Knowledge (XXG)

Lutetium aluminium garnet

Source 📝

20: 225:
Hydrothermal growth of garnets has been recorded since the 1960s and has now been demonstrated for LuAG as an alternative technique to the traditional melt method employed in the past. This method enables crystals to be grown at lower temperatures, limiting the thermally induced defects which result
138:
The mass of the lutetium ion is closer to laser-active lanthanides which are used for doping, meaning that the thermal conductivity is not altered as it would be in other garnet structures at higher doping levels. Additionally, the crystal radius of lutetium limits the alterations observed in the
98:
ions. It can be especially useful for high energy particle detection and quantification on account of its density and thermal stability. This high melting temperature, in addition to the lack of availability of lutetium has made this crystal less commonly used than its fellow garnets, despite its
252:
The lasing process involving aluminum garnet crystals is carried out by the dopant atoms, usually rare-earth metals, which take the place of a few atoms of the original metal in the crystal structure (in this case lutetium). The role of the unsubstituted atoms of lutetium, aluminum, and oxygen
83:, which results in a higher density producing a crystal field with narrower linewidths and greater energy level splitting in absorption and emission. These properties make it an excellent host for active ions such as Yb, Tm, Er, and Ho employed in diode-pumped 221:
LuAG's growth process is relatively simple due to its crystallographic structure and physiochemical properties. Because of the materials' thermal stability, it requires an apparatus to manage a high power supply and temperatures of up to 2500 ˚C.
217:
growth process. This method allows for the formation of single-crystal cylinders of various scintillators. The method is utilized for the growth of semiconductors, oxides, fluorides, and halide crystals in addition to metal crystals.
68:. Scintillating crystals are selected for high structural perfection, high density and high effective atomic number. LuAG is particularly favored over other crystals for its high density and 23:
Samples of Ce:LuAG, each faceted as a gemstone for use in jewelry. While LuAG is not grown specifically for the gem trade, industrial scrap is sometimes repurposed into gemstones.
521: 727: 306:
Moore, Cheryl (2015). "Towards a Greater Understanding of Hydrothermally Grown Garnets and Sesquioxide Crystals for Laser Applications".
229:
This method was employed without the use of LuAG seed on account of its unavailability and cost. Instead, the growth was performed using
419:
Kuwano, Yasuhiko; Suda, Katsumi; Ishizawa, Nobuo; Yamada, Toyoaki (2004-01-02). "Crystal growth and properties of (Lu,Y)3Al5O12".
514: 213:
Lutetium aluminum garnet is an artificial crystal that can be grown using a technique developed approximately a century ago, the
819: 839: 829: 507: 824: 267: 262: 743: 332: 272: 230: 695: 783: 655: 625: 667: 577: 569: 49:) is an inorganic compound with a unique crystal structure primarily known for its use in high-efficiency 683: 585: 238: 605: 470: 428: 377: 311: 69: 54: 613: 277: 234: 214: 763: 735: 638: 530: 77: 711: 643: 401: 393: 84: 633: 557: 478: 436: 385: 73: 834: 593: 474: 432: 381: 315: 813: 233:
crystals with a minimal lattice mismatch of 0.6%. The growth was done using powdered
65: 440: 119:
has a complex cubic crystal structure. The unit cell contains 24 lutetium atoms in
61: 90:
The density of the lutetium crystal is greater than that of other metals, such as
241: 483: 458: 397: 405: 19: 94:, meaning that the crystal properties do not change with the addition of 389: 368:
Kiss, Z. J.; Pressley, R. J. (1966-10-01). "Crystalline Solid Lasers".
91: 499: 95: 80: 29: 50: 18: 503: 60:
LuAG is a dopable scintillating crystal that will demonstrate
459:"Czochralski Growth and Properties of Scintillating Crystals" 107:
Lutetium aluminum garnet, with the molecular formula Lu
53:devices. LuAG is also useful in the synthesis of 515: 8: 457:Yoshikawa, A.; Chani, V.; Nikl, M. (2013). 522: 508: 500: 226:in expanses of optically useless crystal. 482: 253:function as support for the dopant ions. 244:with a thermal gradient of 610 - 640 ˚C. 141: 289: 237:and crushed sapphire feedstock with 2M 139:crystal structure with doping present. 333:"Lutetium Aluminum Garnet - LuAG - Lu 7: 452: 450: 327: 325: 301: 299: 297: 295: 293: 14: 103:Physical properties and structure 308:Clemson University Tiger Prints 99:favorable physical properties. 441:10.1016/j.jcrysgro.2003.08.060 72:. LuAG has a relatively small 1: 143:Physical properties of LuAG 76:in comparison to the other 856: 484:10.12693/aphyspola.124.250 127:sites, and aluminum in 16 123:sites, 96 oxygen atoms in 537: 421:Journal of Crystal Growth 268:Gadolinium yttrium garnet 263:Gadolinium gallium garnet 273:Yttrium aluminium garnet 231:yttrium aluminium garnet 463:Acta Physica Polonica A 349:scientificmaterials.com 37:, molecular formula Lu 33:(commonly abbreviated 24: 239:potassium bicarbonate 22: 70:thermal conductivity 55:transparent ceramics 820:Aluminium compounds 475:2013AcPPA.124..250Y 433:2004JCrGr.260..159K 390:10.1364/ao.5.001474 382:1966ApOpt...5.1474K 316:2015PhDT.......308M 278:Yttrium iron garnet 235:lutetium(III) oxide 144: 840:Synthetic minerals 830:Lutetium compounds 531:Lutetium compounds 167:Crystal structure 142: 85:solid-state lasers 28:Lutetium aluminum 25: 16:Inorganic compound 807: 806: 795: 206: 205: 175:Molecular weight 148:Chemical formula 847: 825:Laser gain media 793: 524: 517: 510: 501: 489: 488: 486: 454: 445: 444: 427:(1–2): 159–165. 416: 410: 409: 365: 359: 358: 356: 355: 329: 320: 319: 303: 145: 74:lattice constant 855: 854: 850: 849: 848: 846: 845: 844: 810: 809: 808: 803: 799: 791: 787: 779: 775: 771: 767: 759: 755: 751: 747: 739: 731: 723: 719: 715: 707: 703: 699: 691: 687: 679: 675: 671: 663: 659: 651: 647: 629: 621: 617: 609: 601: 597: 589: 581: 573: 565: 561: 553: 549: 545: 533: 528: 498: 493: 492: 456: 455: 448: 418: 417: 413: 376:(10): 1474–86. 367: 366: 362: 353: 351: 344: 340: 336: 331: 330: 323: 305: 304: 291: 286: 259: 250: 211: 162: 158: 154: 118: 114: 110: 105: 48: 44: 40: 17: 12: 11: 5: 853: 851: 843: 842: 837: 832: 827: 822: 812: 811: 805: 804: 802: 801: 797: 789: 785: 781: 777: 773: 769: 765: 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 677: 673: 669: 665: 661: 657: 653: 649: 645: 641: 636: 631: 627: 623: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 538: 535: 534: 529: 527: 526: 519: 512: 504: 497: 496:External links 494: 491: 490: 469:(2): 250–264. 446: 411: 370:Applied Optics 360: 342: 338: 334: 321: 288: 287: 285: 282: 281: 280: 275: 270: 265: 258: 255: 249: 246: 210: 207: 204: 203: 200: 199:Specific Heat 196: 195: 192: 191:Melting Point 188: 187: 184: 180: 179: 176: 172: 171: 168: 164: 163: 160: 156: 152: 149: 116: 112: 108: 104: 101: 46: 42: 38: 15: 13: 10: 9: 6: 4: 3: 2: 852: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 817: 815: 800: 782: 780: 762: 760: 742: 740: 734: 732: 726: 724: 710: 708: 694: 692: 682: 680: 666: 664: 654: 652: 642: 640: 637: 635: 632: 630: 624: 622: 612: 610: 604: 602: 592: 590: 584: 582: 576: 574: 568: 566: 556: 554: 540: 539: 536: 532: 525: 520: 518: 513: 511: 506: 505: 502: 495: 485: 480: 476: 472: 468: 464: 460: 453: 451: 447: 442: 438: 434: 430: 426: 422: 415: 412: 407: 403: 399: 395: 391: 387: 383: 379: 375: 371: 364: 361: 350: 346: 328: 326: 322: 317: 313: 309: 302: 300: 298: 296: 294: 290: 283: 279: 276: 274: 271: 269: 266: 264: 261: 260: 256: 254: 247: 245: 243: 240: 236: 232: 227: 223: 219: 216: 208: 201: 198: 197: 193: 190: 189: 185: 182: 181: 178:851.81 g/mol 177: 174: 173: 169: 166: 165: 150: 147: 146: 140: 136: 134: 131:sites and 24 130: 126: 122: 102: 100: 97: 93: 88: 86: 82: 79: 75: 71: 67: 63: 58: 56: 52: 36: 32: 31: 21: 541: 466: 462: 424: 420: 414: 373: 369: 363: 352:. Retrieved 348: 307: 251: 248:Applications 228: 224: 220: 212: 137: 132: 128: 124: 120: 106: 89: 62:luminescence 59: 34: 27: 26: 242:mineralizer 215:Czochralski 202:0.419 J/gK 814:Categories 354:2016-04-29 284:References 186:6.71 g/cm 78:rare-earth 66:excitation 398:1539-4522 209:Synthesis 406:20057583 257:See also 194:1980 ˚C 183:Density 728:Yb:LuVO 471:Bibcode 429:Bibcode 378:Bibcode 312:Bibcode 135:sites. 92:yttrium 81:garnets 835:Oxides 626:Lu(OH) 404:  396:  170:Cubic 96:dopant 64:after 30:garnet 736:LuTaO 684:Lu(NO 594:Lu(IO 558:Lu(CH 51:laser 784:Lu(C 744:Lu(C 586:LuBr 578:LuCl 562:COO) 402:PMID 394:ISSN 35:LuAG 772:LuN 700:(CO 672:(SO 639:LuP 634:LuN 606:LuI 570:LuF 479:doi 467:124 437:doi 425:260 386:doi 117:12, 816:: 790:16 786:32 778:14 770:72 766:52 712:Lu 696:Lu 668:Lu 660:Te 656:Lu 648:Se 644:Lu 614:Lu 552:12 546:Al 542:Lu 477:. 465:. 461:. 449:^ 435:. 423:. 400:. 392:. 384:. 372:. 347:. 343:12 337:Al 324:^ 310:. 292:^ 161:12 155:Al 151:Lu 111:Al 87:. 57:. 47:12 41:Al 798:2 796:) 794:8 792:N 788:H 776:O 774:5 768:H 764:C 758:3 756:) 754:2 752:O 750:7 748:H 746:5 738:4 730:4 722:7 720:O 718:2 716:V 714:2 706:3 704:) 702:3 698:2 690:3 688:) 686:3 678:3 676:) 674:4 670:2 662:3 658:2 650:3 646:2 628:3 620:3 618:O 616:2 608:3 600:3 598:) 596:3 588:3 580:3 572:3 564:3 560:3 550:O 548:5 544:3 523:e 516:t 509:v 487:. 481:: 473:: 443:. 439:: 431:: 408:. 388:: 380:: 374:5 357:. 345:" 341:O 339:5 335:3 318:. 314:: 159:O 157:5 153:3 133:d 129:a 125:h 121:c 115:O 113:5 109:3 45:O 43:5 39:3

Index


garnet
laser
transparent ceramics
luminescence
excitation
thermal conductivity
lattice constant
rare-earth
garnets
solid-state lasers
yttrium
dopant
Czochralski
yttrium aluminium garnet
lutetium(III) oxide
potassium bicarbonate
mineralizer
Gadolinium gallium garnet
Gadolinium yttrium garnet
Yttrium aluminium garnet
Yttrium iron garnet





Bibcode
2015PhDT.......308M

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.