338:14 2321:8 2302:13 2285:6 2266:12 2249:8 2230:11 2213:8 2194:10 2177:6 2141:6 2105:8 2069:7 2033:7 1997:8 1961:6 1925:7 1889:8 1853:1 1850:0 1092:16 946:. 944:24 935:. 804:Γ( 748:Γ( 617:Γ( 601:Γ( 432:Γ( 389:0. 330:: 263:. 231:−1 141:, 137:, 3358:e 3351:t 3344:v 3287:) 3261:: 3240:. 3228:: 3222:3 3181:: 3169:8 3063:: 3053:: 3038:. 3032:. 3020:: 2954:. 2914:) 2910:( 2897:. 2852:. 2837:. 2819:. 2786:) 2782:( 2768:) 2764:( 2742:( 2597:∞ 2585:∞ 2562:M 2158:9 2122:8 2086:7 2050:6 2014:5 1978:4 1942:3 1906:2 1870:1 1834:0 1789:. 1750:. 1746:} 1739:8 1735:) 1732:S 1729:( 1726:l 1719:, 1716:) 1713:S 1710:( 1707:l 1704:; 1698:8 1694:) 1691:S 1688:( 1685:l 1678:, 1675:) 1672:S 1669:( 1666:l 1663:; 1657:8 1653:) 1650:S 1647:( 1644:l 1637:, 1634:) 1631:S 1628:( 1625:l 1622:; 1616:8 1612:) 1609:S 1606:( 1603:l 1596:, 1593:) 1590:S 1587:( 1584:l 1581:; 1575:8 1571:) 1568:S 1565:( 1562:l 1555:, 1552:) 1549:S 1546:( 1543:l 1540:; 1534:8 1530:) 1527:S 1524:( 1521:l 1514:, 1511:) 1508:S 1505:( 1502:l 1498:{ 1474:) 1471:S 1468:( 1465:l 1442:8 1439:1 1389:) 1383:3 1378:+ 1375:2 1371:( 1362:1 1351:2 1321:. 1317:) 1312:) 1306:7 1297:( 1288:2 1280:2 1271:2 1268:3 1261:( 1252:1 1241:8 1208:) 1203:) 1197:7 1188:( 1177:) 1171:4 1164:) 1158:7 1149:( 1140:2 1127:2 1124:1 1117:( 1112:( 1103:1 1050:8 1024:) 1022:Z 1007:H 992:H 984:) 982:R 942:M 872:. 840:2 837:+ 831:3 828:+ 823:2 808:) 806:I 787:r 784:u 781:H 774:Q 768:I 765:+ 762:1 752:) 750:I 731:r 728:u 725:H 718:Q 689:. 686:i 683:j 677:= 674:j 671:i 667:, 661:= 656:2 652:j 648:= 643:2 639:i 621:) 619:I 605:) 603:I 593:η 574:, 569:2 565:) 561:1 552:( 549:7 546:= 541:3 537:) 527:2 524:( 509:π 505:η 500:) 498:η 496:( 494:Q 489:) 487:η 485:( 483:Z 465:2 453:= 450:I 436:) 434:I 413:) 411:C 409:( 407:P 386:= 383:x 378:3 374:z 370:+ 367:z 362:3 358:y 354:+ 351:y 346:3 342:x 328:) 326:C 324:( 322:P 312:C 261:3 253:G 236:H 226:H 217:G 208:H 195:) 193:C 191:( 189:P 176:) 174:C 172:( 170:P 124:5 122:A 86:3 58:. 27:.

Index

Klein quadric

Klein graphs
heptagonal tiling
triangular tiling
hyperbolic geometry
Felix Klein
compact
Riemann surface
genus
automorphism group
Hurwitz surface
Hurwitz's automorphisms theorem
PSL(2, 7)
simple group
alternating group
Klein 1878b
representation theory
homology theory
Fermat's Last Theorem
Stark–Heegner theorem
imaginary quadratic number fields
class number
Levy 1999
complex projective plane
an algebraic equation
Riemannian metric
Gaussian curvature
hyperbolic plane
cocompact

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑