Knowledge (XXG)

Lagrange point

Source 📝

3717: 80: 3579: 1415: 4319: 4486:, despite the fact that the existence of a planetary body in this location had been understood as an impossibility once orbital mechanics and the perturbations of planets upon each other's orbits came to be understood, long before the Space Age; the influence of an Earth-sized body on other planets would not have gone undetected, nor would the fact that the foci of Earth's orbital ellipse would not have been in their expected places, due to the mass of the counter-Earth. The Sun–Earth L 961:, which is well inside the body of the Sun. An object at Earth's distance from the Sun would have an orbital period of one year if only the Sun's gravity is considered. But an object on the opposite side of the Sun from Earth and directly in line with both "feels" Earth's gravity adding slightly to the Sun's and therefore must orbit a little farther from the barycenter of Earth and Sun in order to have the same 1-year period. It is at the L 32: 3700:(which depends on the velocity of an orbiting object and cannot be modeled as a contour map) curves the trajectory into a path around (rather than away from) the point. Because the source of stability is the Coriolis force, the resulting orbits can be stable, but generally are not planar, but "three-dimensional": they lie on a warped surface intersecting the ecliptic plane. The kidney-shaped orbits typically shown nested around L 3593: 126: 7733: 7744: 40: 6906: 4677: 2400: 982: 4663: 4304: 3519: 3120: 752:
similar to JWST. Each of the space observatories benefit from being far enough from Earth's shadow to utilize solar panels for power, from not needing much power or propellant for station-keeping, from not being subjected to the Earth's magnetospheric effects, and from having direct line-of-sight to
2241:
are their diameters. The ratio of diameter to distance gives the angle subtended by the body, showing that viewed from these two Lagrange points, the apparent sizes of the two bodies will be similar, especially if the density of the smaller one is about thrice that of the larger, as in the case of
1054:
is greater than 24.96. This is the case for the Sun–Earth system, the Sun–Jupiter system, and, by a smaller margin, the Earth–Moon system. When a body at these points is perturbed, it moves away from the point, but the factor opposite of that which is increased or decreased by the perturbation
5816:
is in deep space far away from any planetary surface and hence the thermal, micrometeoroid, and atomic oxygen environments are vastly superior to those in LEO. Thermodynamic stasis and extended hardware life are far easier to obtain without these punishing conditions seen in LEO.
4490:, however, is a weak saddle point and exponentially unstable with time constant of roughly 150 years. Moreover, it could not contain a natural object, large or small, for very long because the gravitational forces of the other planets are stronger than that of Earth (for example, 2603: 1660: 3303: 5825:
is an ideal location to store propellants and cargos: it is close, high energy, and cold. More importantly, it allows the continuous onward movement of propellants from LEO depots, thus suppressing their size and effectively minimizing the near-Earth boiloff
3574:
occur where the acceleration is zero — see chart at right. Positive acceleration is acceleration towards the right of the chart and negative acceleration is towards the left; that is why acceleration has opposite signs on opposite sides of the gravity wells.
2211: 3686:
points are stable provided that the mass of the primary body (e.g. the Earth) is at least 25 times the mass of the secondary body (e.g. the Moon), The Earth is over 81 times the mass of the Moon (the Moon is 1.23% of the mass of the Earth). Although the
2916: 956:
point exists on the opposite side of the Sun, a little outside Earth's orbit and slightly farther from the center of the Sun than Earth is. This placement occurs because the Sun is also affected by Earth's gravity and so orbits around the two bodies'
1173:
As the Sun and Jupiter are the two most massive objects in the Solar System, there are more known Sun–Jupiter trojans than for any other pair of bodies. However, smaller numbers of objects are known at the Lagrange points of other orbital systems:
3736:
within the Solar System. Calculations assume the two bodies orbit in a perfect circle with separation equal to the semimajor axis and no other bodies are nearby. Distances are measured from the larger body's center of mass (but see
3695:
points are found at the top of a "hill", as in the effective potential contour plot above, they are nonetheless stable. The reason for the stability is a second-order effect: as a body moves away from the exact Lagrange position,
4429:, the Sun, Earth and Moon are relatively close together in the sky; this means that a large sunshade with the telescope on the dark-side can allow the telescope to cool passively to around 50 K – this is especially helpful for 1442:, could be placed so as to maintain its position relative to the two massive bodies. This occurs because the combined gravitational forces of the two massive bodies provide the exact centripetal force required to maintain the 2426: 1483: 2745: 1844: 4602:
Lagrangian points in the Earth–Moon system proposed as locations for their huge rotating space habitats. Both positions are also proposed for communication satellites covering the Moon alike communication satellites in
4341:
is suited for making observations of the Sun–Earth system. Objects here are never shadowed by Earth or the Moon and, if observing Earth, always view the sunlit hemisphere. The first mission of this type was the 1978
2387: 5225:"Celestial mechanics and polarization optics of the Kordylewski dust cloud in the Earth-Moon Lagrange point L5. Part II. Imaging polarimetric observation: new evidence for the existence of Kordylewski dust cloud" 2092: 3592: 3263:
the distances to the two masses are equal. Accordingly, the gravitational forces from the two massive bodies are in the same ratio as the masses of the two bodies, and so the resultant force acts through the
902:. On the opposite side of Earth from the Sun, the orbital period of an object would normally be greater than Earth's. The extra pull of Earth's gravity decreases the object's orbital period, and at the L 2109: 965:
point that the combined pull of Earth and Sun causes the object to orbit with the same period as Earth, in effect orbiting an Earth+Sun mass with the Earth-Sun barycenter at one focus of its orbit.
5174:"Celestial mechanics and polarization optics of the Kordylewski dust cloud in the Earth-Moon Lagrange point L5 - Part I. Three-dimensional celestial mechanical modelling of dust cloud formation" 2812: 2019: 4651:
point for use as an artificial magnetosphere for Mars was discussed at a NASA conference. The idea is that this would protect the planet's atmosphere from the Sun's radiation and solar winds.
1906: 898:
point lies on the line through the two large masses beyond the smaller of the two. Here, the combined gravitational forces of the two large masses balance the centrifugal force on a body at L
3222: 5786: 5552: 3284:
with the other two larger bodies of the system (indeed, the third body needs to have negligible mass). The general triangular configuration was discovered by Lagrange working on the
4509:
would be able to closely monitor the evolution of active sunspot regions before they rotate into a geoeffective position, so that a seven-day early warning could be issued by the
7449: 1946: 866:
would typically have a shorter orbital period than Earth, but that ignores the effect of Earth's gravitational pull. If the object is directly between Earth and the Sun, then
6990: 3514:{\displaystyle a=-{\frac {GM_{1}}{r^{2}}}\operatorname {sgn}(r)+{\frac {GM_{2}}{(R-r)^{2}}}\operatorname {sgn}(R-r)+{\frac {G{\bigl (}(M_{1}+M_{2})r-M_{2}R{\bigr )}}{R^{3}}}} 4413:
will maintain the same relative position with respect to the Sun and Earth, shielding and calibration are much simpler. It is, however, slightly beyond the reach of Earth's
1116:, it is common for natural objects to be found orbiting in those Lagrange points of planetary systems. Objects that inhabit those points are generically referred to as ' 3115:{\displaystyle {\frac {M_{1}}{\left(R-r\right)^{2}}}+{\frac {M_{2}}{\left(2R-r\right)^{2}}}=\left({\frac {M_{2}}{M_{1}+M_{2}}}R+R-r\right){\frac {M_{1}+M_{2}}{R^{3}}}} 1090:
will tend to fall out of orbit; it is therefore rare to find natural objects there, and spacecraft inhabiting these areas must employ a small but critical amount of
4510: 2612: 1711: 604:
Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the
870:
counteracts some of the Sun's pull on the object, increasing the object's orbital period. The closer to Earth the object is, the greater this effect is. At the L
55:
of a two-body system in a rotating frame of reference. The arrows indicate the downhill gradients of the potential around the five Lagrange points, toward them (
5873: 2287: 4395: 2026: 3280:
and center of rotation of the three-body system, this resultant force is exactly that required to keep the smaller body at the Lagrange point in orbital
5980: 5510: 5767: 4807: 4520:
would provide very important observations not only for Earth forecasts, but also for deep space support (Mars predictions and for crewed missions to
3653:
missions, it is preferable for the spacecraft to be in a large-amplitude (100,000–200,000 km or 62,000–124,000 mi) Lissajous orbit around L
1424: 7427: 7017: 5797: 521: 4540:
allows comparatively easy access to Lunar and Earth orbits with minimal change in velocity and this has as an advantage to position a habitable
6783: 7007: 6942: 5559: 1167: 5655: 5319: 670:
points are stable points, meaning that objects can orbit them and that they have a tendency to pull objects into them. Several planets have
5984: 4946: 1159: 927: 90: 6843: 6050: 3745:
showing a negative direction. The percentage columns show the distance from the orbit compared to the semimajor axis. E.g. for the Moon, L
2598:{\displaystyle {\frac {M_{1}}{(R+r)^{2}}}+{\frac {M_{2}}{r^{2}}}=\left({\frac {M_{1}}{M_{1}+M_{2}}}R+r\right){\frac {M_{1}+M_{2}}{R^{3}}}} 1655:{\displaystyle {\frac {M_{1}}{(R-r)^{2}}}-{\frac {M_{2}}{r^{2}}}=\left({\frac {M_{1}}{M_{1}+M_{2}}}R-r\right){\frac {M_{1}+M_{2}}{R^{3}}}} 1418:
Visualisation of the relationship between the Lagrange points (red) of a planet (blue) orbiting a star (yellow) counterclockwise, and the
293: 79: 4835: 2098:
effect of a body is proportional to its mass divided by the distance cubed, this means that the tidal effect of the smaller body at the L
3265: 2774: 1981: 958: 362: 1849: 7027: 4735: 4379: 4293: 1103: 805: 3183: 7047: 5019: 3634:
does not contain these periodic orbits, but does contain quasi-periodic (i.e. bounded but not precisely repeating) orbits following
788:". In the first chapter he considered the general three-body problem. From that, in the second chapter, he demonstrated two special 5695: 1004:
in the plane of orbit whose common base is the line between the centers of the two masses, such that the point lies 60° ahead of (L
6838: 6718: 6137: 5750: 4706: 3642:
are what most of Lagrangian-point space missions have used until now. Although they are not perfectly stable, a modest effort of
709:
to study solar wind coming toward Earth from the Sun and to monitor Earth's climate, by taking images and sending them back. The
5642: 3781:
from Earth's center, which is 99.3% of the Earth–Moon distance or 0.7084% inside (Earthward) of the Moon's 'negative' position.
717:. This allows the satellite's large sunshield to protect the telescope from the light and heat of the Sun, Earth and Moon. The L 7202: 6803: 6557: 4513: 4343: 3662: 35:
Lagrange points in the Sun–Earth system (not to scale). This view is from the north, so that Earth's orbit is counterclockwise.
7577: 7439: 7022: 6876: 6515: 6506: 6243: 4347: 1394:
are sometimes erroneously described as trojans, but do not occupy Lagrange points. Known objects on horseshoe orbits include
702: 183: 1055:(either gravity or angular momentum-induced speed) will also increase or decrease, bending the object's path into a stable, 1340:
about the Lagrange points, with Polydeuces describing the largest deviations, moving up to 32° away from the Saturn–Dione L
7773: 5910: 4696: 4391: 4308: 6092: 5928: 1688:
are the masses of the large and small object, respectively. The quantity in parentheses on the right is the distance of L
7768: 7143: 6823: 6293: 6016: 5993: 5001: 4414: 952:
point lies on the line defined by the two large masses, beyond the larger of the two. Within the Sun–Earth system, the L
5684:
Angular size of the Sun at 1 AU + 1.5 million kilometres: 31.6′, angular size of Earth at 1.5 million kilometres: 29.3′
7555: 7391: 7138: 6985: 6768: 5404:(May 2007). "Equipotential Surfaces and Lagrangian Points in Nonsynchronous, Eccentric Binary and Planetary Systems". 4725: 4434: 1918: 689:
Some Lagrange points are being used for space exploration. Two important Lagrange points in the Sun-Earth system are L
627:, all in the orbital plane of the two large bodies. There are five Lagrange points for the Sun–Earth system, and five 514: 447: 20: 6026: 1120:' or 'trojan asteroids'. The name derives from the names that were given to asteroids discovered orbiting at the Sun– 4464:
of roughly 23 days. Satellites at these points will wander off in a few months unless course corrections are made.
7627: 7396: 7069: 6748: 6575: 4628: 4438: 4327: 3757:
from Earth's center, which is 84.9% of the Earth–Moon distance or 15.1% "in front of" (Earthwards from) the Moon; L
923: 710: 7550: 7432: 7170: 6935: 6886: 2206:{\displaystyle \rho _{2}\left({\frac {d_{2}}{r}}\right)^{3}\approx 3\rho _{1}\left({\frac {d_{1}}{R}}\right)^{3}} 1220: 5069: 4346:(ISEE-3) mission used as an interplanetary early warning storm monitor for solar disturbances. Since June 2015, 3716: 3578: 7665: 7165: 7153: 7125: 6871: 6396: 4691: 4564: 1450: 442: 357: 7384: 5874:"TYCHO: Supporting Permanently Crewed Lunar Exploration with High-Speed Optical Communication from Everywhere" 5593:"Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit" 4318: 5694:
Tantardini, Marco; Fantino, Elena; Ren, Yuan; Pergola, Pierpaolo; GĂłmez, Gerard; Masdemont, Josep J. (2010).
7669: 7605: 7286: 7197: 7101: 7074: 6975: 6881: 6189: 4568: 3643: 3250: 1348: 1091: 697:, on the same line at the opposite side of the Earth; both are well outside the Moon's orbit. Currently, an 613: 586: 313: 6040: 7717: 7679: 7113: 7032: 6970: 6743: 6345: 6265: 6253: 5954: 4367: 1075: 507: 230: 6106:
See the Lagrange Points and Halo Orbits subsection under the section on Geosynchronous Transfer Orbit in
7567: 7374: 7012: 6866: 6808: 6778: 6566: 6443: 6411: 6381: 6340: 6325: 6204: 6044: 5838: 4997: 3697: 778: 415: 250: 158: 5087: 3669:
keeps a probe out of Earth's shadow and therefore ensures continuous illumination of its solar panels.
1465:, allowing the smaller third body to remain stationary (in this frame) with respect to the first two. 7736: 7637: 7620: 7257: 7192: 7185: 7042: 6928: 6891: 6713: 6497: 6386: 6355: 6283: 6258: 6233: 6194: 6175: 6130: 5854: 5714: 5604: 5528: 5476: 5423: 5366: 5289: 5246: 5195: 5136: 4740: 4730: 4604: 1414: 1001: 698: 656: 288: 245: 235: 163: 6075:
An online calculator to compute the precise positions of the 5 Lagrange points for any 2-body system
3230:
to the larger object is less than the separation of the two objects (although the distance between L
1422:
in the plane containing the orbit (grey rubber-sheet model with purple contours of equal potential).
7632: 7610: 7545: 7264: 7108: 6753: 6548: 6288: 6096: 3281: 1458: 1419: 1383: 932: 918:
from Earth (away from the sun). An example of a spacecraft designed to operate near the Earth–Sun L
733: 535: 330: 168: 48: 7743: 7747: 7530: 7456: 7311: 7207: 7059: 6426: 6315: 6213: 5768:"Chang'e-4 relay satellite enters halo orbit around Earth-Moon L2, microsatellite in lunar orbit" 5730: 5663: 5620: 5492: 5466: 5439: 5413: 5382: 5356: 5315: 5236: 5185: 5154: 5126: 4942: 4682: 4430: 3285: 1700: 1431: 1117: 789: 785: 671: 598: 403: 278: 6101: 4952: 4425:, avoiding partial eclipses of the Sun to maintain a constant temperature. From locations near L 3234:
and the barycentre is greater than the distance between the smaller object and the barycentre).
4978: 4870: 3769:
from Earth's center, which is 116.8% of the Earth–Moon distance or 16.8% beyond the Moon; and L
7702: 7342: 7237: 7212: 7158: 7148: 6965: 6793: 6691: 6621: 6376: 6330: 6248: 6080: 6074: 5588: 4867: 4842: 4711: 4632: 4587: 4521: 4495: 4383: 4323: 3708:
are the projections of the orbits on a plane (e.g. the ecliptic) and not the full 3-D orbits.
3597: 3269: 2883: 1462: 1399: 1329: 1224: 915: 879: 729: 652: 609: 318: 255: 134: 72: 52: 7367: 5050: 1227:. Stability at these specific points is greatly complicated by solar gravitational influence. 7615: 7444: 7401: 7332: 7269: 7222: 7064: 6773: 6705: 6469: 6431: 6305: 6275: 6228: 5722: 5612: 5584: 5484: 5431: 5374: 5297: 5280: 5254: 5203: 5144: 4668: 4572: 3627: 3600:
of the Roche potential of two orbiting bodies, rendered half as a surface and half as a mesh
1704: 1454: 867: 616:, and hence fuel requirements, needed to maintain the desired orbit are kept at a minimum. 545: 488: 437: 202: 146: 612:
balance each other. This can make Lagrange points an excellent location for satellites, as
7660: 7560: 7513: 7411: 7352: 7337: 7291: 7274: 7180: 7175: 6813: 6406: 6310: 6300: 6199: 6123: 6107: 6020: 5997: 5754: 5344: 5340: 5110: 4644: 4616: 4479: 4355: 3639: 3635: 2887: 2879: 1443: 1391: 741: 493: 398: 308: 283: 4888: 3665:
on Earth–spacecraft communications. Similarly, a large-amplitude Lissajous orbit around L
3300:
of an object in orbit at a point along the line passing through both bodies is given by:
6056: 5858: 5718: 5608: 5480: 5427: 5370: 5293: 5250: 5199: 5140: 2913:
is the solution to the following equation, gravitation providing the centripetal force:
2423:
is the solution to the following equation, gravitation providing the centripetal force:
1480:
is the solution to the following equation, gravitation providing the centripetal force:
7707: 7694: 7587: 7518: 7508: 7493: 7471: 7461: 7357: 7347: 7296: 7217: 6909: 6861: 6853: 6733: 6728: 6659: 6639: 6630: 6209: 6185: 6180: 6155: 6009: 5401: 5276:"A Search for Natural or Artificial Objects Located at the Earth–Moon Libration Points" 4974: 3277: 2246: 1379: 1352: 1313: 1309: 1243: 793: 774: 465: 375: 298: 223: 217: 212: 31: 5842: 5747: 5511:"Widnall, Lecture L18 - Exploring the Neighborhood: the Restricted Three-Body Problem" 4552:
Lagrangian Point on 11 November 2004 and passed into the area dominated by the Moon's
4374:
up to an hour before Earth. Solar and heliospheric missions currently located around L
7762: 7655: 7572: 7503: 7466: 7306: 7227: 7091: 7086: 6763: 6758: 6677: 6320: 6238: 6087: 5734: 5624: 5301: 5275: 5158: 4745: 4541: 4476: 4472: 4461: 4359: 3541: 1395: 1321: 1297: 874:
point, the object's orbital period becomes exactly equal to Earth's orbital period. L
470: 303: 260: 5496: 5443: 5386: 1438:, there are five positions in space where a third body, of comparatively negligible 125: 7712: 7647: 7316: 7301: 7002: 6997: 6828: 6738: 6612: 6595: 6453: 6350: 6218: 5989:"Essay on the Three-Body Problem" by J.-L. Lagrange, translated from the above, in 5106: 4457: 4399: 3631: 1403: 1378:; if one of the stars expands past its Roche lobe, then it will lose matter to its 1317: 188: 178: 173: 44: 5748:
SMART-1: On Course for Lunar Capture | Moon Today – Your Daily Source of Moon News
5023: 725:
Lagrange points are located about 1,500,000 km (930,000 mi) from earth.
4913: 7540: 7406: 7096: 7079: 6951: 6833: 6668: 6438: 6418: 6335: 5821:
is not just a great gateway—it is a great place to store propellants. ... L
4701: 2768: 2095: 1975: 1697: 1367: 1257: 1253: 1056: 605: 352: 5932: 5149: 5114: 1059:-shaped orbit around the point (as seen in the corotating frame of reference). 39: 7674: 7582: 7525: 7485: 7279: 6980: 6401: 6062: 6005: 5892: 5726: 5616: 5088:"NASA - NASA's Wise Mission Finds First Trojan Asteroid Sharing Earth's Orbit" 4716: 4658: 4591: 4483: 4363: 3738: 3617: 2891: 2740:{\displaystyle x^{5}+x^{4}(3-\mu )+x^{3}(3-2\mu )-x^{2}(\mu )-x(2\mu )-\mu =0} 1839:{\displaystyle x^{5}+(\mu -3)x^{4}+(3-2\mu )x^{3}-(\mu )x^{2}+(2\mu )x-\mu =0} 1435: 1371: 1147: 749: 432: 388: 347: 6013: 5990: 3616:
points are nominally unstable, there are quasi-stable periodic orbits called
7684: 7535: 7252: 7133: 7054: 7037: 6818: 6170: 6068: 5259: 5224: 5208: 5173: 4938: 4631:, which aimed to look back towards Earth's orbit and compile a catalogue of 4387: 3268:
of the system. Additionally, the geometry of the triangle ensures that the
1363:
point and crashed into Earth after its orbit destabilized, forming the Moon.
1273: 1143: 619:
For any combination of two orbital bodies, there are five Lagrange points, L
2816:
The same remarks about tidal influence and apparent size apply as for the L
2399: 5471: 5418: 5361: 4544:
intended to help transport cargo and personnel to the Moon and back. The
1284: 1262: 1199: 1188: 4409:
is a good spot for space-based observatories. Because an object around L
2249:, corresponding to a circular orbit with this distance as radius around 6723: 6115: 5457:
Seidov, Zakir F. (March 1, 2004). "The Roche Problem: Some Analytics".
4575:
as part of the proposed depot-based space transportation architecture.
4553: 4545: 2382:{\displaystyle T_{s,M_{2}}(r)={\frac {T_{M_{2},M_{1}}(R)}{\sqrt {3}}}.} 1337: 1231: 1121: 981: 683: 590: 4303: 1434:. For example, given two massive bodies in orbits around their common 7498: 7362: 3582:
Net radial acceleration of a point orbiting along the Earth–Moon line
2087:{\displaystyle {\frac {M_{2}}{r^{3}}}\approx 3{\frac {M_{1}}{R^{3}}}} 1430:
Lagrange points are the constant-pattern solutions of the restricted
75:
of the potential. At the points themselves these forces are balanced.
5592: 1012:) the smaller mass with regard to its orbit around the larger mass. 643:
are on the line through the centers of the two large bodies, while L
5488: 5435: 5378: 5241: 5190: 5131: 4948:
Dynamical Systems, the Three-Body Problem, and Space Mission Design
1457:
of the two co-orbiting bodies, at the Lagrange points the combined
1132:
points, which were taken from mythological characters appearing in
6528: 6147: 5911:"B612 studying smallsat missions to search for near Earth objects" 4620: 4491: 4317: 3715: 3590: 3577: 3273: 2820:
point. For example, the angular radius of the sun as viewed from L
2412: 2398: 1413: 1138: 1133: 980: 863: 855: 594: 153: 104: 78: 38: 30: 3646:
keeps a spacecraft in a desired Lissajous orbit for a long time.
1154:
point, ahead of Jupiter, are named after Greek characters in the
3548:. The terms in this function represent respectively: force from 3272:
acceleration is to the distance from the barycenter in the same
1439: 1249: 1166:
point are named after Trojan characters and referred to as the "
792:, the collinear and the equilateral, for any three masses, with 6924: 6119: 4358:, because it provides an uninterrupted view of the Sun and any 3720:
Sun–planet Lagrange points to scale (Click for clearer points.)
1948:
is the normalised distance. If the mass of the smaller object (
1186:
points contain interplanetary dust and at least two asteroids,
7379: 6920: 5979:, Tome 6, ÂŤ Essai sur le Problème des Trois Corps Âťâ€” 5893:"TYCHO mission to Earth-Moon libration point EML-4 @ IAC 2013" 2408: 859: 810:
The five Lagrange points are labelled and defined as follows:
5955:"NASA proposes a magnetic shield to protect Mars' atmosphere" 5787:"Evolving to a Depot-Based Space Transportation Architecture" 3661:, because the line between Sun and Earth has increased solar 3276:
as for the two massive bodies. The barycenter being both the
563: 5002:"Tome 6, Chapitre II: Essai sur le problème des trois corps" 2106:
point is about three times of that body. We may also write:
826:
point lies on the line defined between the two large masses
662:
When the mass ratio of the two bodies is large enough, the L
4802: 4764: 4762: 4571:, launched in 2018, and would be "an ideal location" for a 4524:). In 2010, spacecraft transfer trajectories to Sun–Earth L 1170:". Both camps are considered to be types of trojan bodies. 906:
point, that orbital period becomes equal to Earth's. Like L
551: 5223:
SlĂ­z-Balogh, Judit; Barta, AndrĂĄs; HorvĂĄth, GĂĄbor (2019).
5172:
SlĂ­z-Balogh, Judit; Barta, AndrĂĄs; HorvĂĄth, GĂĄbor (2018).
2852:) â‰ˆ 0.264°, whereas that of the earth is arcsin( 597:
bodies. Mathematically, this involves the solution of the
569: 5643:
Stability of Lagrange Points: James Webb Space Telescope"
557: 840:. It is the point where the gravitational attraction of 713:, a powerful infrared space observatory, is located at L 5843:"Photographische Untersuchungen des Librationspunktes L 4980:
De motu rectilineo trium corporum se mutuo attrahentium
5070:"First Asteroid Companion of Earth Discovered at Last" 3536:
is the distance between the two main objects, and sgn(
3197: 3171:) is much smaller than the mass of the larger object ( 2756:) is much smaller than the mass of the larger object ( 2245:
This distance can be described as being such that the
1955:) is much smaller than the mass of the larger object ( 4354:
point. Conversely, it is also useful for space-based
3306: 3186: 2919: 2777: 2615: 2429: 2290: 2112: 2029: 1984: 1921: 1852: 1714: 1486: 566: 1974:
from the smaller object, equal to the radius of the
1028:) are stable equilibria, provided that the ratio of 560: 548: 7693: 7646: 7598: 7484: 7420: 7325: 7245: 7236: 7124: 6958: 6792: 6704: 6648: 6584: 6537: 6477: 6468: 6364: 6274: 6163: 6154: 6032:J R Stockton - Includes translations of Lagrange's 5022:. Space Telescope Science Institute. Archived from 4417:, so solar radiation is not completely blocked at L 3622:around these points in a three-body system. A full 3255:
The reason these points are in balance is that at L
2874:) â‰ˆ 0.242°. Looking toward the sun from L 554: 4829: 4827: 4528:were studied and several designs were considered. 3741:especially in the case of Moon and Jupiter) with L 3513: 3216: 3114: 2807:{\displaystyle r\approx R{\sqrt{\frac {\mu }{3}}}} 2806: 2739: 2597: 2381: 2205: 2086: 2014:{\displaystyle r\approx R{\sqrt{\frac {\mu }{3}}}} 2013: 1940: 1900: 1838: 1674:is the distance between the two main objects, and 1654: 854:combine to produce an equilibrium. An object that 6069:Locations of Lagrange points, with approximations 5645:, University of Arizona. Retrieved 17 Sept. 2018. 5229:Monthly Notices of the Royal Astronomical Society 5178:Monthly Notices of the Royal Astronomical Society 5058:, Neil J. Cornish, with input from Jeremy Goodman 1901:{\displaystyle \mu ={\frac {M_{2}}{M_{1}+M_{2}}}} 659:formed with the centers of the two large bodies. 5008:(in French). Gauthier-Villars. pp. 229–334. 2227:are the average densities of the two bodies and 1242:points contain several dozen known objects, the 3217:{\displaystyle r\approx R{\tfrac {7}{12}}\mu .} 2898:in order for its solar panels to get full sun. 878:is about 1.5 million kilometers, or 0.01 777:around 1750, a decade before the Italian-born 6936: 6131: 5785:Zegler, Frank; Kutter, Bernard (2010-09-02). 5553:"Stability of the Lagrange Points, L4 and L5" 4841:. WMAP Education and Outreach. Archived from 3493: 3438: 914:is about 1.5 million kilometers or 0.01 784:In 1772, Lagrange published an "Essay on the 773:) were discovered by the Swiss mathematician 686:has more than one million of these trojans. 515: 8: 5546: 5544: 5542: 2609:case. The corresponding quintic equation is 1000:points lie at the third vertices of the two 631:Lagrange points for the Earth–Moon system. L 6006:Considerationes de motu corporum coelestium 5794:AIAA SPACE 2010 Conference & Exposition 5707:Celestial Mechanics and Dynamical Astronomy 5597:Celestial Mechanics and Dynamical Astronomy 5274:Freitas, Robert; Valdes, Francisco (1980). 4567:covering the Moon's far side, for example, 4396:Interstellar Mapping and Acceleration Probe 16:Equilibrium points near two orbiting bodies 7242: 6943: 6929: 6921: 6905: 6474: 6160: 6138: 6124: 6116: 5700:point of the Sun–Earth three-body problem" 5045: 5043: 5041: 2749:Again, if the mass of the smaller object ( 1692:from the center of mass. The solution for 882:, from Earth in the direction of the Sun. 522: 508: 110: 83:An example of a spacecraft at Sun-Earth L2 5470: 5417: 5360: 5347:(2005). "Where Did The Moon Come From?". 5258: 5240: 5207: 5189: 5148: 5130: 3503: 3492: 3491: 3482: 3463: 3450: 3437: 3436: 3430: 3397: 3373: 3363: 3337: 3326: 3316: 3305: 3196: 3185: 3152:being defined such that the distance of L 3104: 3093: 3080: 3073: 3044: 3031: 3020: 3014: 2998: 2969: 2963: 2952: 2926: 2920: 2918: 2882:. It is necessary for a spacecraft, like 2797: 2787: 2776: 2692: 2661: 2633: 2620: 2614: 2587: 2576: 2563: 2556: 2533: 2520: 2509: 2503: 2487: 2477: 2471: 2459: 2436: 2430: 2428: 2351: 2338: 2333: 2326: 2306: 2295: 2289: 2197: 2182: 2176: 2165: 2149: 2134: 2128: 2117: 2111: 2076: 2066: 2060: 2046: 2036: 2030: 2028: 2004: 1994: 1983: 1928: 1920: 1889: 1876: 1865: 1859: 1851: 1800: 1778: 1747: 1719: 1713: 1644: 1633: 1620: 1613: 1590: 1577: 1566: 1560: 1544: 1534: 1528: 1516: 1493: 1487: 1485: 4516:. Moreover, a satellite near Sun–Earth L 4302: 3783: 3156:from the centre of the larger object is 1300:has two smaller moons of Saturn in its L 7428:Effect of spaceflight on the human body 4823: 4758: 3793:Semimajor axis, SMA (×10 m) 608:forces of the two large bodies and the 413: 328: 132: 118: 7450:Psychological and sociological effects 6784:Transposition, docking, and extraction 4505:A spacecraft orbiting near Sun–Earth L 4441:was positioned in a halo orbit about L 2767:is at approximately the radius of the 761:The three collinear Lagrange points (L 5551:Greenspan, Thomas (January 7, 2014). 4421:. Spacecraft generally orbit around L 3562:; and centripetal force. The points L 3164:. If the mass of the smaller object ( 1970:are at approximately equal distances 1094:in order to maintain their position. 7: 5400:Sepinsky, Jeremy F.; Willems, Bart; 3525:is the distance from the large body 2605:with parameters defined as for the L 928:Wilkinson Microwave Anisotropy Probe 728:The European Space Agency's earlier 6059:—also attributed to Neil J. Cornish 6036:and of two related papers by Euler 5975:Joseph-Louis, Comte Lagrange, from 4643:In 2017, the idea of positioning a 3724:This table lists sample values of L 3638:trajectories. These quasi-periodic 1446:that matches their orbital motion. 1320:also has two Lagrange co-orbitals, 7159:Weather and environment monitoring 6012:—transcription and translation at 5115:"The Second Earth Trojan 2020 XL5" 4736:List of objects at Lagrange points 4380:Solar and Heliospheric Observatory 4344:International Sun Earth Explorer 3 4294:List of objects at Lagrange points 3785:Lagrangian points in Solar System 1461:of two massive bodies balance the 1104:List of objects at Lagrange points 1098:Natural objects at Lagrange points 806:List of objects at Lagrange points 732:telescope, and its newly launched 693:, between the Sun and Earth, and L 14: 6844:Kepler's laws of planetary motion 5931:. B612 Foundation. Archived from 5796:. AIAA. p. 4. Archived from 5696:"Spacecraft trajectories to the L 5119:The Astrophysical Journal Letters 5113:; FĂśhring, Dora (November 2021). 5068:Choi, Charles Q. (27 July 2011). 4875:Eric Weisstein's World of Physics 1410:Physical and mathematical details 1219:points contain concentrations of 1108:Due to the natural stability of L 589:for small-mass objects under the 294:Kepler's laws of planetary motion 7742: 7732: 7731: 6904: 6839:Interplanetary Transport Network 6719:Collision avoidance (spacecraft) 5851:Acta Astronomica, Vol. 11, p.165 4707:Interplanetary Transport Network 4675: 4661: 4627:point to position their planned 4460:and exponentially unstable with 4330:(blue) orbits around Sun–Earth L 1941:{\displaystyle x={\frac {r}{R}}} 1351:postulates that an object named 985:Gravitational accelerations at L 682:points with respect to the Sun; 544: 124: 7203:Space launch market competition 6804:Astronomical coordinate systems 6558:Longitude of the ascending node 6102:Earth, a lone Trojan discovered 5322:from the original on 2011-07-25 4514:Space Weather Prediction Center 4394:. Planned missions include the 1670:point from the smaller object, 1398:with Earth, and Saturn's moons 926:. Earlier examples include the 7440:Health threat from cosmic rays 6877:Retrograde and prograde motion 6063:Explanation of Lagrange points 6051:Explanation of Lagrange points 5891:Hornig, Andreas (2013-10-06). 5872:Hornig, Andreas (2022-05-01). 5529:"Stability of Lagrange Points" 4471:was a popular place to put a " 4311:in an orbit around Sun–Earth L 3680: 3673: 3469: 3443: 3424: 3412: 3394: 3381: 3357: 3351: 2722: 2713: 2704: 2698: 2682: 2667: 2651: 2639: 2456: 2443: 2365: 2359: 2320: 2314: 1818: 1809: 1793: 1787: 1771: 1756: 1740: 1728: 1513: 1500: 1449:Alternatively, when seen in a 781:discovered the remaining two. 703:Deep Space Climate Observatory 1: 5853:. Vol. 11. p. 165. 4893:NASA Solar System Exploration 4548:Mission passed through the L 4392:Advanced Composition Explorer 736:, also occupy orbits around L 599:restricted three-body problem 6824:Equatorial coordinate system 6109:NASA: Basics of Space Flight 5766:Jones, Andrew (2018-06-14). 5302:10.1016/0019-1035(80)90106-2 63:). Counterintuitively, the L 7556:Self-replicating spacecraft 7392:International Space Station 6093:The Five Points of Lagrange 4951:. p. 9. Archived from 4726:Lagrange point colonization 4435:cosmic microwave background 2023:We may also write this as: 448:Tsiolkovsky rocket equation 7790: 7070:Space Liability Convention 6576:Longitude of the periapsis 6084:—Ep. 76: "Lagrange Points" 6047:page, with good animations 4697:Euler's three-body problem 4586:are the locations for the 4439:James Webb Space Telescope 4328:James Webb Space Telescope 4291: 3248: 1101: 1078:. Any object orbiting at L 924:James Webb Space Telescope 803: 790:constant-pattern solutions 711:James Webb Space Telescope 417:Engineering and efficiency 236:Bi-elliptic transfer orbit 18: 7726: 7433:Space adaptation syndrome 6900: 6887:Specific angular momentum 6041:What are Lagrange points? 5727:10.1007/s10569-010-9299-x 5637:Cacolici, Gianna Nicole, 5617:10.1007/s10569-009-9203-8 5459:The Astrophysical Journal 5406:The Astrophysical Journal 5316:"List Of Neptune Trojans" 4945:; Ross, Shane D. (2006). 4834:Cornish, Neil J. (1998). 4224: 4165: 4106: 4063: 4017: 3974: 3931: 3885: 3839: 3830: 3823: 3816: 3809: 3802: 3795: 3792: 3789: 1374:has its apex located at L 1355:formed at the Sun–Earth L 753:Earth for data transfer. 748:, while Euclid follows a 593:influence of two massive 7166:Communications satellite 5660:Solar System Exploration 5349:The Astronomical Journal 5150:10.3847/2041-8213/ac37bf 4692:Co-orbital configuration 4647:shield at the Sun–Mars L 4594:'s name comes from the L 4565:communications satellite 4433:and observations of the 4286:Spaceflight applications 3296:The radial acceleration 3226:Thus the distance from L 1908:is the mass fraction of 1666:is the distance of the L 1463:centrifugal pseudo-force 1451:rotating reference frame 1158:and referred to as the " 1020:The triangular points (L 705:(DSCOVR) is located at L 443:Propellant mass fraction 342:Gravitational influences 19:Not to be confused with 7670:reusable launch systems 7287:Extravehicular activity 7198:Commercial use of space 7102:Militarisation of space 7075:Registration Convention 6991:Accidents and incidents 6882:Specific orbital energy 5753:2 November 2005 at the 5318:. Minor Planet Center. 4588:Kordylewski dust clouds 4502:every 20 months). 3821:/SMA âˆ’ 1 (%) 3251:Trojan (celestial body) 2242:the earth and the sun. 1349:giant impact hypothesis 1316:. Another Saturn moon, 740:. Gaia keeps a tighter 314:Specific orbital energy 51:due to gravity and the 7718:Mission control center 7680:Non-rocket spacelaunch 7114:Billionaire space race 6294:Geostationary transfer 5929:"The Sentinel Mission" 5839:Kordylewski, Kazimierz 5662:. NASA. Archived from 5535:. University of Texas. 5527:Fitzpatrick, Richard. 4998:Lagrange, Joseph-Louis 4494:comes within 0.3  4368:coronal mass ejections 4334: 4315: 3721: 3601: 3583: 3515: 3218: 3116: 2808: 2741: 2599: 2416: 2383: 2207: 2088: 2015: 1942: 1902: 1840: 1656: 1427: 989: 651:each act as the third 231:Hohmann transfer orbit 108: 76: 59:) and away from them ( 36: 7568:Spacecraft propulsion 7018:European Space Agency 6867:Orbital state vectors 6809:Characteristic energy 6779:Trans-lunar injection 6567:Argument of periapsis 6244:Prograde / Retrograde 6205:Hyperbolic trajectory 6045:European Space Agency 5260:10.1093/mnras/sty2630 5209:10.1093/mnras/sty2049 5051:"The Lagrange Points" 4836:"The Lagrange Points" 4619:were planning to use 4445:on January 24, 2022. 4321: 4306: 3719: 3698:Coriolis acceleration 3596: 3581: 3516: 3249:Further information: 3219: 3117: 2809: 2742: 2600: 2402: 2384: 2208: 2089: 2016: 1943: 1903: 1841: 1657: 1417: 1390:Objects which are on 1002:equilateral triangles 984: 779:Joseph-Louis Lagrange 427:Preflight engineering 159:Argument of periapsis 82: 42: 34: 7774:Lagrangian mechanics 7193:Satellite navigation 6714:Bi-elliptic transfer 6234:Parabolic trajectory 5847:im System Erde-Mond" 5345:Gott III, J. Richard 4848:on September 7, 2015 4741:Lunar space elevator 4731:Lagrangian mechanics 4633:near-Earth asteroids 4605:geosynchronous orbit 4563:has been used for a 4522:near-Earth asteroids 3304: 3184: 3140:defined as for the L 2917: 2775: 2613: 2427: 2288: 2110: 2027: 1982: 1919: 1850: 1712: 1484: 1459:gravitational fields 1425:Click for animation. 1150:. Asteroids at the L 1076:unstable equilibrium 699:artificial satellite 657:equilateral triangle 483:Propulsive maneuvers 7769:Trojans (astronomy) 7578:Electric propulsion 7265:Life-support system 7149:Imagery and mapping 7109:Private spaceflight 6754:Low-energy transfer 6097:Neil deGrasse Tyson 6086:by Fraser Cain and 5859:1961AcA....11..165K 5719:2010CeMDA.108..215T 5609:2009CeMDA.103..365P 5481:2004ApJ...603..283S 5428:2007ApJ...660.1624S 5371:2005AJ....129.1724B 5294:1980Icar...42..442F 5251:2019MNRAS.482..762S 5200:2018MNRAS.480.5550S 5141:2021ApJ...922L..25H 4943:Marsden, Jerrold E. 3786: 3712:Solar System values 3292:Radial acceleration 1420:effective potential 1384:Roche lobe overflow 1347:One version of the 1336:. The moons wander 1221:interplanetary dust 930:and its successor, 536:celestial mechanics 460:Efficiency measures 363:Sphere of influence 332:Celestial mechanics 114:Part of a series on 49:effective potential 7531:Robotic spacecraft 7457:Space and survival 7312:Space colonization 7208:Space architecture 7060:Outer Space Treaty 6749:Inclination change 6397:Distant retrograde 6071:—David Peter Stern 6057:A NASA explanation 6019:2020-08-03 at the 6014:merlyn.demon.co.uk 5996:2019-06-23 at the 5991:merlyn.demon.co.uk 5589:Standish, E. Myles 5533:Newtonian Dynamics 5026:on 3 February 2014 5006:Œuvres de Lagrange 4889:"DSCOVR: In-Depth" 4868:Weisstein, Eric W. 4683:Spaceflight portal 4629:Sentinel telescope 4615:Scientists at the 4431:infrared astronomy 4335: 4316: 3828:(×10 m) 3814:(×10 m) 3800:(×10 m) 3784: 3722: 3602: 3584: 3511: 3286:three-body problem 3214: 3206: 3112: 2804: 2737: 2595: 2417: 2379: 2256:in the absence of 2203: 2084: 2011: 1938: 1898: 1836: 1652: 1432:three-body problem 1428: 1252:has four accepted 1225:Kordylewski clouds 990: 862:more closely than 786:three-body problem 279:Dynamical friction 109: 77: 37: 7756: 7755: 7703:Flight controller 7480: 7479: 7238:Human spaceflight 7213:Space exploration 7139:Earth observation 6918: 6917: 6892:Two-line elements 6700: 6699: 6622:Eccentric anomaly 6464: 6463: 6331:Orbit of the Moon 6190:Highly elliptical 5585:Pitjeva, Elena V. 5565:on April 18, 2018 4937:Koon, Wang Sang; 4871:"Lagrange Points" 4753:Explanatory notes 4712:Klemperer rosette 4607:cover the Earth. 4388:Aditya-L1 Mission 4350:has orbited the L 4283: 4282: 3657:than to stay at L 3509: 3404: 3343: 3205: 3110: 3051: 3004: 2958: 2909:The location of L 2802: 2796: 2593: 2540: 2493: 2466: 2419:The location of L 2374: 2373: 2191: 2143: 2082: 2052: 2009: 2003: 1936: 1896: 1703:of the following 1650: 1597: 1550: 1523: 1476:The location of L 1453:that matches the 1162:". Those at the L 1074:are positions of 614:orbit corrections 610:centrifugal force 579:Lagrangian points 532: 531: 382:Lagrangian points 319:Vis-viva equation 289:Kepler's equation 136:Orbital mechanics 53:centrifugal force 7781: 7746: 7735: 7734: 7445:Space psychology 7270:Animals in space 7243: 7223:Space technology 7065:Rescue Agreement 6945: 6938: 6931: 6922: 6908: 6907: 6849:Lagrangian point 6744:Hohmann transfer 6689: 6675: 6666: 6657: 6637: 6628: 6619: 6610: 6606: 6602: 6593: 6573: 6564: 6555: 6546: 6526: 6522: 6513: 6504: 6495: 6475: 6444:Heliosynchronous 6393:Lagrange points 6346:Transatmospheric 6161: 6140: 6133: 6126: 6117: 6053:—Neil J. Cornish 5963: 5962: 5951: 5945: 5944: 5942: 5940: 5925: 5919: 5918: 5917:. June 20, 2017. 5907: 5901: 5900: 5888: 5882: 5881: 5869: 5863: 5862: 5835: 5829: 5828: 5809: 5808: 5802: 5791: 5782: 5776: 5775: 5763: 5757: 5745: 5739: 5738: 5704: 5691: 5685: 5682: 5676: 5675: 5673: 5671: 5666:on July 20, 2015 5652: 5646: 5635: 5629: 5628: 5581: 5575: 5574: 5572: 5570: 5564: 5558:. Archived from 5557: 5548: 5537: 5536: 5524: 5518: 5517: 5515: 5507: 5501: 5500: 5474: 5472:astro-ph/0311272 5454: 5448: 5447: 5421: 5419:astro-ph/0612508 5412:(2): 1624–1635. 5397: 5391: 5390: 5364: 5362:astro-ph/0405372 5355:(3): 1724–1745. 5341:Belbruno, Edward 5337: 5331: 5330: 5328: 5327: 5312: 5306: 5305: 5271: 5265: 5264: 5262: 5244: 5220: 5214: 5213: 5211: 5193: 5184:(4): 5550–5559. 5169: 5163: 5162: 5152: 5134: 5111:Tholen, David J. 5107:Wiegert, Paul A. 5102: 5096: 5095: 5084: 5078: 5077: 5065: 5059: 5057: 5055: 5047: 5036: 5035: 5033: 5031: 5016: 5010: 5009: 4994: 4988: 4987: 4985: 4971: 4965: 4963: 4961: 4960: 4934: 4928: 4927: 4925: 4924: 4910: 4904: 4903: 4901: 4900: 4885: 4879: 4878: 4864: 4858: 4857: 4855: 4853: 4847: 4840: 4831: 4811: 4805: 4799: 4798: 4795: 4789: 4787: 4786: 4783: 4780: 4779: 4778: 4766: 4685: 4680: 4679: 4678: 4671: 4669:Astronomy portal 4666: 4665: 4664: 4573:propellant depot 4356:solar telescopes 4279: 4278: 4271: 4269: 4262: 4257: 4255: 4248: 4243: 4241: 4234: 4232: 4220: 4219: 4212: 4210: 4203: 4198: 4196: 4189: 4184: 4182: 4175: 4173: 4161: 4160: 4153: 4151: 4144: 4139: 4137: 4130: 4125: 4123: 4116: 4114: 4102: 4101: 4094: 4089: 4084: 4079: 4074: 4069: 4059: 4058: 4055: 4048: 4043: 4038: 4033: 4028: 4023: 4013: 4012: 4005: 4000: 3995: 3990: 3985: 3980: 3970: 3969: 3962: 3957: 3952: 3947: 3942: 3937: 3927: 3926: 3923: 3916: 3911: 3906: 3901: 3896: 3891: 3881: 3876: 3875: 3868: 3863: 3858: 3853: 3852: 3845: 3787: 3780: 3778: 3768: 3766: 3756: 3754: 3640:Lissajous orbits 3628:dynamical system 3595: 3520: 3518: 3517: 3512: 3510: 3508: 3507: 3498: 3497: 3496: 3487: 3486: 3468: 3467: 3455: 3454: 3442: 3441: 3431: 3405: 3403: 3402: 3401: 3379: 3378: 3377: 3364: 3344: 3342: 3341: 3332: 3331: 3330: 3317: 3223: 3221: 3220: 3215: 3207: 3198: 3122:with parameters 3121: 3119: 3118: 3113: 3111: 3109: 3108: 3099: 3098: 3097: 3085: 3084: 3074: 3072: 3068: 3052: 3050: 3049: 3048: 3036: 3035: 3025: 3024: 3015: 3005: 3003: 3002: 2997: 2993: 2974: 2973: 2964: 2959: 2957: 2956: 2951: 2947: 2931: 2930: 2921: 2873: 2871: 2870: 2869: 2867: 2861: 2858: 2851: 2849: 2848: 2847: 2845: 2839: 2836: 2835: 2833: 2813: 2811: 2810: 2805: 2803: 2801: 2789: 2788: 2746: 2744: 2743: 2738: 2697: 2696: 2666: 2665: 2638: 2637: 2625: 2624: 2604: 2602: 2601: 2596: 2594: 2592: 2591: 2582: 2581: 2580: 2568: 2567: 2557: 2555: 2551: 2541: 2539: 2538: 2537: 2525: 2524: 2514: 2513: 2504: 2494: 2492: 2491: 2482: 2481: 2472: 2467: 2465: 2464: 2463: 2441: 2440: 2431: 2403:The Lagrangian L 2388: 2386: 2385: 2380: 2375: 2369: 2368: 2358: 2357: 2356: 2355: 2343: 2342: 2327: 2313: 2312: 2311: 2310: 2283: 2282: 2212: 2210: 2209: 2204: 2202: 2201: 2196: 2192: 2187: 2186: 2177: 2170: 2169: 2154: 2153: 2148: 2144: 2139: 2138: 2129: 2122: 2121: 2093: 2091: 2090: 2085: 2083: 2081: 2080: 2071: 2070: 2061: 2053: 2051: 2050: 2041: 2040: 2031: 2020: 2018: 2017: 2012: 2010: 2008: 1996: 1995: 1947: 1945: 1944: 1939: 1937: 1929: 1907: 1905: 1904: 1899: 1897: 1895: 1894: 1893: 1881: 1880: 1870: 1869: 1860: 1845: 1843: 1842: 1837: 1805: 1804: 1783: 1782: 1752: 1751: 1724: 1723: 1705:quintic function 1661: 1659: 1658: 1653: 1651: 1649: 1648: 1639: 1638: 1637: 1625: 1624: 1614: 1612: 1608: 1598: 1596: 1595: 1594: 1582: 1581: 1571: 1570: 1561: 1551: 1549: 1548: 1539: 1538: 1529: 1524: 1522: 1521: 1520: 1498: 1497: 1488: 1455:angular velocity 1392:horseshoe orbits 1292: 1290: 1289: 1281: 1279: 1278: 1270: 1268: 1267: 1211:The Earth–Moon L 1207: 1205: 1204: 1196: 1194: 1193: 1053: 1051: 1050: 1042: 1039: 672:trojan asteroids 585:) are points of 583:libration points 576: 575: 572: 571: 568: 565: 562: 559: 556: 553: 550: 524: 517: 510: 489:Orbital maneuver 438:Payload fraction 418: 399:Lissajous orbits 333: 304:Orbital velocity 251:Hyperbolic orbit 147:Orbital elements 137: 128: 111: 107: 102: 93: 88: 62: 58: 7789: 7788: 7784: 7783: 7782: 7780: 7779: 7778: 7759: 7758: 7757: 7752: 7722: 7689: 7661:Escape velocity 7642: 7594: 7561:Space telescope 7514:Reentry capsule 7476: 7416: 7321: 7292:Overview effect 7275:Bioastronautics 7232: 7120: 6954: 6949: 6919: 6914: 6896: 6814:Escape velocity 6795: 6788: 6769:Rocket equation 6696: 6688: 6682: 6673: 6664: 6655: 6644: 6635: 6626: 6617: 6608: 6604: 6600: 6591: 6580: 6571: 6562: 6553: 6544: 6533: 6524: 6520: 6516:Semi-minor axis 6511: 6507:Semi-major axis 6502: 6493: 6487: 6460: 6382:Areosynchronous 6366: 6360: 6341:Sun-synchronous 6326:Near-equatorial 6270: 6150: 6144: 6021:Wayback Machine 5998:Wayback Machine 5985:Tome 6 (Viewer) 5972: 5967: 5966: 5953: 5952: 5948: 5938: 5936: 5935:on 30 June 2012 5927: 5926: 5922: 5909: 5908: 5904: 5890: 5889: 5885: 5871: 5870: 5866: 5846: 5837: 5836: 5832: 5824: 5820: 5815: 5806: 5804: 5800: 5789: 5784: 5783: 5779: 5765: 5764: 5760: 5755:Wayback Machine 5746: 5742: 5702: 5699: 5693: 5692: 5688: 5683: 5679: 5669: 5667: 5654: 5653: 5649: 5636: 5632: 5583: 5582: 5578: 5568: 5566: 5562: 5555: 5550: 5549: 5540: 5526: 5525: 5521: 5513: 5509: 5508: 5504: 5456: 5455: 5451: 5402:Kalogera, Vicky 5399: 5398: 5394: 5339: 5338: 5334: 5325: 5323: 5314: 5313: 5309: 5273: 5272: 5268: 5222: 5221: 5217: 5171: 5170: 5166: 5104: 5103: 5099: 5086: 5085: 5081: 5067: 5066: 5062: 5053: 5049: 5048: 5039: 5029: 5027: 5018: 5017: 5013: 4996: 4995: 4991: 4983: 4975:Euler, Leonhard 4973: 4972: 4968: 4958: 4956: 4936: 4935: 4931: 4922: 4920: 4912: 4911: 4907: 4898: 4896: 4887: 4886: 4882: 4866: 4865: 4861: 4851: 4849: 4845: 4838: 4833: 4832: 4825: 4820: 4815: 4814: 4801: 4796: 4793: 4791: 4784: 4781: 4776: 4774: 4772: 4771: 4769: 4767: 4760: 4755: 4750: 4720: 4681: 4676: 4674: 4667: 4662: 4660: 4657: 4650: 4645:magnetic dipole 4641: 4626: 4617:B612 Foundation 4613: 4601: 4597: 4585: 4581: 4562: 4551: 4539: 4534: 4527: 4519: 4508: 4501: 4489: 4480:science fiction 4470: 4455: 4451: 4444: 4428: 4424: 4420: 4412: 4408: 4398:(IMAP) and the 4377: 4373: 4362:(including the 4353: 4340: 4333: 4314: 4301: 4296: 4288: 4276: 4274: 4267: 4265: 4260: 4253: 4251: 4246: 4239: 4237: 4230: 4228: 4217: 4215: 4208: 4206: 4201: 4194: 4192: 4187: 4180: 4178: 4171: 4169: 4158: 4156: 4149: 4147: 4142: 4135: 4133: 4128: 4121: 4119: 4112: 4110: 4099: 4097: 4092: 4087: 4082: 4077: 4072: 4067: 4056: 4053: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4010: 4008: 4003: 3998: 3993: 3988: 3983: 3978: 3967: 3965: 3960: 3955: 3950: 3945: 3940: 3935: 3924: 3921: 3919: 3914: 3909: 3904: 3899: 3894: 3889: 3879: 3873: 3871: 3866: 3861: 3856: 3850: 3848: 3843: 3834: 3827: 3820: 3813: 3806: 3803:1 âˆ’ L 3799: 3776: 3774: 3772: 3764: 3762: 3760: 3752: 3750: 3748: 3744: 3735: 3731: 3727: 3714: 3707: 3703: 3694: 3690: 3684: 3677: 3668: 3660: 3656: 3652: 3649:For Sun–Earth-L 3644:station keeping 3636:Lissajous-curve 3615: 3611: 3607: 3591: 3589: 3573: 3569: 3565: 3561: 3554: 3531: 3499: 3478: 3459: 3446: 3432: 3393: 3380: 3369: 3365: 3333: 3322: 3318: 3302: 3301: 3294: 3262: 3258: 3253: 3247: 3245: 3241: 3233: 3229: 3182: 3181: 3177: 3170: 3155: 3147: 3143: 3135: 3128: 3100: 3089: 3076: 3075: 3040: 3027: 3026: 3016: 3013: 3009: 2980: 2976: 2975: 2965: 2937: 2933: 2932: 2922: 2915: 2914: 2912: 2907: 2905: 2897: 2888:Lissajous orbit 2880:annular eclipse 2877: 2865: 2863: 2862: 2859: 2856: 2855: 2853: 2843: 2841: 2840: 2837: 2831: 2829: 2828: 2827: 2825: 2823: 2819: 2773: 2772: 2766: 2762: 2755: 2688: 2657: 2629: 2616: 2611: 2610: 2608: 2583: 2572: 2559: 2558: 2529: 2516: 2515: 2505: 2502: 2498: 2483: 2473: 2455: 2442: 2432: 2425: 2424: 2422: 2406: 2397: 2395: 2347: 2334: 2329: 2328: 2302: 2291: 2286: 2285: 2280: 2278: 2276: 2269: 2262: 2255: 2240: 2233: 2226: 2219: 2178: 2172: 2171: 2161: 2130: 2124: 2123: 2113: 2108: 2107: 2105: 2101: 2072: 2062: 2042: 2032: 2025: 2024: 1980: 1979: 1969: 1965: 1961: 1954: 1917: 1916: 1913: 1885: 1872: 1871: 1861: 1848: 1847: 1796: 1774: 1743: 1715: 1710: 1709: 1691: 1687: 1680: 1669: 1640: 1629: 1616: 1615: 1586: 1573: 1572: 1562: 1559: 1555: 1540: 1530: 1512: 1499: 1489: 1482: 1481: 1479: 1474: 1472: 1444:circular motion 1423: 1412: 1377: 1362: 1358: 1343: 1335: 1327: 1307: 1303: 1287: 1286: 1283: 1276: 1275: 1272: 1265: 1264: 1261: 1244:Neptune trojans 1241: 1237: 1218: 1214: 1202: 1201: 1198: 1191: 1190: 1187: 1185: 1181: 1178:The Sun–Earth L 1165: 1153: 1146:set during the 1131: 1127: 1115: 1111: 1106: 1100: 1092:station keeping 1089: 1085: 1081: 1073: 1069: 1065: 1049: 1043: 1040: 1038: 1032: 1031: 1029: 1027: 1023: 1018: 1011: 1007: 999: 995: 988: 979: 976: 972: 964: 955: 951: 946: 943: 921: 913: 909: 905: 901: 897: 892: 889: 877: 873: 868:Earth's gravity 853: 846: 839: 832: 825: 820: 817: 808: 802: 800:Lagrange points 794:circular orbits 772: 768: 764: 759: 747: 742:Lissajous orbit 739: 724: 720: 716: 708: 696: 692: 681: 677: 669: 665: 650: 646: 642: 638: 634: 626: 622: 547: 543: 540:Lagrange points 528: 499: 498: 494:Orbit insertion 484: 476: 475: 461: 453: 452: 428: 420: 416: 409: 408: 404:Lyapunov orbits 395: 394: 378: 368: 367: 343: 335: 331: 324: 323: 309:Surface gravity 284:Escape velocity 274: 266: 265: 246:Parabolic orbit 242: 241: 208: 206: 203:two-body orbits 194: 193: 184:Semi-major axis 149: 139: 135: 100: 99: 86: 85: 84: 71:points are the 70: 66: 60: 56: 27: 17: 12: 11: 5: 7787: 7785: 7777: 7776: 7771: 7761: 7760: 7754: 7753: 7751: 7750: 7739: 7727: 7724: 7723: 7721: 7720: 7715: 7710: 7708:Ground station 7705: 7699: 7697: 7695:Ground segment 7691: 7690: 7688: 7687: 7682: 7677: 7672: 7663: 7658: 7652: 7650: 7644: 7643: 7641: 7640: 7635: 7630: 7628:Interplanetary 7625: 7624: 7623: 7621:Geosynchronous 7618: 7608: 7602: 7600: 7596: 7595: 7593: 7592: 7591: 7590: 7588:Gravity assist 7585: 7580: 7575: 7565: 7564: 7563: 7558: 7553: 7548: 7543: 7538: 7528: 7523: 7522: 7521: 7519:Service module 7516: 7511: 7509:Orbital module 7501: 7496: 7494:Launch vehicle 7490: 7488: 7482: 7481: 7478: 7477: 7475: 7474: 7472:Space sexology 7469: 7464: 7462:Space medicine 7459: 7454: 7453: 7452: 7442: 7437: 7436: 7435: 7424: 7422: 7418: 7417: 7415: 7414: 7409: 7404: 7399: 7394: 7389: 7388: 7387: 7377: 7372: 7371: 7370: 7365: 7355: 7350: 7345: 7340: 7335: 7329: 7327: 7323: 7322: 7320: 7319: 7314: 7309: 7304: 7299: 7297:Weightlessness 7294: 7289: 7284: 7283: 7282: 7277: 7272: 7262: 7261: 7260: 7249: 7247: 7240: 7234: 7233: 7231: 7230: 7225: 7220: 7218:Space research 7215: 7210: 7205: 7200: 7195: 7190: 7189: 7188: 7183: 7178: 7173: 7163: 7162: 7161: 7156: 7154:Reconnaissance 7151: 7146: 7136: 7130: 7128: 7122: 7121: 7119: 7118: 7117: 7116: 7106: 7105: 7104: 7099: 7094: 7084: 7083: 7082: 7077: 7072: 7067: 7062: 7052: 7051: 7050: 7045: 7040: 7035: 7030: 7025: 7023:European Union 7020: 7015: 7010: 7000: 6995: 6994: 6993: 6988: 6983: 6978: 6968: 6962: 6960: 6956: 6955: 6950: 6948: 6947: 6940: 6933: 6925: 6916: 6915: 6913: 6912: 6910:List of orbits 6901: 6898: 6897: 6895: 6894: 6889: 6884: 6879: 6874: 6869: 6864: 6862:Orbit equation 6859: 6851: 6846: 6841: 6836: 6831: 6826: 6821: 6816: 6811: 6806: 6800: 6798: 6790: 6789: 6787: 6786: 6781: 6776: 6771: 6766: 6761: 6756: 6751: 6746: 6741: 6736: 6734:Gravity assist 6731: 6729:Delta-v budget 6726: 6721: 6716: 6710: 6708: 6702: 6701: 6698: 6697: 6695: 6694: 6686: 6680: 6671: 6662: 6660:Orbital period 6652: 6650: 6646: 6645: 6643: 6642: 6640:True longitude 6633: 6631:Mean longitude 6624: 6615: 6598: 6588: 6586: 6582: 6581: 6579: 6578: 6569: 6560: 6551: 6541: 6539: 6535: 6534: 6532: 6531: 6518: 6509: 6500: 6490: 6488: 6486: 6485: 6482: 6478: 6472: 6466: 6465: 6462: 6461: 6459: 6458: 6457: 6456: 6448: 6447: 6446: 6441: 6436: 6435: 6434: 6421: 6416: 6415: 6414: 6409: 6404: 6399: 6391: 6390: 6389: 6387:Areostationary 6384: 6379: 6370: 6368: 6362: 6361: 6359: 6358: 6356:Very low Earth 6353: 6348: 6343: 6338: 6333: 6328: 6323: 6318: 6313: 6308: 6303: 6298: 6297: 6296: 6291: 6284:Geosynchronous 6280: 6278: 6272: 6271: 6269: 6268: 6266:Transfer orbit 6263: 6262: 6261: 6256: 6246: 6241: 6236: 6231: 6226: 6224:Lagrange point 6221: 6216: 6207: 6202: 6197: 6192: 6183: 6178: 6173: 6167: 6165: 6158: 6152: 6151: 6146:Gravitational 6145: 6143: 6142: 6135: 6128: 6120: 6114: 6113: 6104: 6099: 6090: 6082:Astronomy Cast 6078: 6072: 6066: 6060: 6054: 6048: 6030: 6029: 6024: 6010:Leonhard Euler 6003: 6002: 6001: 5971: 5970:External links 5968: 5965: 5964: 5946: 5920: 5902: 5883: 5864: 5844: 5830: 5822: 5818: 5813: 5777: 5758: 5740: 5713:(3): 215–232. 5697: 5686: 5677: 5647: 5630: 5603:(4): 365–372. 5591:(2009-04-01). 5576: 5538: 5519: 5502: 5489:10.1086/381315 5465:(1): 283–284. 5449: 5436:10.1086/513736 5392: 5379:10.1086/427539 5332: 5307: 5288:(3): 442–447. 5266: 5235:(1): 762–770. 5215: 5164: 5097: 5079: 5060: 5037: 5011: 4989: 4966: 4929: 4905: 4880: 4859: 4822: 4821: 4819: 4816: 4813: 4812: 4757: 4756: 4754: 4751: 4749: 4748: 4743: 4738: 4733: 4728: 4723: 4718: 4714: 4709: 4704: 4699: 4694: 4688: 4687: 4686: 4672: 4656: 4653: 4648: 4640: 4637: 4624: 4612: 4609: 4599: 4595: 4583: 4579: 4560: 4549: 4537: 4533: 4530: 4525: 4517: 4506: 4499: 4487: 4468: 4453: 4449: 4442: 4426: 4422: 4418: 4410: 4406: 4375: 4371: 4351: 4338: 4331: 4312: 4307:The satellite 4300: 4297: 4292:Main article: 4287: 4284: 4281: 4280: 4272: 4263: 4258: 4249: 4244: 4235: 4226: 4222: 4221: 4213: 4204: 4199: 4190: 4185: 4176: 4167: 4163: 4162: 4154: 4145: 4140: 4131: 4126: 4117: 4108: 4104: 4103: 4095: 4090: 4085: 4080: 4075: 4070: 4065: 4061: 4060: 4049: 4044: 4039: 4034: 4029: 4024: 4019: 4015: 4014: 4006: 4001: 3996: 3991: 3986: 3981: 3976: 3972: 3971: 3963: 3958: 3953: 3948: 3943: 3938: 3933: 3929: 3928: 3917: 3912: 3907: 3902: 3897: 3892: 3887: 3883: 3882: 3877: 3869: 3864: 3859: 3854: 3846: 3841: 3837: 3836: 3832: 3829: 3825: 3822: 3818: 3815: 3811: 3808: 3804: 3801: 3797: 3794: 3791: 3770: 3758: 3746: 3742: 3733: 3729: 3725: 3713: 3710: 3705: 3701: 3692: 3688: 3682: 3675: 3666: 3658: 3654: 3650: 3613: 3609: 3605: 3604:Although the L 3588: 3585: 3571: 3567: 3563: 3559: 3552: 3529: 3506: 3502: 3495: 3490: 3485: 3481: 3477: 3474: 3471: 3466: 3462: 3458: 3453: 3449: 3445: 3440: 3435: 3429: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3400: 3396: 3392: 3389: 3386: 3383: 3376: 3372: 3368: 3362: 3359: 3356: 3353: 3350: 3347: 3340: 3336: 3329: 3325: 3321: 3315: 3312: 3309: 3293: 3290: 3278:center of mass 3260: 3256: 3246: 3243: 3239: 3236: 3231: 3227: 3213: 3210: 3204: 3201: 3195: 3192: 3189: 3175: 3168: 3153: 3145: 3141: 3133: 3126: 3107: 3103: 3096: 3092: 3088: 3083: 3079: 3071: 3067: 3064: 3061: 3058: 3055: 3047: 3043: 3039: 3034: 3030: 3023: 3019: 3012: 3008: 3001: 2996: 2992: 2989: 2986: 2983: 2979: 2972: 2968: 2962: 2955: 2950: 2946: 2943: 2940: 2936: 2929: 2925: 2910: 2906: 2903: 2900: 2895: 2886:, to follow a 2875: 2821: 2817: 2800: 2795: 2792: 2786: 2783: 2780: 2764: 2760: 2753: 2736: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2712: 2709: 2706: 2703: 2700: 2695: 2691: 2687: 2684: 2681: 2678: 2675: 2672: 2669: 2664: 2660: 2656: 2653: 2650: 2647: 2644: 2641: 2636: 2632: 2628: 2623: 2619: 2606: 2590: 2586: 2579: 2575: 2571: 2566: 2562: 2554: 2550: 2547: 2544: 2536: 2532: 2528: 2523: 2519: 2512: 2508: 2501: 2497: 2490: 2486: 2480: 2476: 2470: 2462: 2458: 2454: 2451: 2448: 2445: 2439: 2435: 2420: 2407:point for the 2404: 2396: 2393: 2390: 2378: 2372: 2367: 2364: 2361: 2354: 2350: 2346: 2341: 2337: 2332: 2325: 2322: 2319: 2316: 2309: 2305: 2301: 2298: 2294: 2274: 2267: 2260: 2253: 2247:orbital period 2238: 2231: 2224: 2217: 2200: 2195: 2190: 2185: 2181: 2175: 2168: 2164: 2160: 2157: 2152: 2147: 2142: 2137: 2133: 2127: 2120: 2116: 2103: 2099: 2079: 2075: 2069: 2065: 2059: 2056: 2049: 2045: 2039: 2035: 2007: 2002: 1999: 1993: 1990: 1987: 1967: 1963: 1959: 1952: 1935: 1932: 1927: 1924: 1911: 1892: 1888: 1884: 1879: 1875: 1868: 1864: 1858: 1855: 1835: 1832: 1829: 1826: 1823: 1820: 1817: 1814: 1811: 1808: 1803: 1799: 1795: 1792: 1789: 1786: 1781: 1777: 1773: 1770: 1767: 1764: 1761: 1758: 1755: 1750: 1746: 1742: 1739: 1736: 1733: 1730: 1727: 1722: 1718: 1689: 1685: 1678: 1667: 1647: 1643: 1636: 1632: 1628: 1623: 1619: 1611: 1607: 1604: 1601: 1593: 1589: 1585: 1580: 1576: 1569: 1565: 1558: 1554: 1547: 1543: 1537: 1533: 1527: 1519: 1515: 1511: 1508: 1505: 1502: 1496: 1492: 1477: 1473: 1470: 1467: 1411: 1408: 1388: 1387: 1380:companion star 1375: 1364: 1360: 1356: 1345: 1341: 1333: 1325: 1305: 1301: 1296:Saturn's moon 1294: 1247: 1239: 1235: 1228: 1216: 1212: 1209: 1183: 1179: 1163: 1151: 1129: 1125: 1113: 1109: 1102:Main article: 1099: 1096: 1087: 1083: 1079: 1071: 1067: 1063: 1047: 1036: 1025: 1021: 1017: 1014: 1009: 1008:) or behind (L 1005: 997: 993: 986: 978: 974: 970: 967: 962: 953: 949: 945: 941: 938: 919: 911: 907: 903: 899: 895: 891: 887: 884: 875: 871: 851: 844: 837: 830: 823: 819: 815: 812: 801: 798: 775:Leonhard Euler 770: 766: 762: 758: 755: 745: 737: 722: 718: 714: 706: 694: 690: 679: 675: 667: 663: 648: 644: 640: 636: 632: 624: 620: 530: 529: 527: 526: 519: 512: 504: 501: 500: 497: 496: 491: 485: 482: 481: 478: 477: 474: 473: 468: 466:Gravity assist 462: 459: 458: 455: 454: 451: 450: 445: 440: 435: 429: 426: 425: 422: 421: 414: 411: 410: 407: 406: 401: 393: 392: 384: 380: 379: 374: 373: 370: 369: 366: 365: 360: 355: 350: 344: 341: 340: 337: 336: 329: 326: 325: 322: 321: 316: 311: 306: 301: 299:Orbital period 296: 291: 286: 281: 275: 272: 271: 268: 267: 264: 263: 261:Decaying orbit 258: 253: 248: 240: 239: 233: 226: 224:Transfer orbit 222: 221: 220: 218:Elliptic orbit 215: 213:Circular orbit 209: 200: 199: 196: 195: 192: 191: 186: 181: 176: 171: 166: 161: 156: 150: 145: 144: 141: 140: 133: 130: 129: 121: 120: 116: 115: 68: 64: 22:Lagrange Point 15: 13: 10: 9: 6: 4: 3: 2: 7786: 7775: 7772: 7770: 7767: 7766: 7764: 7749: 7745: 7740: 7738: 7729: 7728: 7725: 7719: 7716: 7714: 7711: 7709: 7706: 7704: 7701: 7700: 7698: 7696: 7692: 7686: 7683: 7681: 7678: 7676: 7673: 7671: 7667: 7664: 7662: 7659: 7657: 7656:Direct ascent 7654: 7653: 7651: 7649: 7645: 7639: 7638:Intergalactic 7636: 7634: 7631: 7629: 7626: 7622: 7619: 7617: 7614: 7613: 7612: 7609: 7607: 7604: 7603: 7601: 7597: 7589: 7586: 7584: 7581: 7579: 7576: 7574: 7573:Rocket engine 7571: 7570: 7569: 7566: 7562: 7559: 7557: 7554: 7552: 7549: 7547: 7544: 7542: 7539: 7537: 7534: 7533: 7532: 7529: 7527: 7524: 7520: 7517: 7515: 7512: 7510: 7507: 7506: 7505: 7504:Space capsule 7502: 7500: 7497: 7495: 7492: 7491: 7489: 7487: 7483: 7473: 7470: 7468: 7467:Space nursing 7465: 7463: 7460: 7458: 7455: 7451: 7448: 7447: 7446: 7443: 7441: 7438: 7434: 7431: 7430: 7429: 7426: 7425: 7423: 7421:Health issues 7419: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7393: 7390: 7386: 7383: 7382: 7381: 7378: 7376: 7375:Space Shuttle 7373: 7369: 7366: 7364: 7361: 7360: 7359: 7356: 7354: 7351: 7349: 7346: 7344: 7341: 7339: 7336: 7334: 7331: 7330: 7328: 7324: 7318: 7315: 7313: 7310: 7308: 7307:Space tourism 7305: 7303: 7300: 7298: 7295: 7293: 7290: 7288: 7285: 7281: 7278: 7276: 7273: 7271: 7268: 7267: 7266: 7263: 7259: 7256: 7255: 7254: 7251: 7250: 7248: 7244: 7241: 7239: 7235: 7229: 7228:Space weather 7226: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7206: 7204: 7201: 7199: 7196: 7194: 7191: 7187: 7184: 7182: 7179: 7177: 7174: 7172: 7169: 7168: 7167: 7164: 7160: 7157: 7155: 7152: 7150: 7147: 7145: 7142: 7141: 7140: 7137: 7135: 7132: 7131: 7129: 7127: 7123: 7115: 7112: 7111: 7110: 7107: 7103: 7100: 7098: 7095: 7093: 7092:Space command 7090: 7089: 7088: 7087:Space warfare 7085: 7081: 7078: 7076: 7073: 7071: 7068: 7066: 7063: 7061: 7058: 7057: 7056: 7053: 7049: 7048:United States 7046: 7044: 7041: 7039: 7036: 7034: 7031: 7029: 7026: 7024: 7021: 7019: 7016: 7014: 7011: 7009: 7006: 7005: 7004: 7001: 6999: 6996: 6992: 6989: 6987: 6984: 6982: 6979: 6977: 6974: 6973: 6972: 6969: 6967: 6966:Astrodynamics 6964: 6963: 6961: 6957: 6953: 6946: 6941: 6939: 6934: 6932: 6927: 6926: 6923: 6911: 6903: 6902: 6899: 6893: 6890: 6888: 6885: 6883: 6880: 6878: 6875: 6873: 6870: 6868: 6865: 6863: 6860: 6858: 6857:-body problem 6856: 6852: 6850: 6847: 6845: 6842: 6840: 6837: 6835: 6832: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6802: 6801: 6799: 6797: 6791: 6785: 6782: 6780: 6777: 6775: 6772: 6770: 6767: 6765: 6762: 6760: 6759:Oberth effect 6757: 6755: 6752: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6722: 6720: 6717: 6715: 6712: 6711: 6709: 6707: 6703: 6693: 6685: 6681: 6679: 6678:Orbital speed 6672: 6670: 6663: 6661: 6654: 6653: 6651: 6647: 6641: 6634: 6632: 6625: 6623: 6616: 6614: 6599: 6597: 6590: 6589: 6587: 6583: 6577: 6570: 6568: 6561: 6559: 6552: 6550: 6543: 6542: 6540: 6536: 6530: 6519: 6517: 6510: 6508: 6501: 6499: 6492: 6491: 6489: 6483: 6480: 6479: 6476: 6473: 6471: 6467: 6455: 6452: 6451: 6449: 6445: 6442: 6440: 6437: 6433: 6432:Earth's orbit 6430: 6429: 6428: 6425: 6424: 6422: 6420: 6417: 6413: 6410: 6408: 6405: 6403: 6400: 6398: 6395: 6394: 6392: 6388: 6385: 6383: 6380: 6378: 6375: 6374: 6372: 6371: 6369: 6363: 6357: 6354: 6352: 6349: 6347: 6344: 6342: 6339: 6337: 6334: 6332: 6329: 6327: 6324: 6322: 6319: 6317: 6314: 6312: 6309: 6307: 6304: 6302: 6299: 6295: 6292: 6290: 6289:Geostationary 6287: 6286: 6285: 6282: 6281: 6279: 6277: 6273: 6267: 6264: 6260: 6257: 6255: 6252: 6251: 6250: 6247: 6245: 6242: 6240: 6237: 6235: 6232: 6230: 6227: 6225: 6222: 6220: 6217: 6215: 6211: 6208: 6206: 6203: 6201: 6198: 6196: 6193: 6191: 6187: 6184: 6182: 6179: 6177: 6174: 6172: 6169: 6168: 6166: 6162: 6159: 6157: 6153: 6149: 6141: 6136: 6134: 6129: 6127: 6122: 6121: 6118: 6112: 6110: 6105: 6103: 6100: 6098: 6094: 6091: 6089: 6088:Pamela L. Gay 6085: 6083: 6079: 6076: 6073: 6070: 6067: 6064: 6061: 6058: 6055: 6052: 6049: 6046: 6042: 6039: 6038: 6037: 6035: 6028: 6025: 6022: 6018: 6015: 6011: 6007: 6004: 5999: 5995: 5992: 5988: 5987: 5986: 5982: 5978: 5974: 5973: 5969: 5960: 5956: 5950: 5947: 5934: 5930: 5924: 5921: 5916: 5915:SpaceNews.com 5912: 5906: 5903: 5898: 5894: 5887: 5884: 5879: 5875: 5868: 5865: 5860: 5856: 5852: 5848: 5840: 5834: 5831: 5827: 5803:on 2014-06-24 5799: 5795: 5788: 5781: 5778: 5773: 5769: 5762: 5759: 5756: 5752: 5749: 5744: 5741: 5736: 5732: 5728: 5724: 5720: 5716: 5712: 5708: 5701: 5690: 5687: 5681: 5678: 5665: 5661: 5657: 5651: 5648: 5644: 5640: 5634: 5631: 5626: 5622: 5618: 5614: 5610: 5606: 5602: 5598: 5594: 5590: 5586: 5580: 5577: 5561: 5554: 5547: 5545: 5543: 5539: 5534: 5530: 5523: 5520: 5512: 5506: 5503: 5498: 5494: 5490: 5486: 5482: 5478: 5473: 5468: 5464: 5460: 5453: 5450: 5445: 5441: 5437: 5433: 5429: 5425: 5420: 5415: 5411: 5407: 5403: 5396: 5393: 5388: 5384: 5380: 5376: 5372: 5368: 5363: 5358: 5354: 5350: 5346: 5342: 5336: 5333: 5321: 5317: 5311: 5308: 5303: 5299: 5295: 5291: 5287: 5283: 5282: 5277: 5270: 5267: 5261: 5256: 5252: 5248: 5243: 5238: 5234: 5230: 5226: 5219: 5216: 5210: 5205: 5201: 5197: 5192: 5187: 5183: 5179: 5175: 5168: 5165: 5160: 5156: 5151: 5146: 5142: 5138: 5133: 5128: 5124: 5120: 5116: 5112: 5108: 5105:Hui, Man-To; 5101: 5098: 5093: 5089: 5083: 5080: 5075: 5071: 5064: 5061: 5056:. NASA. 1998. 5052: 5046: 5044: 5042: 5038: 5025: 5021: 5015: 5012: 5007: 5003: 4999: 4993: 4990: 4982: 4981: 4976: 4970: 4967: 4955:on 2008-05-27 4954: 4950: 4949: 4944: 4940: 4939:Lo, Martin W. 4933: 4930: 4919: 4915: 4914:"About Orbit" 4909: 4906: 4894: 4890: 4884: 4881: 4876: 4872: 4869: 4863: 4860: 4844: 4837: 4830: 4828: 4824: 4817: 4809: 4804: 4765: 4763: 4759: 4752: 4747: 4746:Oberth effect 4744: 4742: 4739: 4737: 4734: 4732: 4729: 4727: 4724: 4722: 4715: 4713: 4710: 4708: 4705: 4703: 4700: 4698: 4695: 4693: 4690: 4689: 4684: 4673: 4670: 4659: 4654: 4652: 4646: 4638: 4636: 4634: 4630: 4622: 4618: 4610: 4608: 4606: 4593: 4589: 4576: 4574: 4570: 4566: 4557: 4555: 4554:gravitational 4547: 4543: 4542:space station 4531: 4529: 4523: 4515: 4512: 4503: 4497: 4493: 4485: 4481: 4478: 4474: 4473:Counter-Earth 4465: 4463: 4462:time constant 4459: 4458:saddle points 4446: 4440: 4436: 4432: 4416: 4403: 4401: 4397: 4393: 4389: 4385: 4381: 4369: 4365: 4361: 4360:space weather 4357: 4349: 4345: 4329: 4326:(yellow) and 4325: 4320: 4310: 4305: 4298: 4295: 4290: 4285: 4273: 4264: 4259: 4250: 4245: 4236: 4227: 4223: 4214: 4205: 4200: 4191: 4186: 4177: 4168: 4164: 4155: 4146: 4141: 4132: 4127: 4118: 4109: 4105: 4096: 4091: 4086: 4081: 4076: 4071: 4066: 4062: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4016: 4007: 4002: 3997: 3992: 3987: 3982: 3977: 3973: 3964: 3959: 3954: 3949: 3944: 3939: 3934: 3930: 3918: 3913: 3908: 3903: 3898: 3893: 3888: 3884: 3878: 3870: 3865: 3860: 3855: 3847: 3842: 3838: 3788: 3782: 3740: 3718: 3711: 3709: 3699: 3685: 3678: 3670: 3664: 3647: 3645: 3641: 3637: 3633: 3629: 3625: 3621: 3620: 3599: 3594: 3586: 3580: 3576: 3558: 3555:; force from 3551: 3547: 3543: 3542:sign function 3539: 3535: 3528: 3524: 3504: 3500: 3488: 3483: 3479: 3475: 3472: 3464: 3460: 3456: 3451: 3447: 3433: 3427: 3421: 3418: 3415: 3409: 3406: 3398: 3390: 3387: 3384: 3374: 3370: 3366: 3360: 3354: 3348: 3345: 3338: 3334: 3327: 3323: 3319: 3313: 3310: 3307: 3299: 3291: 3289: 3287: 3283: 3279: 3275: 3271: 3267: 3252: 3237: 3235: 3224: 3211: 3208: 3202: 3199: 3193: 3190: 3187: 3179: 3174: 3167: 3163: 3160: âˆ’  3159: 3151: 3139: 3132: 3125: 3105: 3101: 3094: 3090: 3086: 3081: 3077: 3069: 3065: 3062: 3059: 3056: 3053: 3045: 3041: 3037: 3032: 3028: 3021: 3017: 3010: 3006: 2999: 2994: 2990: 2987: 2984: 2981: 2977: 2970: 2966: 2960: 2953: 2948: 2944: 2941: 2938: 2934: 2927: 2923: 2901: 2899: 2893: 2889: 2885: 2881: 2814: 2798: 2793: 2790: 2784: 2781: 2778: 2770: 2759: 2752: 2747: 2734: 2731: 2728: 2725: 2719: 2716: 2710: 2707: 2701: 2693: 2689: 2685: 2679: 2676: 2673: 2670: 2662: 2658: 2654: 2648: 2645: 2642: 2634: 2630: 2626: 2621: 2617: 2588: 2584: 2577: 2573: 2569: 2564: 2560: 2552: 2548: 2545: 2542: 2534: 2530: 2526: 2521: 2517: 2510: 2506: 2499: 2495: 2488: 2484: 2478: 2474: 2468: 2460: 2452: 2449: 2446: 2437: 2433: 2414: 2410: 2401: 2391: 2389: 2376: 2370: 2362: 2352: 2348: 2344: 2339: 2335: 2330: 2323: 2317: 2307: 2303: 2299: 2296: 2292: 2277:, divided by 2273: 2266: 2263:, is that of 2259: 2252: 2248: 2243: 2237: 2230: 2223: 2216: 2198: 2193: 2188: 2183: 2179: 2173: 2166: 2162: 2158: 2155: 2150: 2145: 2140: 2135: 2131: 2125: 2118: 2114: 2097: 2077: 2073: 2067: 2063: 2057: 2054: 2047: 2043: 2037: 2033: 2021: 2005: 2000: 1997: 1991: 1988: 1985: 1977: 1973: 1958: 1951: 1933: 1930: 1925: 1922: 1914: 1890: 1886: 1882: 1877: 1873: 1866: 1862: 1856: 1853: 1833: 1830: 1827: 1824: 1821: 1815: 1812: 1806: 1801: 1797: 1790: 1784: 1779: 1775: 1768: 1765: 1762: 1759: 1753: 1748: 1744: 1737: 1734: 1731: 1725: 1720: 1716: 1707: 1706: 1702: 1699: 1695: 1684: 1677: 1673: 1665: 1645: 1641: 1634: 1630: 1626: 1621: 1617: 1609: 1605: 1602: 1599: 1591: 1587: 1583: 1578: 1574: 1567: 1563: 1556: 1552: 1545: 1541: 1535: 1531: 1525: 1517: 1509: 1506: 1503: 1494: 1490: 1468: 1466: 1464: 1460: 1456: 1452: 1447: 1445: 1441: 1437: 1433: 1426: 1421: 1416: 1409: 1407: 1405: 1401: 1397: 1396:3753 Cruithne 1393: 1385: 1381: 1373: 1369: 1365: 1354: 1350: 1346: 1339: 1331: 1323: 1319: 1315: 1311: 1299: 1295: 1291: 1280: 1269: 1259: 1255: 1251: 1248: 1245: 1233: 1229: 1226: 1222: 1210: 1206: 1195: 1177: 1176: 1175: 1171: 1169: 1161: 1157: 1149: 1145: 1141: 1140: 1135: 1123: 1119: 1105: 1097: 1095: 1093: 1077: 1060: 1058: 1046: 1035: 1015: 1013: 1003: 983: 968: 966: 960: 939: 937: 935: 934: 929: 925: 917: 885: 883: 881: 869: 865: 861: 857: 850: 843: 836: 829: 813: 811: 807: 799: 797: 795: 791: 787: 782: 780: 776: 756: 754: 751: 743: 735: 731: 726: 712: 704: 700: 687: 685: 673: 660: 658: 654: 630: 617: 615: 611: 607: 606:gravitational 602: 600: 596: 592: 591:gravitational 588: 584: 580: 574: 541: 537: 525: 520: 518: 513: 511: 506: 505: 503: 502: 495: 492: 490: 487: 486: 480: 479: 472: 471:Oberth effect 469: 467: 464: 463: 457: 456: 449: 446: 444: 441: 439: 436: 434: 431: 430: 424: 423: 419: 412: 405: 402: 400: 397: 396: 390: 386: 385: 383: 377: 376:N-body orbits 372: 371: 364: 361: 359: 358:Perturbations 356: 354: 351: 349: 346: 345: 339: 338: 334: 327: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 276: 270: 269: 262: 259: 257: 254: 252: 249: 247: 244: 243: 237: 234: 232: 228: 227: 225: 219: 216: 214: 211: 210: 204: 198: 197: 190: 187: 185: 182: 180: 179:Orbital nodes 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 151: 148: 143: 142: 138: 131: 127: 123: 122: 119:Astrodynamics 117: 113: 112: 106: 97: 92: 81: 74: 54: 50: 46: 41: 33: 29: 25: 23: 7648:Space launch 7633:Interstellar 7599:Destinations 7368:Apollo–Soyuz 7317:Space diving 7302:Space toilet 7126:Applications 7043:Soviet Union 7003:Space policy 6998:Space launch 6872:Perturbation 6854: 6848: 6829:Ground track 6739:Gravity turn 6690:   6683: 6676:   6667:   6658:   6638:   6629:   6620:   6613:True anomaly 6611:   6596:Mean anomaly 6594:   6574:   6565:   6556:   6547:   6527:   6514:   6505:   6498:Eccentricity 6496:   6454:Lunar cycler 6427:Heliocentric 6367:other points 6316:Medium Earth 6223: 6214:Non-inclined 6108: 6081: 6033: 6031: 5976: 5958: 5949: 5937:. Retrieved 5933:the original 5923: 5914: 5905: 5896: 5886: 5877: 5867: 5850: 5833: 5811: 5805:. Retrieved 5798:the original 5793: 5780: 5771: 5761: 5743: 5710: 5706: 5689: 5680: 5668:. Retrieved 5664:the original 5659: 5656:"ISEE-3/ICE" 5650: 5638: 5633: 5600: 5596: 5579: 5569:February 28, 5567:. Retrieved 5560:the original 5532: 5522: 5505: 5462: 5458: 5452: 5409: 5405: 5395: 5352: 5348: 5335: 5324:. Retrieved 5310: 5285: 5279: 5269: 5232: 5228: 5218: 5181: 5177: 5167: 5122: 5118: 5100: 5092:www.nasa.gov 5091: 5082: 5073: 5063: 5028:. Retrieved 5024:the original 5014: 5005: 4992: 4979: 4969: 4957:. Retrieved 4953:the original 4947: 4932: 4921:. Retrieved 4917: 4908: 4897:. Retrieved 4892: 4883: 4874: 4862: 4850:. Retrieved 4843:the original 4642: 4614: 4578:Earth–Moon L 4577: 4559:Earth–Moon L 4558: 4536:Earth–Moon L 4535: 4504: 4466: 4447: 4404: 4400:NEO Surveyor 4378:include the 4336: 4289: 4225:Sun–Neptune 4064:Sun–Jupiter 3886:Sun–Mercury 3723: 3671: 3663:interference 3648: 3632:Solar System 3630:such as the 3623: 3618: 3603: 3598:STL 3D model 3556: 3549: 3545: 3537: 3533: 3526: 3522: 3297: 3295: 3254: 3225: 3180: 3172: 3165: 3161: 3157: 3149: 3137: 3130: 3123: 2908: 2878:one sees an 2815: 2771:, given by: 2757: 2750: 2748: 2418: 2271: 2264: 2257: 2250: 2244: 2235: 2228: 2221: 2214: 2022: 1978:, given by: 1971: 1956: 1949: 1909: 1708: 1696:is the only 1693: 1682: 1675: 1671: 1663: 1475: 1448: 1429: 1389: 1368:binary stars 1254:Mars trojans 1172: 1155: 1137: 1107: 1062:The points L 1061: 1044: 1033: 1019: 991: 947: 931: 893: 848: 847:and that of 841: 834: 827: 821: 809: 783: 760: 727: 688: 674:near their L 661: 628: 618: 603: 582: 578: 539: 533: 381: 256:Radial orbit 207:eccentricity 189:True anomaly 174:Mean anomaly 164:Eccentricity 95: 45:contour plot 28: 24:(video game) 21: 7606:Sub-orbital 7541:Space probe 7407:New Shepard 7385:Shuttle–Mir 7144:Archaeology 7097:Space force 7080:Moon Treaty 6952:Spaceflight 6834:Hill sphere 6669:Mean motion 6549:Inclination 6538:Orientation 6439:Mars cycler 6377:Areocentric 6249:Synchronous 6111:, Chapter 5 5981:Essai (PDF) 5000:(1867–92). 4702:Gegenschein 4556:influence. 4484:comic books 4467:Sun–Earth L 4448:Sun–Earth L 4405:Sun–Earth L 4370:) reaches L 4337:Sun–Earth L 4166:Sun–Uranus 4107:Sun–Saturn 3840:Earth–Moon 3773:is located 3761:is located 3619:halo orbits 3282:equilibrium 3148:cases, and 2769:Hill sphere 2102:or at the L 1976:Hill sphere 1382:, known as 1338:azimuthally 1258:5261 Eureka 1223:, known as 1168:Trojan camp 1057:kidney bean 701:called the 587:equilibrium 389:Halo orbits 353:Hill sphere 169:Inclination 73:high points 7763:Categories 7675:Launch pad 7666:Expendable 7616:Geocentric 7583:Solar sail 7526:Spaceplane 7486:Spacecraft 7280:Space suit 7258:commercial 7186:Television 6981:Space Race 6774:Rendezvous 6470:Parameters 6306:High Earth 6276:Geocentric 6229:Osculating 6186:Elliptical 6077:—Tony Dunn 6065:—John Baez 5939:1 February 5826:penalties. 5807:2011-01-25 5326:2010-10-27 5242:1910.07471 5191:1910.07466 5132:2111.05058 5125:(2): L25. 5020:"L2 Orbit" 4959:2008-06-09 4923:2022-01-01 4899:2021-10-27 4818:References 4800:(sequence 4592:L5 Society 4532:Earth–Moon 4364:solar wind 3975:Sun–Earth 3932:Sun–Venus 3790:Body pair 3739:barycenter 3266:barycenter 2892:halo orbit 2824:is arcsin( 2094:Since the 1436:barycenter 1400:Epimetheus 1372:Roche lobe 1330:Polydeuces 1328:point and 1160:Greek camp 1148:Trojan War 959:barycenter 804:See also: 750:halo orbit 433:Mass ratio 348:Barycenter 7685:Spaceport 7536:Satellite 7253:Astronaut 7181:Telephone 7134:Astronomy 7055:Space law 7008:Australia 6819:Ephemeris 6796:mechanics 6706:Maneuvers 6649:Variation 6412:Libration 6407:Lissajous 6311:Low Earth 6301:Graveyard 6200:Horseshoe 5983:; source 5772:SpaceNews 5735:121179935 5670:August 8, 5625:121374703 5159:243860678 5074:Space.com 5030:28 August 4768:Actually 4611:Sun–Venus 4498:of this L 4299:Sun–Earth 4018:Sun–Mars 3835:/SMA (%) 3807:/SMA (%) 3587:Stability 3540:) is the 3476:− 3419:− 3410:⁡ 3388:− 3349:⁡ 3314:− 3270:resultant 3209:μ 3191:≈ 3178:), then: 3063:− 2988:− 2942:− 2791:μ 2782:≈ 2729:μ 2726:− 2720:μ 2708:− 2702:μ 2686:− 2680:μ 2674:− 2649:μ 2646:− 2163:ρ 2156:≈ 2115:ρ 2055:≈ 1998:μ 1989:≈ 1854:μ 1828:μ 1825:− 1816:μ 1791:μ 1785:− 1769:μ 1763:− 1735:− 1732:μ 1603:− 1526:− 1507:− 1144:epic poem 1016:Stability 629:different 273:Equations 201:Types of 7737:Category 7402:Tiangong 7397:Shenzhou 7326:Programs 7171:Internet 6976:Timeline 6585:Position 6210:Inclined 6181:Circular 6027:ZIP file 6017:Archived 5994:Archived 5959:phys.org 5841:(1961). 5751:Archived 5497:16724058 5444:15519581 5387:12983980 5320:Archived 4977:(1765). 4655:See also 4639:Sun–Mars 4390:and the 3779: km 3767: km 3755: km 2894:around L 2763:) then L 2284:≈ 1.73: 1962:) then L 1324:at its L 1308:points, 1230:The Sun– 744:around L 595:orbiting 7611:Orbital 7412:Artemis 7343:Voskhod 7338:Mercury 7246:General 6986:Records 6971:History 6959:General 6794:Orbital 6764:Phasing 6724:Delta-v 6529:Apsides 6523:,  6321:Molniya 6239:Parking 6176:Capture 6164:General 5897:IAC2013 5855:Bibcode 5715:Bibcode 5639:et al., 5605:Bibcode 5477:Bibcode 5424:Bibcode 5367:Bibcode 5290:Bibcode 5247:Bibcode 5196:Bibcode 5137:Bibcode 4806:in the 4803:A230242 4788:⁠ 4775:√ 4770:⁠ 4721:Society 4569:Queqiao 4546:SMART-1 4093:−777.91 4047:−227.94 3979:149.598 3961:−108.21 3915:−57.909 3732:, and L 3612:, and L 2872:⁠ 2854:⁠ 2850:⁠ 2826:⁠ 2279:√ 2270:around 1314:Calypso 1310:Telesto 1285:2007 NS 1274:1998 VF 1263:1999 UJ 1232:Neptune 1200:2020 XL 1189:2010 TK 1122:Jupiter 1118:trojans 1070:, and L 1052:⁠ 1030:⁠ 922:is the 757:History 684:Jupiter 639:, and L 577:; also 47:of the 7748:Portal 7741:  7730:  7546:Lander 7499:Rocket 7363:Skylab 7358:Apollo 7348:Gemini 7333:Vostok 7038:Russia 6450:Other 6351:Tundra 6219:Kepler 6195:Escape 6148:orbits 5977:Œuvres 5733:  5623:  5495:  5442:  5385:  5281:Icarus 5157:  4964:(16MB) 4895:. NASA 4852:15 Dec 4792:24.959 4773:25 + 3 4590:. The 4437:. The 4348:DSCOVR 4083:832.65 4073:726.45 4068:778.34 4042:0.4763 4037:229.03 4032:0.4748 4027:226.86 4022:227.94 4004:−149.6 3984:148.11 3956:0.9373 3951:109.22 3946:0.9315 3936:108.21 3910:0.3815 3900:0.3806 3895:57.689 3890:57.909 3880:0.7084 3872:−0.381 3862:0.4489 3844:0.3844 3626:-body 3521:where 3136:, and 2415:system 2213:where 1846:where 1662:where 1370:, the 1344:point. 1322:Helene 1298:Tethys 1282:, and 1086:, or L 977:points 933:Planck 856:orbits 734:Euclid 655:of an 653:vertex 538:, the 103:  101:  96:· 94:  89:  87:  7551:Rover 7353:Soyuz 7176:Radio 7033:Japan 7028:India 7013:China 6692:Epoch 6481:Shape 6419:Lunar 6373:Mars 6365:About 6336:Polar 6156:Types 6034:Essai 5801:(PDF) 5790:(PDF) 5731:S2CID 5703:(PDF) 5621:S2CID 5563:(PDF) 5556:(PDF) 5514:(PDF) 5493:S2CID 5467:arXiv 5440:S2CID 5414:arXiv 5383:S2CID 5357:arXiv 5237:arXiv 5186:arXiv 5155:S2CID 5127:arXiv 5054:(PDF) 4984:(PDF) 4846:(PDF) 4839:(PDF) 4621:Venus 4598:and L 4582:and L 4492:Venus 4475:" in 4452:and L 4415:umbra 4275:0.003 4261:2.602 4247:2.557 4216:0.002 4202:2.461 4188:2.421 4157:0.016 4143:4.635 4129:4.496 4098:0.055 4088:6.978 4078:6.667 4052:0.000 4009:0.000 3999:1.004 3994:151.1 3989:0.997 3966:0.000 3941:107.2 3920:0.000 3905:58.13 3867:16.78 3857:15.09 3849:0.326 3831:1 + L 3704:and L 3691:and L 3274:ratio 3259:and L 3242:and L 3144:and L 2890:or a 2842:151.1 2830:695.5 2413:Earth 2096:tidal 1966:and L 1404:Janus 1353:Theia 1318:Dione 1304:and L 1238:and L 1215:and L 1182:and L 1156:Iliad 1142:, an 1139:Iliad 1134:Homer 1128:and L 1112:and L 1024:and L 996:and L 992:The L 973:and L 948:The L 944:point 894:The L 890:point 864:Earth 822:The L 818:point 721:and L 678:and L 666:and L 647:and L 154:Apsis 105:Earth 98: 67:and L 7713:Pass 7668:and 6484:Size 6423:Sun 6402:Halo 6254:semi 5941:2014 5672:2015 5571:2018 5032:2016 4918:NASA 4854:2015 4808:OEIS 4797:7944 4623:'s L 4511:NOAA 4482:and 4477:pulp 4456:are 4384:Wind 4366:and 4324:Gaia 4322:The 4011:1752 3968:1428 3775:−381 3679:and 3672:The 2884:Gaia 2857:6371 2234:and 2220:and 1915:and 1701:root 1698:real 1681:and 1440:mass 1402:and 1359:or L 1332:at L 1312:and 1250:Mars 1197:and 858:the 833:and 730:Gaia 623:to L 91:WMAP 61:blue 7380:Mir 6259:sub 6171:Box 6095:by 5878:ESA 5723:doi 5711:108 5613:doi 5601:103 5485:doi 5463:603 5432:doi 5410:660 5375:doi 5353:129 5298:doi 5255:doi 5233:482 5204:doi 5182:480 5145:doi 5123:922 4794:935 4309:ACE 4277:004 4268:498 4254:615 4240:383 4231:498 4218:546 4209:870 4195:941 4181:801 4172:870 4150:426 4136:492 4122:362 4113:426 4054:018 3925:683 3922:009 3777:700 3765:900 3763:448 3753:400 3751:326 3749:is 3728:, L 3608:, L 3570:, L 3566:, L 3544:of 3407:sgn 3346:sgn 2864:1.5 2409:Sun 1366:In 1136:'s 1082:, L 1066:, L 910:, L 860:Sun 769:, L 765:, L 635:, L 581:or 534:In 205:by 57:red 7765:: 6607:, 6603:, 6212:/ 6188:/ 5957:. 5913:. 5895:. 5876:. 5849:. 5810:. 5792:. 5770:. 5729:. 5721:. 5709:. 5705:. 5658:. 5619:. 5611:. 5599:. 5595:. 5587:; 5541:^ 5531:. 5491:. 5483:. 5475:. 5461:. 5438:. 5430:. 5422:. 5408:. 5381:. 5373:. 5365:. 5351:. 5343:; 5296:. 5286:42 5284:. 5278:. 5253:. 5245:. 5231:. 5227:. 5202:. 5194:. 5180:. 5176:. 5153:. 5143:. 5135:. 5121:. 5117:. 5109:; 5090:. 5072:. 5040:^ 5004:. 4941:; 4916:. 4891:. 4873:. 4826:^ 4790:≈ 4777:69 4761:^ 4635:. 4496:AU 4402:. 4386:, 4382:, 4270:.3 4266:−4 4256:.4 4242:.4 4233:.4 4211:.6 4207:−2 4197:.3 4183:.1 4174:.7 4159:67 4152:.4 4148:−1 4138:.8 4124:.5 4115:.7 4100:63 4057:82 3874:68 3851:39 3532:, 3288:. 3203:12 3129:, 2868:10 2846:10 2834:10 1406:. 1277:31 1271:, 1260:, 1256:: 936:. 916:au 880:au 796:. 601:. 570:dʒ 564:ɑː 43:A 6944:e 6937:t 6930:v 6855:n 6687:0 6684:t 6674:v 6665:n 6656:T 6636:l 6627:L 6618:E 6609:f 6605:θ 6601:ν 6592:M 6572:ϖ 6563:ω 6554:Ί 6545:i 6525:q 6521:Q 6512:b 6503:a 6494:e 6139:e 6132:t 6125:v 6043:— 6023:. 6008:— 6000:. 5961:. 5943:. 5899:. 5880:. 5861:. 5857:: 5845:5 5823:2 5819:2 5817:L 5814:2 5812:L 5774:. 5737:. 5725:: 5717:: 5698:3 5674:. 5641:" 5627:. 5615:: 5607:: 5573:. 5516:. 5499:. 5487:: 5479:: 5469:: 5446:. 5434:: 5426:: 5416:: 5389:. 5377:: 5369:: 5359:: 5329:. 5304:. 5300:: 5292:: 5263:. 5257:: 5249:: 5239:: 5212:. 5206:: 5198:: 5188:: 5161:. 5147:: 5139:: 5129:: 5094:. 5076:. 5034:. 4986:. 4962:. 4926:. 4902:. 4877:. 4856:. 4810:) 4785:2 4782:/ 4719:5 4717:L 4649:1 4625:3 4600:5 4596:4 4584:5 4580:4 4561:2 4550:1 4538:1 4526:3 4518:3 4507:3 4500:3 4488:3 4469:3 4454:2 4450:1 4443:2 4427:2 4423:2 4419:2 4411:2 4407:2 4376:1 4372:1 4352:1 4339:1 4332:2 4313:1 4252:4 4238:4 4229:4 4193:2 4179:2 4170:2 4134:1 4120:1 4111:1 3833:3 3826:3 3824:L 3819:2 3817:L 3812:2 3810:L 3805:1 3798:1 3796:L 3771:3 3759:2 3747:1 3743:3 3734:3 3730:2 3726:1 3706:5 3702:4 3693:5 3689:4 3687:L 3683:5 3681:L 3676:4 3674:L 3667:2 3659:1 3655:1 3651:1 3624:n 3614:3 3610:2 3606:1 3572:2 3568:1 3564:3 3560:2 3557:M 3553:1 3550:M 3546:x 3538:x 3534:R 3530:1 3527:M 3523:r 3505:3 3501:R 3494:) 3489:R 3484:2 3480:M 3473:r 3470:) 3465:2 3461:M 3457:+ 3452:1 3448:M 3444:( 3439:( 3434:G 3428:+ 3425:) 3422:r 3416:R 3413:( 3399:2 3395:) 3391:r 3385:R 3382:( 3375:2 3371:M 3367:G 3361:+ 3358:) 3355:r 3352:( 3339:2 3335:r 3328:1 3324:M 3320:G 3311:= 3308:a 3298:a 3261:5 3257:4 3244:5 3240:4 3238:L 3232:3 3228:3 3212:. 3200:7 3194:R 3188:r 3176:1 3173:M 3169:2 3166:M 3162:r 3158:R 3154:3 3150:r 3146:2 3142:1 3138:R 3134:2 3131:M 3127:1 3124:M 3106:3 3102:R 3095:2 3091:M 3087:+ 3082:1 3078:M 3070:) 3066:r 3060:R 3057:+ 3054:R 3046:2 3042:M 3038:+ 3033:1 3029:M 3022:2 3018:M 3011:( 3007:= 3000:2 2995:) 2991:r 2985:R 2982:2 2978:( 2971:2 2967:M 2961:+ 2954:2 2949:) 2945:r 2939:R 2935:( 2928:1 2924:M 2911:3 2904:3 2902:L 2896:2 2876:2 2866:× 2860:/ 2844:× 2838:/ 2832:× 2822:2 2818:1 2799:3 2794:3 2785:R 2779:r 2765:2 2761:1 2758:M 2754:2 2751:M 2735:0 2732:= 2723:) 2717:2 2714:( 2711:x 2705:) 2699:( 2694:2 2690:x 2683:) 2677:2 2671:3 2668:( 2663:3 2659:x 2655:+ 2652:) 2643:3 2640:( 2635:4 2631:x 2627:+ 2622:5 2618:x 2607:1 2589:3 2585:R 2578:2 2574:M 2570:+ 2565:1 2561:M 2553:) 2549:r 2546:+ 2543:R 2535:2 2531:M 2527:+ 2522:1 2518:M 2511:1 2507:M 2500:( 2496:= 2489:2 2485:r 2479:2 2475:M 2469:+ 2461:2 2457:) 2453:r 2450:+ 2447:R 2444:( 2438:1 2434:M 2421:2 2411:– 2405:2 2394:2 2392:L 2377:. 2371:3 2366:) 2363:R 2360:( 2353:1 2349:M 2345:, 2340:2 2336:M 2331:T 2324:= 2321:) 2318:r 2315:( 2308:2 2304:M 2300:, 2297:s 2293:T 2281:3 2275:1 2272:M 2268:2 2265:M 2261:1 2258:M 2254:2 2251:M 2239:2 2236:d 2232:1 2229:d 2225:2 2222:ρ 2218:1 2215:ρ 2199:3 2194:) 2189:R 2184:1 2180:d 2174:( 2167:1 2159:3 2151:3 2146:) 2141:r 2136:2 2132:d 2126:( 2119:2 2104:2 2100:1 2078:3 2074:R 2068:1 2064:M 2058:3 2048:3 2044:r 2038:2 2034:M 2006:3 2001:3 1992:R 1986:r 1972:r 1968:2 1964:1 1960:1 1957:M 1953:2 1950:M 1934:R 1931:r 1926:= 1923:x 1912:2 1910:M 1891:2 1887:M 1883:+ 1878:1 1874:M 1867:2 1863:M 1857:= 1834:0 1831:= 1822:x 1819:) 1813:2 1810:( 1807:+ 1802:2 1798:x 1794:) 1788:( 1780:3 1776:x 1772:) 1766:2 1760:3 1757:( 1754:+ 1749:4 1745:x 1741:) 1738:3 1729:( 1726:+ 1721:5 1717:x 1694:r 1690:1 1686:2 1683:M 1679:1 1676:M 1672:R 1668:1 1664:r 1646:3 1642:R 1635:2 1631:M 1627:+ 1622:1 1618:M 1610:) 1606:r 1600:R 1592:2 1588:M 1584:+ 1579:1 1575:M 1568:1 1564:M 1557:( 1553:= 1546:2 1542:r 1536:2 1532:M 1518:2 1514:) 1510:r 1504:R 1501:( 1495:1 1491:M 1478:1 1471:1 1469:L 1386:. 1376:1 1361:5 1357:4 1342:5 1334:5 1326:4 1306:5 1302:4 1293:. 1288:2 1266:7 1246:. 1240:5 1236:4 1234:L 1217:5 1213:4 1208:. 1203:5 1192:7 1184:5 1180:4 1164:5 1152:4 1130:5 1126:4 1124:L 1114:5 1110:4 1088:3 1084:2 1080:1 1072:3 1068:2 1064:1 1048:2 1045:M 1041:/ 1037:1 1034:M 1026:5 1022:4 1010:5 1006:4 998:5 994:4 987:4 975:5 971:4 969:L 963:3 954:3 950:3 942:3 940:L 920:2 912:2 908:1 904:2 900:2 896:2 888:2 886:L 876:1 872:1 852:1 849:M 845:2 842:M 838:2 835:M 831:1 828:M 824:1 816:1 814:L 771:3 767:2 763:1 746:2 738:2 723:2 719:1 715:2 707:1 695:2 691:1 680:5 676:4 668:5 664:4 649:5 645:4 641:3 637:2 633:1 625:5 621:1 573:/ 567:n 561:r 558:ÉĄ 555:ˈ 552:ə 549:l 546:/ 542:( 523:e 516:t 509:v 391:) 387:( 238:) 229:( 69:5 65:4 26:.

Index

Lagrange Point (video game)


contour plot
effective potential
centrifugal force
high points

WMAP
Earth

Orbital mechanics
Orbital elements
Apsis
Argument of periapsis
Eccentricity
Inclination
Mean anomaly
Orbital nodes
Semi-major axis
True anomaly
two-body orbits
Circular orbit
Elliptic orbit
Transfer orbit
Hohmann transfer orbit
Bi-elliptic transfer orbit
Parabolic orbit
Hyperbolic orbit
Radial orbit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑