Knowledge

Language equation

Source 📝

820: 1259:
For a one-letter alphabet, Leiss discovered the first language equation with a nonregular solution, using complementation and concatenation operations. Later, Jeż showed that non-regular unary languages can be defined by language equations with union, intersection and concatenation, equivalent to
1246:
who proved that the satisfiability problem for a given equation is undecidable, and that if a system of language equations has a unique solution, then that solution is recursive. Later, Okhotin proved that the unsatisfiability problem is
902: 1090: 538: 273: 600: 967: 806: 464: 27:
rather than numbers. Instead of arithmetic operations in numerical equations, the variables are joined by language operations. Among the most common operations on two languages
155: 339: 306: 1220: 732: 654: 407: 987: 700: 221: 201: 1157: 1185: 1125: 674: 359: 175: 617: 812:
has such corresponding equation using left-concatenation and union, see Fig. 1. If intersection operation is allowed, equations correspond to
1520: 1446: 830: 1628:
Parikh, Rohit; Chandra, Ashok; Halpern, Joe; Meyer, Albert (1985). "Equations between Regular Terms and an Application to Process Logic".
809: 999: 469: 226: 543: 907: 1163:
and Petre who gave an affirmative answer in a special case. A strongly negative answer to Conway's problem was given by
813: 1264:. By this method Jeż and Okhotin proved that every recursive unary language is a unique solution of some equation. 1843: 1780:
Jeż, Artur; Okhotin, Alexander (2014). "Computational completeness of equations over sets of natural numbers".
737: 1789: 425: 362: 110: 88:, since the languages generated by the grammar must be the solution of a system of language equations. 311: 278: 606: 104: 1794: 1193: 1261: 1160: 705: 627: 1848: 1569: 1334: 1164: 1104: 370: 972: 1807: 1762: 1727: 1686: 1645: 1610: 1561: 1526: 1516: 1485: 1442: 1419: 1378: 1326: 679: 100: 206: 1799: 1754: 1717: 1676: 1637: 1600: 1553: 1508: 1475: 1409: 1368: 1316: 1235: 1093: 824: 180: 96: 47: 24: 1130: 1273: 1243: 1278: 1283: 1239: 1170: 1110: 659: 344: 160: 85: 1480: 1463: 1837: 1722: 1705: 1373: 1356: 58: 1573: 1338: 1231: 1230:
Language equations with concatenation and Boolean operations were first studied by
1092:
using left-concatenation and union and proved that their satisfiability problem is
993: 624:
where every concatenation is with a singleton constant language on the left, e.g.
1745:
Jeż, Artur (2008). "Conjunctive grammars generate non-regular unary languages".
1248: 1187:
such that the greatest solution of this equation is not recursively enumerable.
77: 1706:"Unrestricted complementation in language equations over a one-letter alphabet" 1681: 1664: 1758: 1605: 1588: 1557: 1357:"On equations for regular languages, finite automata, and sequential networks" 1811: 1803: 1766: 1731: 1690: 1649: 1614: 1565: 1530: 1489: 1423: 1382: 1330: 1512: 36: 1414: 1397: 1321: 1304: 1544:
Kunc, Michal (2007). "The Power of Commuting with Finite Sets of Words".
1251:
and that every recursive language is a unique solution of some equation.
20: 1828: 819: 69: 1829:
Workshop on Theory and Applications of Language Equations (TALE 2007)
1507:. Lecture Notes in Computer Science. Vol. 2300. pp. 69–76. 897:{\displaystyle S_{1}=1\cdot S_{1}\cup 0\cdot S_{2}\cup \{\epsilon \}} 605:
Language equations with added intersection analogously correspond to
1641: 1589:"Regular solutions of language inequalities and well quasi-orders" 818: 1107:
proposed the following problem: given a constant finite language
365:
argument to show that a solution always exists, and proved that
1085:{\displaystyle F(X_{1},\ldots ,X_{k})=G(X_{1},\ldots ,X_{k})} 584: 533:{\displaystyle S=(\{a\}\cdot S\cdot \{c\})\cup \{b\}\cup S} 1190:
Kunc also proved that the greatest solution of inequality
268:{\displaystyle X=\alpha _{1}\cup \ldots \cup \alpha _{m}} 84:. Therefore, language equations can be used to represent 1747:
International Journal of Foundations of Computer Science
595:{\displaystyle \{a^{n}bc^{n}\mid n\in {\mathcal {N}}\}} 1350: 1348: 1196: 1173: 1133: 1113: 1002: 975: 910: 833: 740: 708: 682: 662: 630: 546: 472: 428: 373: 347: 314: 281: 229: 209: 183: 163: 113: 107:
by language equations. To every context-free grammar
1398:"Unification of Concept Terms in Description Logics" 962:{\displaystyle S_{2}=1\cdot S_{2}\cup 0\cdot S_{1}} 157:, is associated a system of equations in variables 1214: 1179: 1151: 1119: 1084: 981: 961: 896: 800: 726: 694: 668: 648: 594: 532: 458: 401: 353: 333: 300: 267: 215: 195: 169: 149: 1505:The Branching Point Approach to Conway's Problem 808:with one variable on the right-hand side. Every 8: 1305:"Two Families of Languages Related to ALGOL" 1159:always regular? This problem was studied by 891: 885: 721: 715: 637: 631: 589: 547: 521: 515: 506: 500: 488: 482: 92:Language equations and context-free grammars 1303:Ginsburg, Seymour; Rice, H. Gordon (1962). 1127:, is the greatest solution of the equation 68:. Finally, as an operation taking a single 1665:"Decision problems for language equations" 1396:Baader, Franz; Narendran, Paliath (2001). 1226:Language equations with Boolean operations 19:are mathematical statements that resemble 1793: 1721: 1680: 1604: 1479: 1413: 1372: 1320: 1195: 1172: 1132: 1112: 1073: 1054: 1032: 1013: 1001: 974: 953: 934: 915: 909: 876: 857: 838: 832: 789: 764: 745: 739: 707: 681: 661: 629: 583: 582: 567: 554: 545: 471: 427: 384: 372: 346: 325: 313: 292: 280: 259: 240: 228: 208: 182: 162: 112: 1255:Language equations over a unary alphabet 801:{\displaystyle X_{i}=F(X_{1},...,X_{k})} 540:which has as solution every superset of 1669:Journal of Computer and System Sciences 1295: 1503:Karhumäki, Juhani; Petre, Ion (2002). 1464:"Conway's problem for three-word sets" 1462:Karhumäki, Juhani; Petre, Ion (2002). 613:Language equations and finite automata 23:, but the variables assume values of 7: 1355:Brzozowski, J.A.; Leiss, E. (1980). 827:with associated system of equations 459:{\displaystyle S\to aSc\mid b\mid S} 1439:Regular Algebra and Finite Machines 466:corresponds to the equation system 1167:who constructed a finite language 415:i.e. any other solution must be a 210: 129: 103:gave an alternative definition of 14: 810:nondeterministic finite automaton 150:{\displaystyle G=(V,\Sigma ,R,S)} 996:and Narendran studied equations 334:{\displaystyle X\to \alpha _{m}} 301:{\displaystyle X\to \alpha _{1}} 1402:Journal of Symbolic Computation 734:. Each equation is of the form 223:and is defined by the equation 1215:{\displaystyle LX\subseteq XL} 1079: 1047: 1038: 1006: 795: 757: 509: 479: 432: 396: 390: 318: 285: 144: 120: 1: 1481:10.1016/S0304-3975(01)00389-9 1723:10.1016/0304-3975(94)90227-5 1710:Theoretical Computer Science 1593:Theoretical Computer Science 1468:Theoretical Computer Science 1437:Conway, John Horton (1971). 1374:10.1016/0304-3975(80)90069-9 1361:Theoretical Computer Science 727:{\displaystyle X\cdot \{a\}} 649:{\displaystyle \{a\}\cdot X} 203:is an unknown language over 1782:Information and Computation 1663:Okhotin, Alexander (2010). 1546:Theory of Computing Systems 814:alternating finite automata 361:. Ginsburg and Rice used a 1865: 1682:10.1016/j.jcss.2009.08.002 422:For example, the grammar 402:{\displaystyle X=L_{G}(X)} 1759:10.1142/S012905410800584X 1630:SIAM Journal on Computing 1606:10.1016/j.tcs.2005.09.018 1558:10.1007/s00224-006-1321-z 982:{\displaystyle \epsilon } 1804:10.1016/j.ic.2014.05.001 695:{\displaystyle X\cdot Y} 341:are all productions for 1513:10.1007/3-540-45711-9_5 1099: 622:left language equations 216:{\displaystyle \Sigma } 1415:10.1006/jsco.2000.0426 1216: 1181: 1153: 1121: 1086: 990: 983: 963: 898: 802: 728: 696: 670: 650: 596: 534: 460: 403: 355: 335: 302: 269: 217: 197: 196:{\displaystyle X\in V} 171: 151: 1587:Kunc, Michal (2005). 1322:10.1145/321127.321132 1217: 1182: 1154: 1152:{\displaystyle LX=XL} 1122: 1087: 984: 964: 899: 822: 803: 729: 697: 671: 651: 597: 535: 461: 404: 363:fixed-point iteration 356: 336: 303: 270: 218: 198: 172: 152: 105:context-free grammars 1704:Leiss, E.L. (1994). 1441:. Chapman and Hall. 1262:conjunctive grammars 1194: 1171: 1131: 1111: 1000: 973: 908: 831: 738: 706: 680: 660: 628: 607:conjunctive grammars 544: 470: 426: 371: 345: 312: 279: 227: 207: 181: 161: 111: 1222:is always regular. 21:numerical equations 1309:Journal of the ACM 1212: 1177: 1149: 1117: 1082: 991: 989:is the empty word. 979: 959: 894: 798: 724: 692: 666: 646: 620:and Leiss studied 592: 530: 456: 399: 351: 331: 298: 265: 213: 193: 167: 147: 17:Language equations 1522:978-3-540-43190-9 1448:978-0-486-48583-6 1180:{\displaystyle L} 1120:{\displaystyle L} 669:{\displaystyle X} 354:{\displaystyle X} 170:{\displaystyle V} 1856: 1844:Formal languages 1816: 1815: 1797: 1777: 1771: 1770: 1742: 1736: 1735: 1725: 1701: 1695: 1694: 1684: 1675:(3–4): 251–266. 1660: 1654: 1653: 1625: 1619: 1618: 1608: 1599:(2–3): 277–293. 1584: 1578: 1577: 1541: 1535: 1534: 1500: 1494: 1493: 1483: 1459: 1453: 1452: 1434: 1428: 1427: 1417: 1393: 1387: 1386: 1376: 1352: 1343: 1342: 1324: 1300: 1221: 1219: 1218: 1213: 1186: 1184: 1183: 1178: 1158: 1156: 1155: 1150: 1126: 1124: 1123: 1118: 1100:Conway's problem 1094:EXPTIME-complete 1091: 1089: 1088: 1083: 1078: 1077: 1059: 1058: 1037: 1036: 1018: 1017: 988: 986: 985: 980: 968: 966: 965: 960: 958: 957: 939: 938: 920: 919: 903: 901: 900: 895: 881: 880: 862: 861: 843: 842: 825:finite automaton 807: 805: 804: 799: 794: 793: 769: 768: 750: 749: 733: 731: 730: 725: 701: 699: 698: 693: 675: 673: 672: 667: 655: 653: 652: 647: 601: 599: 598: 593: 588: 587: 572: 571: 559: 558: 539: 537: 536: 531: 465: 463: 462: 457: 418: 414: 408: 406: 405: 400: 389: 388: 360: 358: 357: 352: 340: 338: 337: 332: 330: 329: 307: 305: 304: 299: 297: 296: 274: 272: 271: 266: 264: 263: 245: 244: 222: 220: 219: 214: 202: 200: 199: 194: 177:. Each variable 176: 174: 173: 168: 156: 154: 153: 148: 80:of the language 48:set intersection 25:formal languages 1864: 1863: 1859: 1858: 1857: 1855: 1854: 1853: 1834: 1833: 1825: 1820: 1819: 1795:10.1.1.395.2250 1779: 1778: 1774: 1744: 1743: 1739: 1703: 1702: 1698: 1662: 1661: 1657: 1642:10.1137/0214066 1627: 1626: 1622: 1586: 1585: 1581: 1543: 1542: 1538: 1523: 1502: 1501: 1497: 1461: 1460: 1456: 1449: 1436: 1435: 1431: 1395: 1394: 1390: 1354: 1353: 1346: 1302: 1301: 1297: 1292: 1274:Boolean grammar 1270: 1257: 1228: 1192: 1191: 1169: 1168: 1129: 1128: 1109: 1108: 1102: 1069: 1050: 1028: 1009: 998: 997: 971: 970: 949: 930: 911: 906: 905: 872: 853: 834: 829: 828: 785: 760: 741: 736: 735: 704: 703: 678: 677: 658: 657: 626: 625: 615: 563: 550: 542: 541: 468: 467: 424: 423: 416: 413:to this system, 380: 369: 368: 367:the assignment 366: 343: 342: 321: 310: 309: 288: 277: 276: 255: 236: 225: 224: 205: 204: 179: 178: 159: 158: 109: 108: 94: 86:formal grammars 12: 11: 5: 1862: 1860: 1852: 1851: 1846: 1836: 1835: 1832: 1831: 1824: 1823:External links 1821: 1818: 1817: 1772: 1753:(3): 597–615. 1737: 1716:(1–2): 71–84. 1696: 1655: 1636:(4): 935–942. 1620: 1579: 1552:(4): 521–551. 1536: 1521: 1495: 1474:(1): 705–725. 1454: 1447: 1429: 1408:(3): 277–305. 1388: 1344: 1315:(3): 350–371. 1294: 1293: 1291: 1288: 1287: 1286: 1284:Set constraint 1281: 1276: 1269: 1266: 1256: 1253: 1227: 1224: 1211: 1208: 1205: 1202: 1199: 1176: 1148: 1145: 1142: 1139: 1136: 1116: 1101: 1098: 1081: 1076: 1072: 1068: 1065: 1062: 1057: 1053: 1049: 1046: 1043: 1040: 1035: 1031: 1027: 1024: 1021: 1016: 1012: 1008: 1005: 978: 956: 952: 948: 945: 942: 937: 933: 929: 926: 923: 918: 914: 893: 890: 887: 884: 879: 875: 871: 868: 865: 860: 856: 852: 849: 846: 841: 837: 797: 792: 788: 784: 781: 778: 775: 772: 767: 763: 759: 756: 753: 748: 744: 723: 720: 717: 714: 711: 691: 688: 685: 665: 656:with variable 645: 642: 639: 636: 633: 614: 611: 591: 586: 581: 578: 575: 570: 566: 562: 557: 553: 549: 529: 526: 523: 520: 517: 514: 511: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 475: 455: 452: 449: 446: 443: 440: 437: 434: 431: 411:least solution 398: 395: 392: 387: 383: 379: 376: 350: 328: 324: 320: 317: 295: 291: 287: 284: 262: 258: 254: 251: 248: 243: 239: 235: 232: 212: 192: 189: 186: 166: 146: 143: 140: 137: 134: 131: 128: 125: 122: 119: 116: 93: 90: 13: 10: 9: 6: 4: 3: 2: 1861: 1850: 1847: 1845: 1842: 1841: 1839: 1830: 1827: 1826: 1822: 1813: 1809: 1805: 1801: 1796: 1791: 1787: 1783: 1776: 1773: 1768: 1764: 1760: 1756: 1752: 1748: 1741: 1738: 1733: 1729: 1724: 1719: 1715: 1711: 1707: 1700: 1697: 1692: 1688: 1683: 1678: 1674: 1670: 1666: 1659: 1656: 1651: 1647: 1643: 1639: 1635: 1631: 1624: 1621: 1616: 1612: 1607: 1602: 1598: 1594: 1590: 1583: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1537: 1532: 1528: 1524: 1518: 1514: 1510: 1506: 1499: 1496: 1491: 1487: 1482: 1477: 1473: 1469: 1465: 1458: 1455: 1450: 1444: 1440: 1433: 1430: 1425: 1421: 1416: 1411: 1407: 1403: 1399: 1392: 1389: 1384: 1380: 1375: 1370: 1366: 1362: 1358: 1351: 1349: 1345: 1340: 1336: 1332: 1328: 1323: 1318: 1314: 1310: 1306: 1299: 1296: 1289: 1285: 1282: 1280: 1277: 1275: 1272: 1271: 1267: 1265: 1263: 1254: 1252: 1250: 1245: 1241: 1237: 1233: 1225: 1223: 1209: 1206: 1203: 1200: 1197: 1188: 1174: 1166: 1162: 1146: 1143: 1140: 1137: 1134: 1114: 1106: 1097: 1095: 1074: 1070: 1066: 1063: 1060: 1055: 1051: 1044: 1041: 1033: 1029: 1025: 1022: 1019: 1014: 1010: 1003: 995: 976: 954: 950: 946: 943: 940: 935: 931: 927: 924: 921: 916: 912: 888: 882: 877: 873: 869: 866: 863: 858: 854: 850: 847: 844: 839: 835: 826: 821: 817: 815: 811: 790: 786: 782: 779: 776: 773: 770: 765: 761: 754: 751: 746: 742: 718: 712: 709: 689: 686: 683: 663: 643: 640: 634: 623: 619: 612: 610: 608: 603: 579: 576: 573: 568: 564: 560: 555: 551: 527: 524: 518: 512: 503: 497: 494: 491: 485: 476: 473: 453: 450: 447: 444: 441: 438: 435: 429: 420: 419:of this one. 412: 393: 385: 381: 377: 374: 364: 348: 326: 322: 315: 293: 289: 282: 260: 256: 252: 249: 246: 241: 237: 233: 230: 190: 187: 184: 164: 141: 138: 135: 132: 126: 123: 117: 114: 106: 102: 98: 91: 89: 87: 83: 79: 75: 71: 67: 63: 60: 59:concatenation 56: 52: 49: 45: 41: 38: 34: 30: 26: 22: 18: 1785: 1781: 1775: 1750: 1746: 1740: 1713: 1709: 1699: 1672: 1668: 1658: 1633: 1629: 1623: 1596: 1592: 1582: 1549: 1545: 1539: 1504: 1498: 1471: 1467: 1457: 1438: 1432: 1405: 1401: 1391: 1367:(1): 19–35. 1364: 1360: 1312: 1308: 1298: 1279:Arden's rule 1258: 1229: 1189: 1103: 992: 621: 616: 604: 421: 410: 95: 81: 76:denotes the 73: 65: 61: 54: 50: 43: 39: 32: 28: 16: 15: 1249:RE-complete 78:Kleene star 1838:Categories 1290:References 823:Fig. 1: A 676:, but not 618:Brzozowski 72:, the set 57:, and the 1849:Equations 1812:0890-5401 1790:CiteSeerX 1788:: 56–94. 1767:0129-0541 1732:0304-3975 1691:0022-0000 1650:0097-5397 1615:0304-3975 1566:1432-4350 1531:0302-9743 1490:0304-3975 1424:0747-7171 1383:0304-3975 1331:0004-5411 1204:⊆ 1161:Karhumäki 1064:… 1023:… 977:ϵ 947:⋅ 941:∪ 928:⋅ 889:ϵ 883:∪ 870:⋅ 864:∪ 851:⋅ 713:⋅ 687:⋅ 641:⋅ 580:∈ 574:∣ 525:∪ 513:∪ 498:⋅ 492:⋅ 451:∣ 445:∣ 433:→ 323:α 319:→ 290:α 286:→ 257:α 253:∪ 250:… 247:∪ 238:α 211:Σ 188:∈ 130:Σ 37:set union 1574:13406797 1339:16718187 1268:See also 97:Ginsburg 35:are the 1240:Halpern 1236:Chandra 409:is the 308:, ..., 70:operand 1810:  1792:  1765:  1730:  1689:  1648:  1613:  1572:  1564:  1529:  1519:  1488:  1445:  1422:  1381:  1337:  1329:  1232:Parikh 1105:Conway 994:Baader 969:where 417:subset 275:where 46:, the 1570:S2CID 1335:S2CID 1244:Meyer 1808:ISSN 1763:ISSN 1728:ISSN 1687:ISSN 1646:ISSN 1611:ISSN 1562:ISSN 1527:ISSN 1517:ISBN 1486:ISSN 1443:ISBN 1420:ISSN 1379:ISSN 1327:ISSN 1242:and 1165:Kunc 702:nor 101:Rice 99:and 31:and 1800:doi 1786:237 1755:doi 1718:doi 1714:132 1677:doi 1638:doi 1601:doi 1597:348 1554:doi 1509:doi 1476:doi 1472:289 1410:doi 1369:doi 1317:doi 1840:: 1806:. 1798:. 1784:. 1761:. 1751:19 1749:. 1726:. 1712:. 1708:. 1685:. 1673:76 1671:. 1667:. 1644:. 1634:14 1632:. 1609:. 1595:. 1591:. 1568:. 1560:. 1550:40 1548:. 1525:. 1515:. 1484:. 1470:. 1466:. 1418:. 1406:31 1404:. 1400:. 1377:. 1365:10 1363:. 1359:. 1347:^ 1333:. 1325:. 1311:. 1307:. 1238:, 1234:, 1096:. 904:, 816:. 609:. 602:. 53:∩ 42:∪ 1814:. 1802:: 1769:. 1757:: 1734:. 1720:: 1693:. 1679:: 1652:. 1640:: 1617:. 1603:: 1576:. 1556:: 1533:. 1511:: 1492:. 1478:: 1451:. 1426:. 1412:: 1385:. 1371:: 1341:. 1319:: 1313:9 1210:L 1207:X 1201:X 1198:L 1175:L 1147:L 1144:X 1141:= 1138:X 1135:L 1115:L 1080:) 1075:k 1071:X 1067:, 1061:, 1056:1 1052:X 1048:( 1045:G 1042:= 1039:) 1034:k 1030:X 1026:, 1020:, 1015:1 1011:X 1007:( 1004:F 955:1 951:S 944:0 936:2 932:S 925:1 922:= 917:2 913:S 892:} 886:{ 878:2 874:S 867:0 859:1 855:S 848:1 845:= 840:1 836:S 796:) 791:k 787:X 783:, 780:. 777:. 774:. 771:, 766:1 762:X 758:( 755:F 752:= 747:i 743:X 722:} 719:a 716:{ 710:X 690:Y 684:X 664:X 644:X 638:} 635:a 632:{ 590:} 585:N 577:n 569:n 565:c 561:b 556:n 552:a 548:{ 528:S 522:} 519:b 516:{ 510:) 507:} 504:c 501:{ 495:S 489:} 486:a 483:{ 480:( 477:= 474:S 454:S 448:b 442:c 439:S 436:a 430:S 397:) 394:X 391:( 386:G 382:L 378:= 375:X 349:X 327:m 316:X 294:1 283:X 261:m 242:1 234:= 231:X 191:V 185:X 165:V 145:) 142:S 139:, 136:R 133:, 127:, 124:V 121:( 118:= 115:G 82:A 74:A 66:B 64:⋅ 62:A 55:B 51:A 44:B 40:A 33:B 29:A

Index

numerical equations
formal languages
set union
set intersection
concatenation
operand
Kleene star
formal grammars
Ginsburg
Rice
context-free grammars
fixed-point iteration
conjunctive grammars
Brzozowski
nondeterministic finite automaton
alternating finite automata

finite automaton
Baader
EXPTIME-complete
Conway
Karhumäki
Kunc
Parikh
Chandra
Halpern
Meyer
RE-complete
conjunctive grammars
Boolean grammar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.