Knowledge

Lyman-break galaxy

Source đź“ť

133: = 3 can then be selected by looking for galaxies which appear in optical images (which are sensitive to wavelengths greater than 3600 Ă…), but do not appear in ultraviolet images (which are sensitive to light at wavelengths shorter than 3600 Ă…). The technique may be adapted to look for galaxies at other redshifts by choosing different sets of filters—the method works as long as images may be taken through at least one filter above and below the wavelength of the redshifted Lyman limit. In order to confirm the redshift estimated by the color selection, follow-up 1434: 1446: 31: 137:
is performed. Although spectroscopic measurements are necessary to obtain a high-precision redshift, spectroscopy is typically much more time-consuming than imaging, so the selection of candidate galaxies via the Lyman-break technique greatly improves the efficiency of high-redshift galaxy surveys.
141:
The issue of their far-infrared emission is still central to the study of Lyman-break galaxies to better understand their evolution and estimate their total star formation rate. So far, only a small sample has been detected in far-infrared. Most of the individual results rely on an information
142:
gathered from lensed Lyman-break galaxies or from the rest-frame ultraviolet, or from a few objects detected by the Herschel satellite or using the stacking technique that allows researchers to obtain averaged values for individually undetected Lyman-break galaxies.
110:", or "break", and can be used to find the position of the Lyman limit. Light with a wavelength shorter than 912 Ă… is in the far-ultraviolet range and is blocked by the Earth's atmosphere, but for very distant galaxies the wavelengths of light are 613: 145:
But, recently, the stacking techniques on about 22 000 galaxies allowed, for the first time, to collect some statistical information on the dust properties of LBGs.
1256: 1303: 953: 122: = 3, the Lyman break will appear to be at wavelengths of about 3600 Ă…, which is long enough to be detected by ground- or space-based 438:
I. Oteo; et al. (2013). "Far-infrared-detected Lyman-break galaxies at z ~ 3. Dust attenuation and dust correction factors at high redshift".
686: 1369: 1288: 669: 1374: 283:
C. C. Steidel; et al. (1996). "Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts
1101: 385: 289: 230: 106:
is bright at wavelengths longer than 912 Ă…, but very dim or imperceptible at shorter wavelengths—this is known as a "
1472: 1271: 1389: 1344: 1152: 741: 736: 709: 495: 440: 161: 1070: 184: 134: 83:
has allowed the use of this technique at lower and higher redshifts using ultraviolet and near-infrared filters.
1354: 1266: 1261: 1167: 1063: 1021: 731: 704: 1349: 1334: 1281: 940: 928: 923: 837: 802: 773: 763: 852: 751: 86:
The Lyman-break galaxy selection technique relies on the fact that radiation at higher energies than the
1379: 1276: 978: 76: 1409: 1359: 1194: 1106: 842: 726: 662: 571: 514: 459: 404: 361: 308: 249: 379:
D. Burgarella; et al. (2011). "HerMES: Lyman Break Galaxies Individually Detected at 0.7 <=
224:
D. Burgarella; et al. (2011). "HerMES: Lyman Break Galaxies Individually Detected at 0.7 <=
1172: 1080: 1011: 903: 778: 194: 107: 1445: 1404: 1399: 1384: 1339: 1308: 1293: 1211: 1179: 968: 958: 622: 589: 561: 530: 504: 475: 449: 420: 394: 351: 324: 298: 265: 239: 199: 80: 1477: 1437: 1419: 1394: 1364: 1243: 1085: 1075: 1058: 990: 819: 785: 746: 699: 103: 1449: 1251: 1226: 1206: 1201: 1189: 1043: 864: 797: 632: 579: 522: 518: 493:
J. Alvarez-Marquez; et al. (2016). "Dust properties of Lyman-break galaxies at z ~ 3".
467: 463: 412: 316: 257: 189: 72: 1298: 1221: 913: 886: 857: 809: 655: 56: 115: 575: 408: 365: 312: 253: 148:
In February 2022, astronomers reported the discovery of two Lyman break galaxies, named
1162: 995: 898: 893: 847: 790: 95: 91: 45: 416: 261: 1466: 1318: 1184: 1147: 918: 881: 869: 721: 716: 593: 534: 479: 424: 328: 269: 17: 1313: 1216: 1157: 1142: 1048: 973: 768: 758: 204: 174: 526: 471: 30: 609:"Are the newly-discovered z ~ 13 drop-out sources starburst galaxies or quasars?" 1414: 1231: 1121: 1111: 908: 874: 814: 694: 87: 68: 60: 34: 584: 549: 1116: 1053: 179: 123: 99: 637: 608: 1126: 157: 63:. The technique has primarily been used to select galaxies at redshifts of 55:
that are selected using the differing appearance of the galaxy in several
356: 303: 111: 52: 963: 948: 678: 156:, at z~12-13, based on studies using the Lyman technique. Also note 48: 627: 566: 509: 320: 1036: 1031: 1026: 983: 454: 399: 244: 342:
C. C. Steidel; et al. (July 1998). "Lyman Break Galaxies at
651: 153: 149: 647: 550:"A Search for H-Dropout Lyman Break Galaxies at z ~ 12–16" 94:
is almost completely absorbed by neutral gas around
1327: 1242: 1135: 1094: 1004: 939: 830: 685: 614:Monthly Notices of the Royal Astronomical Society 548:Harikane, Yuichi; et al. (2 February 2022). 348:XTH Rencontres de Blois, "The Birth of Galaxies" 1304:List of the most distant astronomical objects 663: 8: 607:Pacussi, Fabio; et al. (7 April 2022). 383:<= 2.0 in GOODS-N with Herschel/SPIRE". 228:<= 2.0 in GOODS-N with Herschel/SPIRE". 670: 656: 648: 636: 626: 583: 565: 508: 453: 398: 355: 302: 243: 37:, an extremely distant Lyman-Break galaxy 29: 216: 27:Star-forming galaxies at high redshift 160:, a distant galaxy discovered by the 7: 102:of the emitting galaxy, the emitted 129:Candidate galaxies around redshift 25: 1444: 1433: 1432: 1375:Galaxy formation and evolution 1370:Galaxy color–magnitude diagram 1: 386:Astrophysical Journal Letters 290:Astrophysical Journal Letters 231:Astrophysical Journal Letters 98:regions of galaxies. In the 118:. For a galaxy at redshift 114:considerably because of the 1257:Galaxies named after people 527:10.1051/0004-6361/201527190 472:10.1051/0004-6361/201321478 417:10.1088/2041-8205/734/1/L12 262:10.1088/2041-8205/734/1/L12 59:due to the position of the 1494: 1390:Gravitational microlensing 1345:Galactic coordinate system 496:Astronomy and Astrophysics 441:Astronomy and Astrophysics 162:James Webb Space Telescope 1428: 554:The Astrophysical Journal 185:Damped Lyman-alpha system 116:expansion of the Universe 75:filters, but progress in 1355:Galactic magnetic fields 1168:Brightest cluster galaxy 1064:Luminous infrared galaxy 585:10.3847/1538-4357/ac53a9 1350:Galactic habitable zone 1335:Extragalactic astronomy 924:Supermassive black hole 838:Active galactic nucleus 519:2016A&A...587A.122A 464:2013A&A...554L...3O 67: = 3–4 using 1102:Low surface brightness 853:Central massive object 638:10.1093/mnrasl/slac035 38: 1380:Galaxy rotation curve 77:ultraviolet astronomy 33: 1415:Population III stars 1410:Intergalactic travel 1360:Galactic orientation 1227:Voids and supervoids 42:Lyman-break galaxies 18:Lyman-break galaxies 1405:Intergalactic stars 1294:Large quasar groups 1289:Groups and clusters 1153:Groups and clusters 1012:Lyman-alpha emitter 904:Interstellar medium 576:2022ApJ...929....1H 409:2011ApJ...734L..12B 366:1998astro.ph.12167S 313:1996ApJ...462L..17S 254:2011ApJ...734L..12B 195:Lyman-alpha emitter 1473:Physical cosmology 1400:Intergalactic dust 1385:Gravitational lens 1340:Galactic astronomy 1309:Starburst galaxies 1049:blue compact dwarf 1005:Energetic galaxies 969:BL Lacertae object 200:Lyman-alpha forest 81:infrared astronomy 39: 1460: 1459: 1420:Galaxy X (galaxy) 1395:Illustris project 1365:Galactic quadrant 1086:Wolf-Rayet galaxy 1076:Green bean galaxy 1071:Hot dust-obscured 1022:Luminous infrared 786:Elliptical galaxy 16:(Redirected from 1485: 1448: 1436: 1435: 1081:Hanny's Voorwerp 991:Relativistic jet 865:Dark matter halo 672: 665: 658: 649: 643: 642: 640: 630: 604: 598: 597: 587: 569: 545: 539: 538: 512: 490: 484: 483: 457: 435: 429: 428: 402: 376: 370: 369: 359: 357:astro-ph/9812167 346:~3 and Beyond". 339: 333: 332: 306: 304:astro-ph/9602024 280: 274: 273: 247: 221: 190:Lyman-alpha blob 21: 1493: 1492: 1488: 1487: 1486: 1484: 1483: 1482: 1463: 1462: 1461: 1456: 1424: 1323: 1238: 1131: 1090: 1000: 935: 914:Galaxy filament 858:Galactic Center 826: 681: 676: 646: 606: 605: 601: 547: 546: 542: 492: 491: 487: 437: 436: 432: 378: 377: 373: 341: 340: 336: 282: 281: 277: 223: 222: 218: 214: 209: 170: 57:imaging filters 28: 23: 22: 15: 12: 11: 5: 1491: 1489: 1481: 1480: 1475: 1465: 1464: 1458: 1457: 1455: 1454: 1442: 1429: 1426: 1425: 1423: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1331: 1329: 1325: 1324: 1322: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1285: 1284: 1279: 1274: 1269: 1264: 1259: 1248: 1246: 1240: 1239: 1237: 1236: 1235: 1234: 1224: 1219: 1214: 1212:Stellar stream 1209: 1204: 1199: 1198: 1197: 1192: 1187: 1177: 1176: 1175: 1170: 1165: 1160: 1150: 1145: 1139: 1137: 1133: 1132: 1130: 1129: 1124: 1119: 1114: 1109: 1104: 1098: 1096: 1092: 1091: 1089: 1088: 1083: 1078: 1073: 1068: 1067: 1066: 1061: 1056: 1051: 1041: 1040: 1039: 1034: 1029: 1019: 1014: 1008: 1006: 1002: 1001: 999: 998: 993: 988: 987: 986: 981: 971: 966: 961: 956: 951: 945: 943: 937: 936: 934: 933: 932: 931: 921: 916: 911: 906: 901: 899:Galactic ridge 896: 894:Galactic plane 891: 890: 889: 879: 878: 877: 867: 862: 861: 860: 850: 845: 840: 834: 832: 828: 827: 825: 824: 823: 822: 812: 807: 806: 805: 795: 794: 793: 783: 782: 781: 776: 771: 766: 756: 755: 754: 749: 744: 739: 734: 729: 724: 714: 713: 712: 707: 697: 691: 689: 683: 682: 677: 675: 674: 667: 660: 652: 645: 644: 599: 540: 485: 430: 371: 334: 321:10.1086/310029 275: 215: 213: 210: 208: 207: 202: 197: 192: 187: 182: 177: 171: 169: 166: 164:in July 2022. 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1490: 1479: 1476: 1474: 1471: 1470: 1468: 1453: 1452: 1447: 1443: 1441: 1440: 1431: 1430: 1427: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1332: 1330: 1326: 1320: 1317: 1315: 1314:Superclusters 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1254: 1253: 1250: 1249: 1247: 1245: 1241: 1233: 1230: 1229: 1228: 1225: 1223: 1220: 1218: 1217:Superclusters 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1196: 1193: 1191: 1188: 1186: 1183: 1182: 1181: 1178: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1155: 1154: 1151: 1149: 1148:Galactic tide 1146: 1144: 1141: 1140: 1138: 1134: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1107:Ultra diffuse 1105: 1103: 1100: 1099: 1097: 1093: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1046: 1045: 1042: 1038: 1035: 1033: 1030: 1028: 1025: 1024: 1023: 1020: 1018: 1015: 1013: 1010: 1009: 1007: 1003: 997: 994: 992: 989: 985: 982: 980: 977: 976: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 950: 947: 946: 944: 942: 941:Active nuclei 938: 930: 927: 926: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 888: 885: 884: 883: 880: 876: 873: 872: 871: 868: 866: 863: 859: 856: 855: 854: 851: 849: 846: 844: 841: 839: 836: 835: 833: 829: 821: 818: 817: 816: 813: 811: 808: 804: 801: 800: 799: 796: 792: 789: 788: 787: 784: 780: 777: 775: 772: 770: 767: 765: 762: 761: 760: 757: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 719: 718: 715: 711: 708: 706: 703: 702: 701: 698: 696: 693: 692: 690: 688: 684: 680: 673: 668: 666: 661: 659: 654: 653: 650: 639: 634: 629: 624: 620: 616: 615: 610: 603: 600: 595: 591: 586: 581: 577: 573: 568: 563: 559: 555: 551: 544: 541: 536: 532: 528: 524: 520: 516: 511: 506: 502: 498: 497: 489: 486: 481: 477: 473: 469: 465: 461: 456: 451: 447: 443: 442: 434: 431: 426: 422: 418: 414: 410: 406: 401: 396: 392: 388: 387: 382: 375: 372: 367: 363: 358: 353: 349: 345: 338: 335: 330: 326: 322: 318: 314: 310: 305: 300: 296: 292: 291: 286: 279: 276: 271: 267: 263: 259: 255: 251: 246: 241: 237: 233: 232: 227: 220: 217: 211: 206: 203: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 172: 167: 165: 163: 159: 155: 151: 146: 143: 139: 136: 132: 127: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 47: 43: 36: 32: 19: 1450: 1438: 1173:fossil group 1095:Low activity 1016: 929:Ultramassive 759:Dwarf galaxy 742:intermediate 737:grand design 618: 612: 602: 557: 553: 543: 500: 494: 488: 445: 439: 433: 390: 384: 380: 374: 347: 343: 337: 294: 288: 284: 278: 235: 229: 225: 219: 205:Lyman series 175:Balmer break 147: 144: 140: 135:spectroscopy 130: 128: 119: 96:star-forming 90:at 912  85: 64: 46:star-forming 41: 40: 1232:void galaxy 1195:cannibalism 1180:Interacting 1136:Interaction 1122:Blue Nugget 1112:Dark galaxy 1017:Lyman-break 909:Protogalaxy 875:Disc galaxy 297:: L17–L21. 88:Lyman limit 69:ultraviolet 61:Lyman limit 35:UNCOVER-z13 1467:Categories 1272:Polar-ring 1117:Red nugget 1059:faint blue 919:Spiral arm 774:spheroidal 764:elliptical 747:Magellanic 732:flocculent 700:Lenticular 687:Morphology 628:2201.00823 621:: L6–L10. 567:2112.09141 510:1512.04120 212:References 180:BzK galaxy 124:telescopes 100:rest frame 1207:Satellite 1202:Jellyfish 1190:collision 1127:Dead disk 1044:Starburst 959:Markarian 831:Structure 798:Irregular 769:irregular 594:246823511 535:119241956 480:118408031 455:1304.3230 400:1105.0646 393:(1): 12. 287:> 3". 245:1105.0646 238:(1): 12. 158:GLASS-z12 112:stretched 1478:Galaxies 1439:Category 1328:See also 1252:Galaxies 979:X-shaped 810:Peculiar 752:unbarred 710:unbarred 679:Galaxies 560:(1): 1. 503:: A122. 425:36669348 329:15038797 270:36669348 168:See also 104:spectrum 53:redshift 51:at high 49:galaxies 1299:Quasars 1267:Nearest 1262:Largest 1163:cluster 996:Seyfert 572:Bibcode 515:Bibcode 460:Bibcode 405:Bibcode 362:Bibcode 309:Bibcode 250:Bibcode 108:dropout 79:and in 73:optical 1451:Portal 1282:Spiral 1185:merger 964:Quasar 949:Blazar 887:corona 803:barred 779:spiral 727:barred 722:anemic 717:Spiral 705:barred 592:  533:  478:  448:: L3. 423:  327:  268:  1319:Voids 1244:Lists 1222:Walls 1158:group 1143:Field 1037:ELIRG 1032:HLIRG 1027:ULIRG 984:DRAGN 974:Radio 954:LINER 848:Bulge 820:Polar 623:arXiv 590:S2CID 562:arXiv 531:S2CID 505:arXiv 476:S2CID 450:arXiv 421:S2CID 395:arXiv 352:arXiv 325:S2CID 299:arXiv 266:S2CID 240:arXiv 1277:Ring 882:Halo 870:Disc 815:Ring 695:Disc 152:and 71:and 44:are 1054:pea 843:Bar 633:doi 619:514 580:doi 558:929 523:doi 501:587 468:doi 446:554 413:doi 391:734 317:doi 295:462 258:doi 236:734 154:HD2 150:HD1 1469:: 791:cD 631:. 617:. 611:. 588:. 578:. 570:. 556:. 552:. 529:. 521:. 513:. 499:. 474:. 466:. 458:. 444:. 419:. 411:. 403:. 389:. 360:. 350:. 323:. 315:. 307:. 293:. 264:. 256:. 248:. 234:. 126:. 671:e 664:t 657:v 641:. 635:: 625:: 596:. 582:: 574:: 564:: 537:. 525:: 517:: 507:: 482:. 470:: 462:: 452:: 427:. 415:: 407:: 397:: 381:z 368:. 364:: 354:: 344:z 331:. 319:: 311:: 301:: 285:z 272:. 260:: 252:: 242:: 226:z 131:z 120:z 92:Ă… 65:z 20:)

Index

Lyman-break galaxies

UNCOVER-z13
star-forming
galaxies
redshift
imaging filters
Lyman limit
ultraviolet
optical
ultraviolet astronomy
infrared astronomy
Lyman limit
Ă…
star-forming
rest frame
spectrum
dropout
stretched
expansion of the Universe
telescopes
spectroscopy
HD1
HD2
GLASS-z12
James Webb Space Telescope
Balmer break
BzK galaxy
Damped Lyman-alpha system
Lyman-alpha blob

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑