Knowledge (XXG)

Landmark detection

Source đź“ť

209:(CNNs), have revolutionized landmark detection by allowing computers to learn the features from large datasets of images. By training a CNN on a dataset of images with labeled facial landmarks, the algorithm can learn to detect these landmarks in new images with high accuracy even when they appear in different lighting conditions, at different angles, or in partially occluded views. 235:
at the training stage try to learn the method of correct determination of landmarks. This phase is an iterative process and, accordingly, is performed in several iterations. As a result of the completion of the last iteration, a system will be obtained that can correctly determine the landmark with a
93:(AAM) introduced in 1998. Since then there has been a number of extensions and improvements to the method. These are largely improvements to the fitting algorithm and can be classified into two groups: analytical fitting methods, and learning-based fitting methods. Analytical methods apply 113:
and other fitting methods. In general, the analytic fitting methods are more accurate and do not need training, while the learning-based fitting methods are faster, but need to be trained. Other extensions to the basic AAM method analyse
140:
The purpose of landmark detection in fashion images is for classification purposes. This aids in the retrieval of images with specified features from a database or general search. An example of a fashion landmark is the location of the
73:
Finding facial landmarks is an important step in facial identification of people in an image. Facial landmarks can also be used to extract information about mood and intention of the person. Methods used fall in to three categories:
101:. This algorithm is very slow but better ones have been proposed such as the project out inverse compositional (POIC) algorithm and the simultaneous inverse compositional (SIC) algorithm. Learning-based fitting methods use 156:
methods. This has been helped along enormously by the publication of a number of large fashion datasets that can be used for training. These methods include regression-based models, constraint-based models, and
161:
models. The particular problems of fashion landmark detection (deformation) have led to pose estimation models which detect and take into account the pose of the model wearing the clothes.
201:
Deep learning has had a significant impact on autonomous facial landmark detection by enabling more accurate and efficient detection of landmarks in real-world photos. With traditional
616: 977: 646: 568: 940: 641: 422:
Schwendicke, Falk; Chaurasia, Akhilanand; Arsiwala, Lubaina; Lee, Jae-Hong; Elhennawy, Karim; Jost-Brinkmann, Paul-Georg; Demarco, Flavio; Krois, Joachim (2021).
373:
Kartynnik, Yury; Ablavatski, Artsiom; Grishchenko, Ivan; Grundmann, Matthias (2019). "Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs".
873: 606: 601: 636: 89:
Holistic methods are pre-progammed with statistical information on face shape and landmark location coefficients. The classic holistic method is the
982: 704: 240:
method, there are particles that search for landmarks, and each of them uses a certain formula in each iteration to optimize landmark detection.
721: 741: 529: 651: 621: 611: 591: 561: 806: 631: 661: 149: 811: 796: 554: 205:
techniques, detecting facial landmarks could be challenging due to variations in lighting, head position, and occlusion, but
145:
of a dress. Fashion landmark detection is particularly difficult due to the extreme deformation that can occur in clothing.
905: 836: 687: 206: 158: 656: 237: 190: 98: 801: 514:
2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)
853: 766: 178: 44: 47:
where it is used to identify key points on a face. It also has important applications in medicine, identifying
957: 831: 512:
Zhang, Yungang; Zhang, Cai; Du, Fei (2019). "A Brief Review of Recent Progress in Fashion Landmark Detection".
79: 893: 883: 626: 90: 930: 898: 677: 399: 232: 186: 94: 935: 746: 692: 858: 841: 821: 791: 110: 863: 726: 404: 213: 83: 48: 987: 786: 771: 731: 535: 500: 482: 461: 374: 122:
intensity. This helps with fitting unseen parts of the face which basic AAM finds troublesome.
816: 761: 713: 525: 453: 221: 106: 925: 888: 736: 596: 517: 492: 443: 435: 102: 20: 920: 868: 577: 202: 40: 424:"Deep learning for cephalometric landmark detection: Systematic review and meta-analysis" 521: 945: 915: 826: 751: 682: 448: 423: 971: 910: 539: 504: 465: 182: 153: 52: 848: 36: 756: 439: 496: 32: 473:
Wu, Yue; Ji, Qiang (2019). "Facial Landmark Detection: A Literature Survey".
43:. Methods used in navigation have been extended to other fields, notably in 396:
LANDMARK DETECTION ON CEPHALOMETRIC X-RAYS USING PARTICLE SWARM OPTIMISATION
170: 457: 174: 75: 28: 142: 115: 487: 379: 152:
have been used in the past. However, it is now more common to use
546: 119: 31:
in an image. This originally referred to finding landmarks for
550: 217: 212:
In particular, solutions based on this approach have achieved
105:
techniques to predict the facial coefficients. These can use
177:
in images. Nowadays the task usually is solved using
148:
Some classical methods of feature detection such as
712: 703: 670: 584: 562: 8: 709: 569: 555: 547: 486: 447: 403: 378: 193:can also be useful to perform this task. 475:International Journal of Computer Vision 978:Applications of artificial intelligence 248: 722:3D reconstruction from multiple images 27:is the process of finding significant 742:Simultaneous localization and mapping 7: 522:10.1109/CISP-BMEI48845.2019.8966051 807:Automatic number-plate recognition 14: 150:scale-invariant feature transform 812:Automated species identification 983:Applications of computer vision 797:Audio-visual speech recognition 345:Zhang, Zhang & Du, pp. 1–4. 642:Recognition and categorization 1: 906:Optical character recognition 837:Content-based image retrieval 207:Convolutional Neural Networks 428:Clinical Oral Investigations 354:Zhang, Zhang & Du, p. 2. 336:Zhang, Zhang & Du, p. 1. 327:Zhang, Zhang & Du, p. 1. 35:purposes – for instance, in 398:(Thesis). RMIT University. 238:particle swarm optimization 220:and found its usage within 191:particle swarm optimization 1004: 802:Automatic image annotation 637:Noise reduction techniques 440:10.1007/s00784-021-03990-w 394:WIJESINGHE, GAYAN (2005). 179:Artificial Neural Networks 954: 767:Free viewpoint television 497:10.1007/s11263-018-1097-z 236:certain accuracy. In the 118:in the image rather than 82:local model methods, and 832:Computer-aided diagnosis 894:Moving object detection 884:Medical image computing 647:Research infrastructure 617:Image sensor technology 233:Evolutionary algorithms 187:evolutionary algorithms 91:active appearance model 931:Video content analysis 899:Small object detection 678:Computer stereo vision 228:Evolutionary algorithm 99:Gauss–Newton algorithm 95:nonlinear optimization 39:or creating maps from 936:Video motion analysis 747:Structure from motion 693:3D object recognition 859:Foreground detection 842:Reverse image search 822:Bioimage informatics 792:Activity recognition 318:Wu & Ji, p. 119. 309:Wu & Ji, p. 119. 300:Wu & Ji, p. 118. 291:Wu & Ji, p. 118. 282:Wu & Ji, p. 117. 273:Wu & Ji, p. 116. 264:Wu & Ji, p. 116. 255:Wu & Ji, p. 115. 214:real-time efficiency 111:nonlinear regression 97:methods such as the 49:anatomical landmarks 926:Autonomous vehicles 864:Gesture recognition 727:2D to 3D conversion 216:on mobile devices' 941:Video surveillance 879:Landmark detection 787:3D pose estimation 772:Volumetric capture 732:Gaussian splatting 688:Object recognition 602:Commercial systems 169:There are several 45:facial recognition 25:landmark detection 965: 964: 874:Image restoration 817:Augmented reality 782: 781: 762:4D reconstruction 714:3D reconstruction 607:Feature detection 531:978-1-7281-4852-6 222:augmented reality 107:linear regression 995: 889:Object detection 854:Face recognition 737:Shape from focus 710: 597:Digital geometry 571: 564: 557: 548: 543: 516:. pp. 1–6. 508: 490: 469: 451: 434:(7): 4299–4309. 410: 409: 407: 391: 385: 384: 382: 370: 364: 361: 355: 352: 346: 343: 337: 334: 328: 325: 319: 316: 310: 307: 301: 298: 292: 289: 283: 280: 274: 271: 265: 262: 256: 253: 185:algorithms, but 103:machine learning 86:-based methods. 69:Facial landmarks 41:satellite images 21:computer science 1003: 1002: 998: 997: 996: 994: 993: 992: 968: 967: 966: 961: 950: 921:Robotic mapping 869:Image denoising 778: 699: 666: 632:Motion analysis 580: 578:Computer vision 575: 532: 511: 472: 421: 418: 413: 393: 392: 388: 372: 371: 367: 362: 358: 353: 349: 344: 340: 335: 331: 326: 322: 317: 313: 308: 304: 299: 295: 290: 286: 281: 277: 272: 268: 263: 259: 254: 250: 246: 230: 224:applications. 203:computer vision 199: 181:and especially 167: 138: 133: 128: 71: 66: 61: 17: 12: 11: 5: 1001: 999: 991: 990: 985: 980: 970: 969: 963: 962: 955: 952: 951: 949: 948: 946:Video tracking 943: 938: 933: 928: 923: 918: 916:Remote sensing 913: 908: 903: 902: 901: 896: 886: 881: 876: 871: 866: 861: 856: 851: 846: 845: 844: 834: 829: 827:Blob detection 824: 819: 814: 809: 804: 799: 794: 789: 783: 780: 779: 777: 776: 775: 774: 769: 759: 754: 752:View synthesis 749: 744: 739: 734: 729: 724: 718: 716: 707: 701: 700: 698: 697: 696: 695: 685: 683:Motion capture 680: 674: 672: 668: 667: 665: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 588: 586: 582: 581: 576: 574: 573: 566: 559: 551: 545: 544: 530: 509: 481:(2): 115–142. 470: 417: 414: 412: 411: 405:10.1.1.72.3218 386: 365: 356: 347: 338: 329: 320: 311: 302: 293: 284: 275: 266: 257: 247: 245: 242: 229: 226: 198: 195: 166: 163: 137: 134: 132: 129: 127: 126:Medical images 124: 70: 67: 65: 62: 60: 57: 53:medical images 15: 13: 10: 9: 6: 4: 3: 2: 1000: 989: 986: 984: 981: 979: 976: 975: 973: 960: 959: 958:Main category 953: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 911:Pose tracking 909: 907: 904: 900: 897: 895: 892: 891: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 843: 840: 839: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 784: 773: 770: 768: 765: 764: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 719: 717: 715: 711: 708: 706: 702: 694: 691: 690: 689: 686: 684: 681: 679: 676: 675: 673: 669: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 589: 587: 583: 579: 572: 567: 565: 560: 558: 553: 552: 549: 541: 537: 533: 527: 523: 519: 515: 510: 506: 502: 498: 494: 489: 484: 480: 476: 471: 467: 463: 459: 455: 450: 445: 441: 437: 433: 429: 425: 420: 419: 415: 406: 401: 397: 390: 387: 381: 376: 369: 366: 360: 357: 351: 348: 342: 339: 333: 330: 324: 321: 315: 312: 306: 303: 297: 294: 288: 285: 279: 276: 270: 267: 261: 258: 252: 249: 243: 241: 239: 234: 227: 225: 223: 219: 215: 210: 208: 204: 197:Deep Learning 196: 194: 192: 188: 184: 183:Deep Learning 180: 176: 173:for locating 172: 164: 162: 160: 155: 154:deep learning 151: 146: 144: 135: 130: 125: 123: 121: 117: 112: 108: 104: 100: 96: 92: 87: 85: 81: 77: 68: 63: 58: 56: 54: 50: 46: 42: 38: 34: 30: 26: 22: 956: 878: 849:Eye tracking 705:Applications 671:Technologies 657:Segmentation 513: 478: 474: 431: 427: 416:Bibliography 395: 389: 368: 359: 350: 341: 332: 323: 314: 305: 296: 287: 278: 269: 260: 251: 231: 211: 200: 168: 147: 139: 131:Cephalometry 88: 72: 59:Applications 37:robot vision 33:navigational 24: 18: 757:Visual hull 652:Researchers 363:Wu & Ji 80:constrained 972:Categories 627:Morphology 585:Categories 488:1805.05563 380:1907.06724 244:References 171:algorithms 84:regression 64:Navigation 988:Landmarks 540:210931275 505:255101562 466:235232149 400:CiteSeerX 175:landmarks 159:attentive 78:methods, 29:landmarks 16:Algorithm 662:Software 622:Learning 612:Geometry 592:Datasets 458:34046742 189:such as 116:wavelets 76:holistic 449:8310492 165:Methods 143:hemline 136:Fashion 538:  528:  503:  464:  456:  446:  402:  536:S2CID 501:S2CID 483:arXiv 462:S2CID 375:arXiv 120:pixel 526:ISBN 454:PMID 218:GPUs 518:doi 493:doi 479:127 444:PMC 436:doi 51:in 19:In 974:: 534:. 524:. 499:. 491:. 477:. 460:. 452:. 442:. 432:25 430:. 426:. 109:, 55:. 23:, 570:e 563:t 556:v 542:. 520:: 507:. 495:: 485:: 468:. 438:: 408:. 383:. 377::

Index

computer science
landmarks
navigational
robot vision
satellite images
facial recognition
anatomical landmarks
medical images
holistic
constrained
regression
active appearance model
nonlinear optimization
Gauss–Newton algorithm
machine learning
linear regression
nonlinear regression
wavelets
pixel
hemline
scale-invariant feature transform
deep learning
attentive
algorithms
landmarks
Artificial Neural Networks
Deep Learning
evolutionary algorithms
particle swarm optimization
computer vision

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑