Knowledge

Trans-lunar injection

Source đź“ť

325: 281: 157: 125: 231: 31: 1757: 953: 431:, at which point the spacecraft was traveling at approximately 10.4 km/s (34150 ft/s) relative to the Earth. The Apollo 8 TLI was spectacularly observed from the Hawaiian Islands in the pre-dawn sky south of Waikiki, photographed and reported in the papers the next day. In 1969, the Apollo 10 pre-dawn TLI was visible from 147:
missions, since the spacecraft will return to Earth "for free" after the initial TLI burn. The Apollos 8, 10 and 11 began on a free return trajectory, while the later missions used a functionally similar hybrid trajectory, in which a midway course correction is required to reach the Moon.
105:
near to the radius of the Moon's orbit. The TLI burn is sized and timed to precisely target the Moon as it revolves around the Earth. The burn is timed so that the spacecraft nears apogee as the Moon approaches. Finally, the spacecraft enters the Moon's
477:
became the first commercial satellite to reach the Moon's sphere of influence when, after a launch failure, it swung by the Moon twice as a low delta-v way to reach its desired geostationary orbit. It passed within 6200 km of the Moon's surface.
201:
from many bodies. Gravitation from Earth and Moon dominate the spacecraft's acceleration, and since the spacecraft's own mass is negligible in comparison, the spacecraft's trajectory may be better approximated as a
372:
on January 2, 1959 which was designed to impact the Moon. The burn however didn't go exactly as planned and the spacecraft missed the Moon by more than three times its radius and was sent into a heliocentric orbit.
489:(GTO), it used solar powered ion engines for propulsion. As a result of its extremely low delta-v TLI maneuver, the spacecraft took over 13 months to reach a lunar orbit and 17 months to reach its desired orbit. 940: 214:
More detailed simulation involves modeling the Moon's true orbital motion; gravitation from other astronomical bodies; the non-uniformity of the Earth's and Moon's
961: 537: 377:
performed the same maneuver more accurately on September 12, 1959 and crashed into the Moon two days later. The Soviets repeated this success with 22 more
841: 470:
spacecraft, designed to showcase lightweight technologies, used a 3 week long TLI with two intermediate Earth flybys before entering a lunar orbit.
439:. It was described as resembling car headlights coming over a hill in fog, with the spacecraft appearing as a bright comet with a greenish tinge. 324: 1634: 900: 1694: 181:. The spacecraft is assumed to accelerate only under classical 2 body dynamics, being dominated by the Earth until it reaches the Moon's 182: 107: 101:. As the spacecraft begins coasting on the lunar transfer arc, its trajectory approximates an elliptical orbit about the Earth with an 280: 868:"The TLI firing was begun at PST while the craft was over Hawaii and it was reported there that the burn was visible from the ground." 722: 1796: 1689: 1569: 988: 883: 186: 1654: 1408: 222:; and so on. Propagating spacecraft motion in such a model is numerically intensive, but necessary for true mission accuracy. 1786: 1727: 1366: 1357: 1094: 185:. Motion in a patched-conic system is deterministic and simple to calculate, lending itself for rough mission design and " 203: 177:, which may be approximated in various ways. The simplest way to explore lunar transfer trajectories is by the method of 1674: 1144: 888: 604: 486: 454: 335: 1619: 513: 485:
technology demonstrator satellite became the first European satellite to orbit the Moon. After being launched into a
1791: 1599: 1426: 396:, on April 23, 1962. Another 27 US missions to the Moon were launched from 1962 to 1973, including five successful 496:
spacecraft in a lunar orbit. It used multiple burns to slowly raise its apogee to reach the vicinity of the Moon.
1737: 1722: 1247: 820: 523:
satellites used a low delta-v route to the Moon, passing by the Sun-Earth L1 point, and taking over 3 months.
1801: 1732: 1040: 591: 466: 1781: 1594: 1196: 1116: 1104: 133: 119: 59: 849: 751: 572: 206:. This model is a closer approximation but lacks an analytic solution, requiring numerical calculation. 1717: 1659: 1417: 1294: 1262: 1232: 1191: 1176: 1055: 934: 547: 401: 161: 156: 124: 1742: 1564: 1348: 1237: 1206: 1134: 1109: 1084: 1045: 1026: 981: 552: 137: 1604: 1399: 1139: 542: 427:
lasted approximately 350 seconds, providing 3.05 to 3.25 km/s (10,000 to 10,600 ft/s) of
412: 230: 215: 198: 71: 63: 619: 392:, on January 26, 1962, which failed to reach the Moon. This was followed by the first US success, 1277: 1166: 1064: 447: 74:
from sources outside the Earth-Moon system, a fast Hohmann transfer is typically more practical.
67: 892: 863: 655: 1644: 1542: 1472: 1227: 1181: 1099: 896: 689: 144: 769: 1624: 1556: 1320: 1282: 1156: 1126: 1079: 705: 397: 98: 86: 47: 787: 503:
into a GTO and, like the Chinese spacecraft, increasing its apogee over a number of burns.
1664: 1257: 1161: 1151: 1050: 974: 730: 637: 140:
around behind the Moon and return to Earth without need for further propulsive maneuvers.
94: 1760: 1712: 1704: 1699: 1584: 1579: 1510: 1490: 1481: 1074: 1060: 1036: 1031: 1006: 405: 378: 178: 174: 30: 1775: 1614: 1609: 1528: 1171: 1089: 922: 672: 532: 500: 317: 78: 957: 17: 1679: 1589: 1463: 1446: 1304: 1201: 1069: 382: 365: 493: 1684: 1519: 1289: 1269: 1186: 93:
engine, increases the spacecraft's velocity, changing its orbit from a circular
1252: 424: 219: 51: 1669: 1021: 593:
Trajectories in the Earth-Moon Space with Symmetrical Free Return Properties
508: 474: 450: 436: 432: 923:"A Review of Technical Requirements for Lunar Structures – Present Status" 461:
TLI method with a 6-month transfer time (compared to 3 days for Apollo).
420: 393: 389: 77:
A spacecraft performs TLI to begin a lunar transfer from a low circular
1574: 966: 482: 458: 428: 34:
Lunar transfer, perspective view. TLI occurs at the red dot near Earth.
374: 369: 90: 411:
For the Apollo lunar missions, TLI was performed by the restartable
173:
TLI targeting and lunar transfers are a specific application of the
1379: 998: 520: 443: 416: 323: 279: 273: 245: 229: 155: 123: 102: 82: 29: 845: 827: 791: 726: 600: 576: 259: 55: 970: 388:
The United States launched its first lunar impactor attempt,
128:
Sketch of a circumlunar free return trajectory (not to scale)
492:
China launched its first Moon mission in 2007, placing the
457:
in a lunar orbit. Following that, it explored a novel low
197:
More realistically, however, the spacecraft is subject to
132:
In some cases it is possible to design a TLI to target a
710:
Theory of Orbits, The Restricted Problem of Three Bodies
143:
Such free return trajectories add a margin of safety to
70:
probe. For short duration missions without significant
516:, used this maneuver in 2019, but crashed on the Moon. 385:
missions travelling to the Moon between 1959 and 1976.
876: 874: 408:
missions, which landed the first humans on the Moon.
1643: 1555: 1499: 1435: 1388: 1328: 1319: 1215: 1125: 1014: 1005: 864:"Independent Star News, Sunday, December 22, 1968" 58:. Typical lunar transfer trajectories approximate 921:Alexander M. Jablonski1a; Kelly A. Ogden (2006). 164:stack performing the trans-lunar injection burn 66:have also been used in some cases, as with the 815: 813: 811: 809: 807: 805: 803: 801: 599:. Technical Note D-1833. Huntsville, Alabama: 27:Propulsive maneuver used to arrive at the Moon 982: 962:National Aeronautics and Space Administration 538:Comparison of super heavy lift launch systems 364:The first space probe to attempt TLI was the 8: 446:launched its first lunar mission, using the 939:: CS1 maint: numeric names: authors list ( 696:, Paris, Gauthier-Villars et fils, 1892-99. 694:Les MĂ©thodes Nouvelles de MĂ©canique CĂ©leste 1756: 1325: 1011: 989: 975: 967: 453:to fly by the Moon and place the Hagoromo 712:, Yale University, Academic Press, 1967. 881:French, Francis; Colin Burgess (2007). 564: 1635:Transposition, docking, and extraction 932: 916: 914: 912: 752:"NASA - NSSDCA - Spacecraft - Details" 499:India followed in 2008, launching the 618:Mansfield, Cheryl L. (May 18, 2017). 193:Restricted circular three body (RC3B) 110:, making a hyperbolic lunar swingby. 7: 960:from websites or documents of the 89:, usually performed by a chemical 25: 1695:Kepler's laws of planetary motion 1755: 1690:Interplanetary Transport Network 1570:Collision avoidance (spacecraft) 956: This article incorporates 951: 927:Journal of Aerospace Engineering 1655:Astronomical coordinate systems 1409:Longitude of the ascending node 590:Schwaninger, Arthur J. (1963). 1728:Retrograde and prograde motion 404:surveillance probes, and nine 136:, so that the spacecraft will 1: 770:"Soviet Missions to the Moon" 423:rocket. This particular TLI 204:restricted three-body problem 1675:Equatorial coordinate system 889:University of Nebraska Press 605:Marshall Space Flight Center 487:geostationary transfer orbit 336:Lunar Reconnaissance Orbiter 514:Israel Aerospace Industries 328:Animation of LRO trajectory 160:Artist's concept of NASA's 1818: 1427:Longitude of the periapsis 284:Animation of Chandrayaan-2 117: 50:, which is used to send a 1751: 1738:Specific angular momentum 884:In the Shadow of the Moon 220:solar radiation pressure 1797:Exploration of the Moon 1733:Specific orbital energy 842:"Apollo By the Numbers" 1145:Geostationary transfer 958:public domain material 673:"Launch Windows Essay" 361: 321: 277: 165: 134:free return trajectory 129: 120:Free return trajectory 35: 1787:Spacecraft propulsion 1718:Orbital state vectors 1660:Characteristic energy 1630:Trans-lunar injection 1418:Argument of periapsis 1095:Prograde / Retrograde 1056:Hyperbolic trajectory 661:(Report). p. 93. 548:Trans-Earth injection 327: 283: 233: 159: 127: 40:trans-lunar injection 33: 1565:Bi-elliptic transfer 1085:Parabolic trajectory 553:Trans-Mars injection 234:Animation of GRAIL-A 199:gravitational forces 187:back of the envelope 64:low-energy transfers 18:Lunar Transfer Orbit 1605:Low-energy transfer 866:. 22 December 1968. 774:nssdc.gsfc.nasa.gov 756:nssdc.gsfc.nasa.gov 543:Low energy transfer 419:third stage of the 400:soft landers, five 183:sphere of influence 108:sphere of influence 48:propulsive maneuver 1600:Inclination change 1248:Distant retrograde 429:change in velocity 362: 322: 278: 166: 130: 36: 1792:Orbital maneuvers 1769: 1768: 1743:Two-line elements 1551: 1550: 1473:Eccentric anomaly 1315: 1314: 1182:Orbit of the Moon 1041:Highly elliptical 902:978-0-8032-1128-5 519:In 2011 the NASA 145:human spaceflight 85:. The large TLI 60:Hohmann transfers 16:(Redirected from 1809: 1759: 1758: 1700:Lagrangian point 1595:Hohmann transfer 1540: 1526: 1517: 1508: 1488: 1479: 1470: 1461: 1457: 1453: 1444: 1424: 1415: 1406: 1397: 1377: 1373: 1364: 1355: 1346: 1326: 1295:Heliosynchronous 1244:Lagrange points 1197:Transatmospheric 1012: 991: 984: 977: 968: 955: 954: 945: 944: 938: 930: 918: 907: 906: 878: 869: 867: 860: 854: 853: 848:. Archived from 838: 832: 831: 825: 817: 796: 795: 784: 778: 777: 766: 760: 759: 748: 742: 741: 739: 738: 729:. Archived from 719: 713: 706:Victor Szebehely 703: 697: 687: 681: 680: 677:history.nasa.gov 669: 663: 662: 660: 656:Ways to the Moon 652: 646: 645: 642:history.nasa.gov 634: 628: 627: 615: 609: 608: 598: 587: 581: 580: 569: 506:The soft lander 360: 358: 349: 347: 338: 333: 320: 315: 306: 304: 295: 293: 287: 276: 271: 262: 257: 248: 243: 237: 210:Further accuracy 21: 1817: 1816: 1812: 1811: 1810: 1808: 1807: 1806: 1772: 1771: 1770: 1765: 1747: 1665:Escape velocity 1646: 1639: 1620:Rocket equation 1547: 1539: 1533: 1524: 1515: 1506: 1495: 1486: 1477: 1468: 1459: 1455: 1451: 1442: 1431: 1422: 1413: 1404: 1395: 1384: 1375: 1371: 1367:Semi-minor axis 1362: 1358:Semi-major axis 1353: 1344: 1338: 1311: 1233:Areosynchronous 1217: 1211: 1192:Sun-synchronous 1177:Near-equatorial 1121: 1001: 995: 952: 949: 948: 931: 920: 919: 910: 903: 880: 879: 872: 862: 861: 857: 840: 839: 835: 823: 819: 818: 799: 786: 785: 781: 768: 767: 763: 750: 749: 745: 736: 734: 721: 720: 716: 704: 700: 688: 684: 671: 670: 666: 658: 654: 653: 649: 636: 635: 631: 617: 616: 612: 596: 589: 588: 584: 571: 570: 566: 561: 529: 381:missions and 5 356: 355: 345: 344: 331: 330: 329: 313: 312: 302: 301: 291: 290: 289: 285: 269: 268: 255: 254: 241: 240: 239: 235: 228: 212: 195: 171: 154: 122: 116: 99:eccentric orbit 95:low Earth orbit 28: 23: 22: 15: 12: 11: 5: 1815: 1813: 1805: 1804: 1802:Apollo program 1799: 1794: 1789: 1784: 1774: 1773: 1767: 1766: 1764: 1763: 1761:List of orbits 1752: 1749: 1748: 1746: 1745: 1740: 1735: 1730: 1725: 1720: 1715: 1713:Orbit equation 1710: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1667: 1662: 1657: 1651: 1649: 1641: 1640: 1638: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1602: 1597: 1592: 1587: 1585:Gravity assist 1582: 1580:Delta-v budget 1577: 1572: 1567: 1561: 1559: 1553: 1552: 1549: 1548: 1546: 1545: 1537: 1531: 1522: 1513: 1511:Orbital period 1503: 1501: 1497: 1496: 1494: 1493: 1491:True longitude 1484: 1482:Mean longitude 1475: 1466: 1449: 1439: 1437: 1433: 1432: 1430: 1429: 1420: 1411: 1402: 1392: 1390: 1386: 1385: 1383: 1382: 1369: 1360: 1351: 1341: 1339: 1337: 1336: 1333: 1329: 1323: 1317: 1316: 1313: 1312: 1310: 1309: 1308: 1307: 1299: 1298: 1297: 1292: 1287: 1286: 1285: 1272: 1267: 1266: 1265: 1260: 1255: 1250: 1242: 1241: 1240: 1238:Areostationary 1235: 1230: 1221: 1219: 1213: 1212: 1210: 1209: 1207:Very low Earth 1204: 1199: 1194: 1189: 1184: 1179: 1174: 1169: 1164: 1159: 1154: 1149: 1148: 1147: 1142: 1135:Geosynchronous 1131: 1129: 1123: 1122: 1120: 1119: 1117:Transfer orbit 1114: 1113: 1112: 1107: 1097: 1092: 1087: 1082: 1077: 1075:Lagrange point 1072: 1067: 1058: 1053: 1048: 1043: 1034: 1029: 1024: 1018: 1016: 1009: 1003: 1002: 997:Gravitational 996: 994: 993: 986: 979: 971: 947: 946: 908: 901: 870: 855: 852:on 2004-11-18. 833: 821:"Beyond Earth" 797: 779: 761: 743: 714: 698: 690:Henri PoincarĂ© 682: 664: 647: 629: 610: 582: 563: 562: 560: 557: 556: 555: 550: 545: 540: 535: 528: 525: 455:microsatellite 415:engine in the 227: 224: 211: 208: 194: 191: 179:patched conics 175:n body problem 170: 169:Patched conics 167: 153: 150: 118:Main article: 115: 112: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1814: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1782:Astrodynamics 1780: 1779: 1777: 1762: 1754: 1753: 1750: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1708:-body problem 1707: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1652: 1650: 1648: 1642: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1610:Oberth effect 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1562: 1560: 1558: 1554: 1544: 1536: 1532: 1530: 1529:Orbital speed 1523: 1521: 1514: 1512: 1505: 1504: 1502: 1498: 1492: 1485: 1483: 1476: 1474: 1467: 1465: 1450: 1448: 1441: 1440: 1438: 1434: 1428: 1421: 1419: 1412: 1410: 1403: 1401: 1394: 1393: 1391: 1387: 1381: 1370: 1368: 1361: 1359: 1352: 1350: 1343: 1342: 1340: 1334: 1331: 1330: 1327: 1324: 1322: 1318: 1306: 1303: 1302: 1300: 1296: 1293: 1291: 1288: 1284: 1283:Earth's orbit 1281: 1280: 1279: 1276: 1275: 1273: 1271: 1268: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1245: 1243: 1239: 1236: 1234: 1231: 1229: 1226: 1225: 1223: 1222: 1220: 1214: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1146: 1143: 1141: 1140:Geostationary 1138: 1137: 1136: 1133: 1132: 1130: 1128: 1124: 1118: 1115: 1111: 1108: 1106: 1103: 1102: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1019: 1017: 1013: 1010: 1008: 1004: 1000: 992: 987: 985: 980: 978: 973: 972: 969: 965: 963: 959: 942: 936: 928: 924: 917: 915: 913: 909: 904: 898: 894: 890: 886: 885: 877: 875: 871: 865: 859: 856: 851: 847: 843: 837: 834: 829: 822: 816: 814: 812: 810: 808: 806: 804: 802: 798: 793: 789: 783: 780: 775: 771: 765: 762: 757: 753: 747: 744: 733:on 2020-09-05 732: 728: 724: 718: 715: 711: 707: 702: 699: 695: 691: 686: 683: 678: 674: 668: 665: 657: 651: 648: 643: 639: 633: 630: 625: 621: 614: 611: 606: 602: 595: 594: 586: 583: 578: 574: 568: 565: 558: 554: 551: 549: 546: 544: 541: 539: 536: 534: 533:Astrodynamics 531: 530: 526: 524: 522: 517: 515: 511: 510: 504: 502: 501:Chandrayaan-1 497: 495: 490: 488: 484: 481:The 2003 ESA 479: 476: 471: 469: 468: 462: 460: 456: 452: 449: 445: 440: 438: 434: 430: 426: 422: 418: 414: 409: 407: 403: 402:Lunar Orbiter 399: 395: 391: 386: 384: 380: 376: 371: 367: 353: 342: 337: 326: 319: 318:Chandrayaan-2 310: 299: 282: 275: 266: 261: 252: 247: 232: 225: 223: 221: 217: 209: 207: 205: 200: 192: 190: 188: 184: 180: 176: 168: 163: 162:Constellation 158: 151: 149: 146: 141: 139: 135: 126: 121: 113: 111: 109: 104: 100: 96: 92: 88: 84: 80: 79:parking orbit 75: 73: 72:perturbations 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 1723:Perturbation 1705: 1680:Ground track 1629: 1590:Gravity turn 1541:   1534: 1527:   1518:   1509:   1489:   1480:   1471:   1464:True anomaly 1462:   1447:Mean anomaly 1445:   1425:   1416:   1407:   1398:   1378:   1365:   1356:   1349:Eccentricity 1347:   1305:Lunar cycler 1278:Heliocentric 1218:other points 1167:Medium Earth 1065:Non-inclined 950: 935:cite journal 926: 882: 858: 850:the original 836: 782: 773: 764: 755: 746: 735:. Retrieved 731:the original 717: 709: 701: 693: 685: 676: 667: 650: 641: 632: 623: 613: 592: 585: 567: 518: 507: 505: 498: 491: 480: 472: 465: 464:The 1994 US 463: 441: 410: 387: 366:Soviet Union 363: 351: 340: 308: 297: 264: 250: 218:; including 213: 196: 172: 142: 131: 97:to a highly 76: 43: 39: 37: 1685:Hill sphere 1520:Mean motion 1400:Inclination 1389:Orientation 1290:Mars cycler 1228:Areocentric 1100:Synchronous 638:"APOLLO 12" 620:"Apollo 10" 348: Earth 294: Earth 189:" studies. 114:Free return 62:, although 1776:Categories 1625:Rendezvous 1321:Parameters 1157:High Earth 1127:Geocentric 1080:Osculating 1037:Elliptical 891:. p.  788:"Ranger 4" 737:2019-06-10 559:References 467:Clementine 359: Moon 305: Moon 288:trajectory 238:trajectory 52:spacecraft 1670:Ephemeris 1647:mechanics 1557:Maneuvers 1500:Variation 1263:Libration 1258:Lissajous 1162:Low Earth 1152:Graveyard 1051:Horseshoe 723:"Luna 01" 512:from the 509:Beresheet 494:Chang'e 1 475:Asiasat-3 451:satellite 437:Australia 433:Cloncurry 1436:Position 1061:Inclined 1032:Circular 527:See also 473:In 1997 442:In 1990 421:Saturn V 398:Surveyor 394:Ranger 4 390:Ranger 3 152:Modeling 1645:Orbital 1615:Phasing 1575:Delta-v 1380:Apsides 1374:,  1172:Molniya 1090:Parking 1027:Capture 1015:General 573:"Hiten" 483:SMART-1 459:delta-v 246:GRAIL-A 226:History 216:gravity 81:around 54:to the 46:) is a 1301:Other 1202:Tundra 1070:Kepler 1046:Escape 999:orbits 899:  406:Apollo 375:Luna 2 370:Luna 1 357:  352:· 350:  346:  341:· 339:  334:  332:  316:  314:  309:· 307:  303:  298:· 296:  292:  286:'s 272:  270:  265:· 263:  258:  256:  251:· 249:  244:  242:  236:'s 103:apogee 91:rocket 1543:Epoch 1332:Shape 1270:Lunar 1224:Mars 1216:About 1187:Polar 1007:Types 824:(PDF) 659:(PDF) 597:(PDF) 521:GRAIL 448:Hiten 444:Japan 417:S-IVB 354: 343: 311: 300: 274:Earth 267: 253: 83:Earth 68:Hiten 1335:Size 1274:Sun 1253:Halo 1105:semi 941:link 897:ISBN 846:NASA 828:NASA 792:NASA 727:NASA 624:NASA 601:NASA 577:NASA 425:burn 383:Zond 379:Luna 260:Moon 138:loop 87:burn 56:Moon 1110:sub 1022:Box 893:372 413:J-2 368:'s 44:TLI 1778:: 1458:, 1454:, 1063:/ 1039:/ 964:. 937:}} 933:{{ 925:. 911:^ 895:. 887:. 873:^ 844:. 826:. 800:^ 790:. 772:. 754:. 725:. 708:, 692:, 675:. 640:. 622:. 603:/ 575:. 435:, 38:A 1706:n 1538:0 1535:t 1525:v 1516:n 1507:T 1487:l 1478:L 1469:E 1460:f 1456:θ 1452:ν 1443:M 1423:Ď– 1414:ω 1405:Ω 1396:i 1376:q 1372:Q 1363:b 1354:a 1345:e 990:e 983:t 976:v 943:) 929:. 905:. 830:. 794:. 776:. 758:. 740:. 679:. 644:. 626:. 607:. 579:. 42:( 20:)

Index

Lunar Transfer Orbit

propulsive maneuver
spacecraft
Moon
Hohmann transfers
low-energy transfers
Hiten
perturbations
parking orbit
Earth
burn
rocket
low Earth orbit
eccentric orbit
apogee
sphere of influence
Free return trajectory

free return trajectory
loop
human spaceflight

Constellation
n body problem
patched conics
sphere of influence
back of the envelope
gravitational forces
restricted three-body problem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑