Knowledge (XXG)

Luttinger liquid

Source đź“ť

644: 31: 657: 1105: 1188:
There is no 'quasiparticle peak' in the momentum-dependent spectral function (i.e. no peak whose width becomes much smaller than the excitation energy above the Fermi level, as is the case for the Fermi liquid). Instead, there is a power-law singularity, with a 'non-universal' exponent that depends
1233:
At small temperatures, the scattering of these Friedel oscillations becomes so efficient that the effective strength of the impurity is renormalized to infinity, 'pinching off' the quantum wire. More precisely, the conductance becomes zero as temperature and transport voltage go to zero (and rises
1669:
Ishii, H; Kataura, H; Shiozawa, H; Yoshioka, H; Otsubo, H; Takayama, Y; Miyahara, T; Suzuki, S; Achiba, Y; Nakatake, M; Narimura, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M (4 December 2003). "Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low
934: 744:
reformulated the theory in terms of Bloch sound waves and showed that the constraints proposed by Tomonaga were unnecessary in order to treat the second-order perturbations as bosons. But his solution of the model was incorrect; the correct solution was given by
1245:
The Luttinger model is thought to describe the universal low-frequency/long-wavelength behaviour of any one-dimensional system of interacting fermions (that has not undergone a phase transition into some other state).
907: 1151:
Likewise, there are spin density waves (whose velocity, to lowest approximation, is equal to the unperturbed Fermi velocity). These propagate independently from the charge density waves. This fact is known as
836: 1144:" - or charge density waves) propagating at a velocity that is determined by the strength of the interaction and the average density. For a non-interacting system, this wave velocity is equal to the 1100:{\displaystyle H=\sum _{k=k_{\rm {F}}-\Lambda }^{k_{\rm {F}}+\Lambda }v_{\rm {F}}k\left(c_{k}^{\mathrm {R} \dagger }c_{k}^{\mathrm {R} }-c_{k}^{\mathrm {L} \dagger }c_{k}^{\mathrm {L} }\right)} 1185:
Even at zero temperature, the particles' momentum distribution function does not display a sharp jump, in contrast to the Fermi liquid (where this jump indicates the Fermi surface).
1228: 688: 927: 1174:), and most of the work consists in transforming back to obtain the properties of the particles themselves (or treating impurities and other situations where ' 1170:
of the Fermi liquid (which carry both spin and charge). The mathematical description becomes very simple in terms of these waves (solving the one-dimensional
740:
in 1950. The model showed that under certain constraints, second-order interactions between electrons could be modelled as bosonic interactions. In 1963,
1559:
Blumenstein, C.; Schäfer, J.; Mietke, S.; Meyer, S.; Dollinger, A.; Lochner, M.; Cui, X. Y.; Patthey, L.; Matzdorf, R.; Claessen, R. (October 2011).
773: 681: 643: 1633: 1369: 843: 1120:
can then be used to predict spin-charge separation. Electron-electron interactions can be treated to calculate correlation functions.
768:
Luttinger liquid theory describes low energy excitations in a 1D electron gas as bosons. Starting with the free electron Hamiltonian:
1795: 1230:. However, in contrast to the Fermi liquid, their decay at large distances is governed by yet another interaction-dependent exponent. 1827: 1137: 674: 661: 1318: 1822: 1291: 1254:
Attempts to demonstrate Luttinger-liquid-like behaviour in those systems are the subject of ongoing experimental research in
436: 1109:
Expressions for bosons in terms of fermions are used to represent the Hamiltonian as a product of two boson operators in a
91: 1817: 1270: 611: 1479:
Mattis, Daniel C.; Lieb, Elliott H. (1965). "Exact Solution of a Many-Fermion System and Its Associated Boson Field".
1399: 1311: 616: 241: 1237:
Likewise, the tunneling rate into a Luttinger liquid is suppressed to zero at low voltages and temperatures, as a
1110: 506: 181: 1439: 1255: 741: 501: 496: 22: 586: 1278: 596: 191: 1153: 581: 521: 491: 441: 161: 51: 621: 236: 221: 746: 1679: 1613: 1572: 1525: 1488: 1451: 1411: 1349: 1301:
electrons hopping along one-dimensional chains of molecules (e.g. certain organic molecular crystals)
840:
is separated into left and right moving electrons and undergoes linearization with the approximation
718: 211: 101: 1304: 1295: 1203: 1193: 451: 261: 111: 1774: 1756: 1703: 1643: 1379: 737: 591: 566: 314: 305: 1695: 1629: 1590: 1504: 1467: 1427: 1365: 912: 561: 406: 296: 216: 1766: 1687: 1621: 1580: 1533: 1496: 1459: 1419: 1402:(1 June 1950). "Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems". 1357: 1159: 266: 231: 226: 186: 156: 86: 46: 1655: 1391: 1314:(the Luttinger liquid model also works for integer spins in a large enough magnetic field) 1285: 757: 726: 576: 526: 396: 151: 63: 1683: 1617: 1576: 1529: 1492: 1455: 1415: 1353: 1148:, while it is higher (lower) for repulsive (attractive) interactions among the fermions. 1516:
Haldane, F.D.M. (1981). "'Luttinger liquid theory' of one-dimensional quantum fluids".
1175: 1163: 1145: 1133: 648: 626: 606: 601: 556: 476: 411: 309: 196: 41: 30: 1537: 1811: 1234:
like a power law in voltage and temperature, with an interaction-dependent exponent).
1171: 1167: 531: 337: 318: 300: 201: 121: 1778: 1707: 1331: 1266: 1179: 1117: 751: 730: 722: 551: 541: 511: 471: 466: 446: 291: 271: 131: 1274: 1261:
Among the physical systems believed to be described by the Luttinger model are:
571: 546: 516: 461: 456: 388: 16:
Theoretical model describing interacting fermions in a one-dimensional conductor
1770: 1625: 1269:' (one-dimensional strips of electrons) defined by applying gate voltages to a 1801: 1722: 1197: 481: 323: 116: 1594: 1508: 1471: 1431: 1238: 536: 486: 359: 206: 106: 1699: 1561:"Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid" 1423: 1166:
waves are the elementary excitations of the Luttinger liquid, unlike the
710: 96: 1691: 1141: 714: 416: 401: 364: 355: 350: 1610:
Exact solution of a many-fermion system and its associated boson field
1585: 1560: 1500: 1463: 1128:
Among the hallmark features of a Luttinger liquid are the following:
369: 345: 76: 902:{\displaystyle \epsilon _{k}\approx \pm v_{\rm {F}}(k-k_{\rm {F}})} 1761: 1348:. Series on Directions in Condensed Matter Physics. Vol. 20. 374: 71: 1361: 1298:
although the latter is often considered a more trivial example.
81: 1442:(1963). "An Exactly Soluble Model of a Many-Fermion System". 831:{\displaystyle H=\sum _{k}\epsilon _{k}c_{k}^{\dagger }c_{k}} 1346:
Luttinger Model: The First 50 Years and Some New Directions
1310:
a 1D 'chain' of half-odd-integer spins described by the
736:
The Tomonaga–Luttinger's liquid was first proposed by
1206: 937: 915: 846: 776: 1721:
Chudzinski, P.; Jarlborg, T.; Giamarchi, T. (2012).
1608:
Mattis, Daniel C.; Lieb, Elliot H. (February 1965).
1140:) density to some external perturbation are waves (" 1222: 1099: 921: 901: 830: 729:). Such a model is necessary as the commonly used 709:, is a theoretical model describing interacting 1344:Mastropietro, Vieri; Mattis, Daniel C. (2013). 1410:(4). Oxford University Press (OUP): 544–569. 682: 8: 1723:"Luttinger-liquid theory of purple bronze 1290:electrons moving along edge states in the 689: 675: 29: 18: 1760: 1584: 1214: 1205: 1085: 1084: 1079: 1065: 1064: 1059: 1045: 1044: 1039: 1025: 1024: 1019: 1000: 999: 980: 979: 974: 960: 959: 948: 936: 914: 889: 888: 868: 867: 851: 845: 822: 812: 807: 797: 787: 775: 1551: 1192:Around impurities, there are the usual 21: 1651: 1641: 1387: 1377: 1307:in quasi-one-dimensional atomic traps 733:model breaks down for one dimension. 7: 1086: 1066: 1046: 1026: 1001: 990: 981: 970: 961: 916: 890: 869: 14: 1612:. Vol. 6. pp. 98–106. 1450:(9). AIP Publishing: 1154–1162. 1319:Lithium molybdenum purple bronze 656: 655: 642: 1798:(Stuttgart University, Germany) 1481:Journal of Mathematical Physics 1444:Journal of Mathematical Physics 1404:Progress of Theoretical Physics 1487:(2). AIP Publishing: 304–312. 1292:fractional Quantum Hall Effect 896: 875: 1: 1223:{\displaystyle 2k_{\text{F}}} 1518:J. Phys. C: Solid State Phys 1271:two-dimensional electron gas 1196:in the charge density, at a 1189:on the interaction strength. 1538:10.1088/0022-3719/14/19/010 1844: 1771:10.1103/PhysRevB.86.075147 1626:10.1142/9789812812650_0008 242:Spin gapless semiconductor 1111:Bogoliubov transformation 707:Tomonaga–Luttinger liquid 182:Electronic band structure 1828:Condensed matter physics 1256:condensed matter physics 922:{\displaystyle \Lambda } 92:Bose–Einstein condensate 23:Condensed matter physics 1182:for one technique used. 717:) in a one-dimensional 1224: 1178:' is important). See 1154:spin-charge separation 1101: 994: 923: 903: 832: 1823:Statistical mechanics 1804:(FreeScience Library) 1745:in the charge regime" 1273:, or by other means ( 1225: 1102: 944: 924: 904: 833: 237:Topological insulator 1204: 1194:Friedel oscillations 1132:The response of the 935: 913: 844: 774: 255:Electronic phenomena 102:Fermionic condensate 1818:Theoretical physics 1692:10.1038/nature02074 1684:2003Natur.426..540I 1618:1994boso.book...98M 1577:2011NatPh...7..776B 1530:1981JPhC...14.2585H 1493:1965JMP.....6..304M 1456:1963JMP.....4.1154L 1424:10.1143/ptp/5.4.544 1416:1950PThPh...5..544T 1354:2013SDCMP..20.....M 1296:Quantum Hall Effect 1091: 1074: 1051: 1034: 817: 262:Quantum Hall effect 1796:Short introduction 1220: 1097: 1075: 1055: 1035: 1015: 919: 899: 828: 803: 792: 738:Sin-Itiro Tomonaga 649:Physics portal 1749:Physical Review B 1678:(6966): 540–544. 1635:978-981-02-1847-8 1586:10.1038/nphys2051 1524:(19): 2585–2609. 1501:10.1063/1.1704281 1464:10.1063/1.1704046 1371:978-981-4520-71-3 1217: 783: 699: 698: 407:Granular material 175:Electronic phases 1835: 1783: 1782: 1764: 1744: 1742: 1741: 1733: 1732: 1718: 1712: 1711: 1666: 1660: 1659: 1653: 1649: 1647: 1639: 1605: 1599: 1598: 1588: 1556: 1541: 1512: 1475: 1440:Luttinger, J. M. 1435: 1395: 1389: 1385: 1383: 1375: 1312:Heisenberg model 1286:carbon nanotubes 1250:Physical systems 1229: 1227: 1226: 1221: 1219: 1218: 1215: 1106: 1104: 1103: 1098: 1096: 1092: 1090: 1089: 1083: 1073: 1069: 1063: 1050: 1049: 1043: 1033: 1029: 1023: 1006: 1005: 1004: 993: 986: 985: 984: 973: 966: 965: 964: 928: 926: 925: 920: 908: 906: 905: 900: 895: 894: 893: 874: 873: 872: 856: 855: 837: 835: 834: 829: 827: 826: 816: 811: 802: 801: 791: 755: 747:Daniel C. Mattis 727:carbon nanotubes 703:Luttinger liquid 691: 684: 677: 664: 659: 658: 651: 647: 646: 267:Spin Hall effect 157:Phase transition 127:Luttinger liquid 64:States of matter 47:Phase transition 33: 19: 1843: 1842: 1838: 1837: 1836: 1834: 1833: 1832: 1808: 1807: 1792: 1787: 1786: 1740: 1737: 1736: 1735: 1731: 1728: 1727: 1726: 1724: 1720: 1719: 1715: 1670:temperatures". 1668: 1667: 1663: 1650: 1640: 1636: 1607: 1606: 1602: 1571:(10): 776–780. 1558: 1557: 1553: 1548: 1515: 1478: 1438: 1400:Tomonaga, S.-i. 1398: 1386: 1376: 1372: 1343: 1340: 1328: 1305:fermionic atoms 1252: 1210: 1202: 1201: 1126: 1014: 1010: 995: 975: 955: 933: 932: 911: 910: 909:over the range 884: 863: 847: 842: 841: 818: 793: 772: 771: 766: 749: 695: 654: 641: 640: 633: 632: 631: 431: 423: 422: 421: 397:Amorphous solid 391: 381: 380: 379: 358: 340: 330: 329: 328: 317: 315:Antiferromagnet 308: 306:Superparamagnet 299: 286: 285:Magnetic phases 278: 277: 276: 256: 248: 247: 246: 176: 168: 167: 166: 152:Order parameter 146: 145:Phase phenomena 138: 137: 136: 66: 56: 17: 12: 11: 5: 1841: 1839: 1831: 1830: 1825: 1820: 1810: 1809: 1806: 1805: 1799: 1791: 1790:External links 1788: 1785: 1784: 1738: 1729: 1713: 1661: 1652:|journal= 1634: 1600: 1565:Nature Physics 1550: 1549: 1547: 1544: 1543: 1542: 1513: 1476: 1436: 1396: 1388:|journal= 1370: 1339: 1336: 1335: 1334: 1327: 1324: 1323: 1322: 1315: 1308: 1302: 1299: 1288: 1282: 1251: 1248: 1243: 1242: 1235: 1231: 1213: 1209: 1190: 1186: 1183: 1176:backscattering 1168:quasiparticles 1157: 1149: 1146:Fermi velocity 1125: 1122: 1116:The completed 1095: 1088: 1082: 1078: 1072: 1068: 1062: 1058: 1054: 1048: 1042: 1038: 1032: 1028: 1022: 1018: 1013: 1009: 1003: 998: 992: 989: 983: 978: 972: 969: 963: 958: 954: 951: 947: 943: 940: 918: 898: 892: 887: 883: 880: 877: 871: 866: 862: 859: 854: 850: 825: 821: 815: 810: 806: 800: 796: 790: 786: 782: 779: 765: 762: 758:Elliot H. Lieb 742:J.M. Luttinger 697: 696: 694: 693: 686: 679: 671: 668: 667: 666: 665: 652: 635: 634: 630: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 433: 432: 429: 428: 425: 424: 420: 419: 414: 412:Liquid crystal 409: 404: 399: 393: 392: 387: 386: 383: 382: 378: 377: 372: 367: 362: 353: 348: 342: 341: 338:Quasiparticles 336: 335: 332: 331: 327: 326: 321: 312: 303: 297:Superdiamagnet 294: 288: 287: 284: 283: 280: 279: 275: 274: 269: 264: 258: 257: 254: 253: 250: 249: 245: 244: 239: 234: 229: 224: 222:Thermoelectric 219: 217:Superconductor 214: 209: 204: 199: 197:Mott insulator 194: 189: 184: 178: 177: 174: 173: 170: 169: 165: 164: 159: 154: 148: 147: 144: 143: 140: 139: 135: 134: 129: 124: 119: 114: 109: 104: 99: 94: 89: 84: 79: 74: 68: 67: 62: 61: 58: 57: 55: 54: 49: 44: 38: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 1840: 1829: 1826: 1824: 1821: 1819: 1816: 1815: 1813: 1803: 1802:List of books 1800: 1797: 1794: 1793: 1789: 1780: 1776: 1772: 1768: 1763: 1758: 1755:(7): 075147. 1754: 1750: 1746: 1717: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1665: 1662: 1657: 1645: 1637: 1631: 1627: 1623: 1619: 1615: 1611: 1604: 1601: 1596: 1592: 1587: 1582: 1578: 1574: 1570: 1566: 1562: 1555: 1552: 1545: 1539: 1535: 1531: 1527: 1523: 1519: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1482: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1381: 1373: 1367: 1363: 1359: 1355: 1351: 1347: 1342: 1341: 1337: 1333: 1330: 1329: 1325: 1320: 1317:electrons in 1316: 1313: 1309: 1306: 1303: 1300: 1297: 1293: 1289: 1287: 1284:electrons in 1283: 1280: 1276: 1272: 1268: 1267:quantum wires 1264: 1263: 1262: 1259: 1257: 1249: 1247: 1240: 1236: 1232: 1211: 1207: 1199: 1195: 1191: 1187: 1184: 1181: 1177: 1173: 1172:wave equation 1169: 1165: 1161: 1158: 1155: 1150: 1147: 1143: 1139: 1135: 1131: 1130: 1129: 1123: 1121: 1119: 1114: 1112: 1107: 1093: 1080: 1076: 1070: 1060: 1056: 1052: 1040: 1036: 1030: 1020: 1016: 1011: 1007: 996: 987: 976: 967: 956: 952: 949: 945: 941: 938: 930: 885: 881: 878: 864: 860: 857: 852: 848: 838: 823: 819: 813: 808: 804: 798: 794: 788: 784: 780: 777: 769: 763: 761: 759: 753: 748: 743: 739: 734: 732: 728: 724: 723:quantum wires 720: 716: 712: 708: 704: 692: 687: 685: 680: 678: 673: 672: 670: 669: 663: 653: 650: 645: 639: 638: 637: 636: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 437:Van der Waals 435: 434: 427: 426: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 394: 390: 385: 384: 376: 373: 371: 368: 366: 363: 361: 357: 354: 352: 349: 347: 344: 343: 339: 334: 333: 325: 322: 320: 316: 313: 311: 307: 304: 302: 298: 295: 293: 290: 289: 282: 281: 273: 270: 268: 265: 263: 260: 259: 252: 251: 243: 240: 238: 235: 233: 232:Ferroelectric 230: 228: 227:Piezoelectric 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 202:Semiconductor 200: 198: 195: 193: 190: 188: 185: 183: 180: 179: 172: 171: 163: 160: 158: 155: 153: 150: 149: 142: 141: 133: 130: 128: 125: 123: 122:Superfluidity 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 69: 65: 60: 59: 53: 50: 48: 45: 43: 40: 39: 37: 36: 32: 28: 27: 24: 20: 1752: 1748: 1716: 1675: 1671: 1664: 1609: 1603: 1568: 1564: 1554: 1521: 1517: 1484: 1480: 1447: 1443: 1407: 1403: 1362:10.1142/8875 1345: 1338:Bibliography 1332:Fermi liquid 1265:artificial ' 1260: 1253: 1244: 1180:bosonization 1127: 1118:bosonization 1115: 1108: 931: 839: 770: 767: 735: 731:Fermi liquid 706: 702: 700: 567:von Klitzing 272:Kondo effect 132:Time crystal 126: 112:Fermi liquid 1294:or integer 1275:lithography 750: [ 389:Soft matter 310:Ferromagnet 1812:Categories 1546:References 1198:wavevector 713:(or other 532:Louis NĂ©el 522:Schrieffer 430:Scientists 324:Spin glass 319:Metamagnet 301:Paramagnet 117:Supersolid 1762:1205.0239 1654:ignored ( 1644:cite book 1595:1745-2473 1509:0022-2488 1472:0022-2488 1432:0033-068X 1390:ignored ( 1380:cite book 1239:power law 1071:† 1053:− 1031:† 991:Λ 971:Λ 968:− 946:∑ 917:Λ 882:− 861:± 858:≈ 849:ϵ 814:† 795:ϵ 785:∑ 719:conductor 711:electrons 612:Abrikosov 527:Josephson 497:Van Vleck 487:Luttinger 360:Polariton 292:Diamagnet 212:Conductor 207:Semimetal 192:Insulator 107:Fermi gas 1779:53396531 1700:14654836 1326:See also 1142:plasmons 1138:particle 1124:Features 725:such as 715:fermions 662:Category 617:Ginzburg 592:Laughlin 552:Kadanoff 507:Shockley 492:Anderson 447:von Laue 97:Bose gas 1708:4395337 1680:Bibcode 1614:Bibcode 1573:Bibcode 1526:Bibcode 1489:Bibcode 1452:Bibcode 1412:Bibcode 1350:Bibcode 1281:, etc.) 622:Leggett 597:Störmer 582:Bednorz 542:Giaever 512:Bardeen 502:Hubbard 477:Peierls 467:Onsager 417:Polymer 402:Colloid 365:Polaron 356:Plasmon 351:Exciton 1777:  1706:  1698:  1672:Nature 1632:  1593:  1507:  1470:  1430:  1368:  1160:Charge 1134:charge 764:Theory 760:1965. 721:(e.g. 660:  627:Parisi 587:MĂĽller 577:Rohrer 572:Binnig 562:Wilson 557:Fisher 517:Cooper 482:Landau 370:Magnon 346:Phonon 187:Plasma 87:Plasma 77:Liquid 42:Phases 1775:S2CID 1757:arXiv 1704:S2CID 754:] 705:, or 537:Esaki 462:Bloch 457:Debye 452:Bragg 442:Onnes 375:Roton 72:Solid 1696:PMID 1656:help 1630:ISBN 1591:ISSN 1505:ISSN 1468:ISSN 1428:ISSN 1392:help 1366:ISBN 1164:spin 1162:and 1136:(or 756:and 607:Tsui 602:Yang 547:Kohn 472:Mott 1767:doi 1743:O17 1730:0.9 1688:doi 1676:426 1622:doi 1581:doi 1534:doi 1497:doi 1460:doi 1420:doi 1358:doi 1279:AFM 1200:of 162:QCP 82:Gas 52:QCP 1814:: 1773:. 1765:. 1753:86 1751:. 1747:. 1734:Mo 1725:Li 1702:. 1694:. 1686:. 1674:. 1648:: 1646:}} 1642:{{ 1628:. 1620:. 1589:. 1579:. 1567:. 1563:. 1532:. 1522:14 1520:. 1503:. 1495:. 1483:. 1466:. 1458:. 1446:. 1426:. 1418:. 1406:. 1384:: 1382:}} 1378:{{ 1364:. 1356:. 1277:, 1258:. 1113:. 929:: 752:de 701:A 1781:. 1769:: 1759:: 1739:6 1710:. 1690:: 1682:: 1658:) 1638:. 1624:: 1616:: 1597:. 1583:: 1575:: 1569:7 1540:. 1536:: 1528:: 1511:. 1499:: 1491:: 1485:6 1474:. 1462:: 1454:: 1448:4 1434:. 1422:: 1414:: 1408:5 1394:) 1374:. 1360:: 1352:: 1321:. 1241:. 1216:F 1212:k 1208:2 1156:. 1094:) 1087:L 1081:k 1077:c 1067:L 1061:k 1057:c 1047:R 1041:k 1037:c 1027:R 1021:k 1017:c 1012:( 1008:k 1002:F 997:v 988:+ 982:F 977:k 962:F 957:k 953:= 950:k 942:= 939:H 897:) 891:F 886:k 879:k 876:( 870:F 865:v 853:k 824:k 820:c 809:k 805:c 799:k 789:k 781:= 778:H 690:e 683:t 676:v

Index

Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor
Superconductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑