Knowledge (XXG)

Laser diode rate equations

Source 📝

1472: 1325:
Dynamic wavelength shift in semiconductor lasers occurs as a result of the change in refractive index in the active region during intensity modulation. It is possible to evaluate the shift in wavelength by determining the refractive index change of the active region as a result of carrier injection.
546:
In the photon density rate equation, the first term ΓGP is the rate at which photon density increases due to stimulated emission (the same term in carrier rate equation, with positive sign and multiplied for the confinement factor Γ), the second term is the rate at which photons leave the cavity, for
1243:
Spatial hole burning occurs as a result of the standing wave nature of the optical modes. Increased lasing power results in decreased carrier diffusion efficiency which means that the stimulated recombination time becomes shorter relative to the carrier diffusion time. Carriers are therefore
363: 229: 1250:
To account for gain compression due to the high power densities in semiconductor lasers, the gain equation is modified such that it becomes related to the inverse of the optical power. Hence, the following term in the denominator of the gain equation :
1108: 769: 1218: 1231:
The gain term, G, cannot be independent of the high power densities found in semiconductor laser diodes. There are several phenomena which cause the gain to 'compress' which are dependent upon optical power. The two main phenomena are
1326:
A complete analysis of spectral shift during direct modulation found that the refractive index of the active region varies proportionally to carrier density and hence the wavelength varies proportionally to injected current.
1404: 884: 505:
is the radiative recombination time constant, M is the number of modes modelled, μ is the mode number, and subscript μ has been added to G, Γ, and β to indicate these properties may vary for the different modes.
509:
The first term on the right side of the carrier rate equation is the injected electrons rate (I/eV), the second term is the carrier depletion rate due to all recombination processes (described by the decay time
976: 1315: 235: 99: 998: 594: 574: 537: 503: 452: 403: 1138: 474: 423: 1575: 1461: 77:
The laser diode rate equations can be formulated with more or less complexity to model different aspects of laser diode behavior with varying accuracy.
1335: 1667: 1247:
Spectral hole burning is related to the gain profile broadening mechanisms such as short intraband scattering which is related to power density.
1569: 788: 907: 1507: 1454: 358:{\displaystyle {\frac {dP_{\mu }}{dt}}=(\Gamma _{\mu }G_{\mu }-{\frac {1}{\tau _{p}}})P_{\mu }+\beta _{\mu }{\frac {N}{\tau _{r}}}} 1257: 1646: 576:
and the third term is the contribution of spontaneous emission from the carrier radiative recombination into the laser mode.
224:{\displaystyle {\frac {dN}{dt}}={\frac {I}{eV}}-{\frac {N}{\tau _{n}}}-\sum _{\mu =1}^{\mu =M}\Gamma _{\mu }G_{\mu }P_{\mu }} 24: 1672: 89:. This formulation requires one equation for the carrier density, and one equation for the photon density in each of the 1447: 1613: 1513: 48: 1592: 1103:{\displaystyle \beta _{\mu }={\frac {\beta _{0}}{1+(2(\lambda _{s}-\lambda _{\mu })/\delta \lambda _{s})^{2}}}} 1586: 1535: 1237: 1233: 1529: 55: 40: 588:, the gain of the μ mode, can be modelled by a parabolic dependence of gain on wavelength as follows: 1581: 1552: 71: 764:{\displaystyle G_{\mu }={\frac {\alpha N-\alpha N_{0}}{1+\epsilon \sum _{\mu =1}^{\mu =M}P_{\mu }}}} 1475: 540: 373: 1213:{\displaystyle \lambda _{\mu }=\lambda _{0}-\mu \delta \lambda +{\frac {(n-1)\delta \lambda }{2}}} 1519: 550: 513: 479: 428: 379: 67: 1524: 457: 369: 368:
where: N is the carrier density, P is the photon density, I is the applied current, e is the
408: 1640: 782:
is the full width at half maximum (FWHM) of the gain curve, the centre of which is given by
44: 1634: 1597: 90: 32: 1661: 85:
In the multimode formulation, the rate equations model a laser with multiple optical
70:
equations to help in further understanding the static and dynamic characteristics of
20: 774:
where: α is the gain coefficient and ε is the gain compression factor (see below). λ
63: 547:
internal absorption or exiting the mirrors, expressed via the decay time constant
1501: 1495: 1489: 86: 59: 17: 1433:
G. P. Agrawal, "Fiber-Optic Communication Systems", Wiley Interscience, Chap. 3
1399:{\displaystyle \delta \lambda =k\left({\sqrt {\frac {I_{0}}{I_{th}}}}-1\right)} 1244:
depleted faster at the crest of the wave causing a decrease in the modal gain.
23:
model the electrical and optical performance of a laser diode. This system of
1439: 879:{\displaystyle \lambda (t)=\lambda _{0}+{\frac {k(N_{th}-N(t))}{N_{th}}}} 36: 1471: 28: 1329:
Experimentally, a good fit for the shift in wavelength is given by:
971:{\displaystyle N_{th}=N_{tr}+{\frac {1}{\alpha \tau _{p}\Gamma }}} 1443: 543:, which is proportional to the photon density and medium gain. 1310:{\displaystyle 1+\epsilon \sum _{\mu =1}^{\mu =M}P_{\mu }} 1124:
is the centre wavelength for spontaneous emission and δλ
405:
is the carrier lifetime, G is the gain coefficient (s),
1338: 1260: 1141: 1001: 910: 791: 597: 553: 539:) and the third term is the carrier depletion due to 516: 482: 460: 431: 411: 382: 238: 102: 901:
is the carrier density at threshold and is given by
1627: 1606: 1562: 1545: 1482: 897:
and k is the spectral shift constant (see below). N
1398: 1309: 1212: 1102: 970: 878: 763: 568: 531: 497: 468: 446: 417: 397: 357: 223: 1132:is the wavelength of the μ mode and is given by 1576:Vertical-external-cavity surface-emitting-laser 43:and to device and material parameters such as 1455: 8: 1128:is the spontaneous emission FWHM. Finally, λ 1502:Separate confinement heterostructure laser 1462: 1448: 1440: 1373: 1363: 1356: 1337: 1301: 1285: 1274: 1259: 1180: 1159: 1146: 1140: 1091: 1081: 1069: 1060: 1047: 1021: 1015: 1006: 1000: 956: 943: 931: 915: 909: 865: 833: 820: 811: 790: 752: 736: 725: 704: 685: 672: 657: 635: 611: 602: 596: 559: 554: 552: 522: 517: 515: 488: 483: 481: 461: 459: 437: 432: 430: 410: 388: 383: 381: 347: 338: 332: 319: 304: 295: 286: 276: 249: 239: 237: 215: 205: 195: 179: 168: 153: 144: 126: 103: 101: 985:is the carrier density at transparency. 1426: 1570:Vertical-cavity surface-emitting laser 1120:is the spontaneous emission factor, λ 62:solution, or used to derive a set of 7: 476:is the spontaneous emission factor, 54:The rate equations may be solved by 778:is the wavelength of the μ mode, δλ 962: 893:is the centre wavelength for N = N 412: 273: 192: 14: 1508:Distributed Bragg reflector laser 1417:is the lasing threshold current. 39:) in the device to the injection 27:relates the number or density of 1470: 1668:Ordinary differential equations 1647:List of semiconductor materials 25:ordinary differential equations 1223:where δλ is the mode spacing. 1195: 1183: 1088: 1066: 1040: 1034: 857: 854: 848: 826: 801: 795: 691: 682: 647: 641: 629: 620: 312: 269: 1: 1413:is the injected current and I 1496:Double heterostructure laser 569:{\displaystyle {\tau _{p}}} 532:{\displaystyle {\tau _{n}}} 498:{\displaystyle {\tau _{r}}} 447:{\displaystyle {\tau _{p}}} 425:is the confinement factor, 398:{\displaystyle {\tau _{n}}} 47:, photon lifetime, and the 1689: 1619:Laser diode rate equations 1614:Semiconductor laser theory 1514:Distributed-feedback laser 372:, V is the volume of the 1593:Semiconductor ring laser 541:stimulated recombination 469:{\displaystyle {\beta }} 454:is the photon lifetime, 81:Multimode rate equations 1587:Interband cascade laser 418:{\displaystyle \Gamma } 1400: 1311: 1296: 1214: 1104: 972: 880: 765: 747: 570: 533: 499: 470: 448: 419: 399: 359: 225: 190: 1536:External-cavity laser 1530:Quantum-cascade laser 1401: 1312: 1270: 1238:spectral hole burning 1215: 1105: 973: 881: 766: 721: 571: 534: 500: 471: 449: 420: 400: 360: 226: 164: 56:numerical integration 1673:Semiconductor lasers 1582:Hybrid silicon laser 1553:Volume Bragg grating 1476:Semiconductor lasers 1336: 1258: 1234:spatial hole burning 1139: 999: 908: 789: 595: 551: 514: 480: 458: 429: 409: 380: 236: 100: 72:semiconductor lasers 1520:Quantum well laser 1396: 1307: 1210: 1100: 968: 876: 761: 566: 529: 495: 466: 444: 415: 395: 355: 221: 1655: 1654: 1525:Quantum dot laser 1383: 1382: 1208: 1098: 966: 874: 759: 679: 370:elementary charge 353: 310: 264: 159: 139: 121: 1680: 1641:Gallium arsenide 1474: 1464: 1457: 1450: 1441: 1434: 1431: 1405: 1403: 1402: 1397: 1395: 1391: 1384: 1381: 1380: 1368: 1367: 1358: 1357: 1316: 1314: 1313: 1308: 1306: 1305: 1295: 1284: 1227:Gain Compression 1219: 1217: 1216: 1211: 1209: 1204: 1181: 1164: 1163: 1151: 1150: 1109: 1107: 1106: 1101: 1099: 1097: 1096: 1095: 1086: 1085: 1073: 1065: 1064: 1052: 1051: 1026: 1025: 1016: 1011: 1010: 977: 975: 974: 969: 967: 965: 961: 960: 944: 939: 938: 923: 922: 885: 883: 882: 877: 875: 873: 872: 860: 841: 840: 821: 816: 815: 770: 768: 767: 762: 760: 758: 757: 756: 746: 735: 710: 709: 708: 690: 689: 680: 678: 677: 676: 663: 662: 661: 636: 612: 607: 606: 575: 573: 572: 567: 565: 564: 563: 538: 536: 535: 530: 528: 527: 526: 504: 502: 501: 496: 494: 493: 492: 475: 473: 472: 467: 465: 453: 451: 450: 445: 443: 442: 441: 424: 422: 421: 416: 404: 402: 401: 396: 394: 393: 392: 364: 362: 361: 356: 354: 352: 351: 339: 337: 336: 324: 323: 311: 309: 308: 296: 291: 290: 281: 280: 265: 263: 255: 254: 253: 240: 230: 228: 227: 222: 220: 219: 210: 209: 200: 199: 189: 178: 160: 158: 157: 145: 140: 138: 127: 122: 120: 112: 104: 45:carrier lifetime 1688: 1687: 1683: 1682: 1681: 1679: 1678: 1677: 1658: 1657: 1656: 1651: 1635:Indium arsenide 1623: 1602: 1598:Polariton laser 1558: 1541: 1478: 1468: 1438: 1437: 1432: 1428: 1423: 1416: 1412: 1369: 1359: 1355: 1351: 1334: 1333: 1323: 1297: 1256: 1255: 1229: 1182: 1155: 1142: 1137: 1136: 1131: 1127: 1123: 1119: 1087: 1077: 1056: 1043: 1027: 1017: 1002: 997: 996: 991: 984: 952: 948: 927: 911: 906: 905: 900: 896: 892: 861: 829: 822: 807: 787: 786: 781: 777: 748: 711: 700: 681: 668: 664: 653: 637: 613: 598: 593: 592: 587: 582: 555: 549: 548: 518: 512: 511: 484: 478: 477: 456: 455: 433: 427: 426: 407: 406: 384: 378: 377: 343: 328: 315: 300: 282: 272: 256: 245: 241: 234: 233: 211: 201: 191: 149: 131: 113: 105: 98: 97: 83: 33:charge carriers 12: 11: 5: 1686: 1684: 1676: 1675: 1670: 1660: 1659: 1653: 1652: 1650: 1649: 1644: 1638: 1631: 1629: 1625: 1624: 1622: 1621: 1616: 1610: 1608: 1604: 1603: 1601: 1600: 1595: 1590: 1584: 1579: 1573: 1566: 1564: 1560: 1559: 1557: 1556: 1549: 1547: 1543: 1542: 1540: 1539: 1533: 1527: 1522: 1517: 1511: 1505: 1499: 1493: 1486: 1484: 1480: 1479: 1469: 1467: 1466: 1459: 1452: 1444: 1436: 1435: 1425: 1424: 1422: 1419: 1414: 1410: 1407: 1406: 1394: 1390: 1387: 1379: 1376: 1372: 1366: 1362: 1354: 1350: 1347: 1344: 1341: 1322: 1321:Spectral Shift 1319: 1318: 1317: 1304: 1300: 1294: 1291: 1288: 1283: 1280: 1277: 1273: 1269: 1266: 1263: 1228: 1225: 1221: 1220: 1207: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1179: 1176: 1173: 1170: 1167: 1162: 1158: 1154: 1149: 1145: 1129: 1125: 1121: 1117: 1111: 1110: 1094: 1090: 1084: 1080: 1076: 1072: 1068: 1063: 1059: 1055: 1050: 1046: 1042: 1039: 1036: 1033: 1030: 1024: 1020: 1014: 1009: 1005: 989: 982: 979: 978: 964: 959: 955: 951: 947: 942: 937: 934: 930: 926: 921: 918: 914: 898: 894: 890: 887: 886: 871: 868: 864: 859: 856: 853: 850: 847: 844: 839: 836: 832: 828: 825: 819: 814: 810: 806: 803: 800: 797: 794: 779: 775: 772: 771: 755: 751: 745: 742: 739: 734: 731: 728: 724: 720: 717: 714: 707: 703: 699: 696: 693: 688: 684: 675: 671: 667: 660: 656: 652: 649: 646: 643: 640: 634: 631: 628: 625: 622: 619: 616: 610: 605: 601: 585: 581: 580:The modal gain 578: 562: 558: 525: 521: 491: 487: 464: 440: 436: 414: 391: 387: 366: 365: 350: 346: 342: 335: 331: 327: 322: 318: 314: 307: 303: 299: 294: 289: 285: 279: 275: 271: 268: 262: 259: 252: 248: 244: 231: 218: 214: 208: 204: 198: 194: 188: 185: 182: 177: 174: 171: 167: 163: 156: 152: 148: 143: 137: 134: 130: 125: 119: 116: 111: 108: 91:optical cavity 82: 79: 21:rate equations 13: 10: 9: 6: 4: 3: 2: 1685: 1674: 1671: 1669: 1666: 1665: 1663: 1648: 1645: 1642: 1639: 1636: 1633: 1632: 1630: 1626: 1620: 1617: 1615: 1612: 1611: 1609: 1605: 1599: 1596: 1594: 1591: 1588: 1585: 1583: 1580: 1577: 1574: 1571: 1568: 1567: 1565: 1561: 1554: 1551: 1550: 1548: 1544: 1537: 1534: 1531: 1528: 1526: 1523: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1488: 1487: 1485: 1481: 1477: 1473: 1465: 1460: 1458: 1453: 1451: 1446: 1445: 1442: 1430: 1427: 1420: 1418: 1392: 1388: 1385: 1377: 1374: 1370: 1364: 1360: 1352: 1348: 1345: 1342: 1339: 1332: 1331: 1330: 1327: 1320: 1302: 1298: 1292: 1289: 1286: 1281: 1278: 1275: 1271: 1267: 1264: 1261: 1254: 1253: 1252: 1248: 1245: 1241: 1239: 1235: 1226: 1224: 1205: 1201: 1198: 1192: 1189: 1186: 1177: 1174: 1171: 1168: 1165: 1160: 1156: 1152: 1147: 1143: 1135: 1134: 1133: 1114: 1092: 1082: 1078: 1074: 1070: 1061: 1057: 1053: 1048: 1044: 1037: 1031: 1028: 1022: 1018: 1012: 1007: 1003: 995: 994: 993: 986: 957: 953: 949: 945: 940: 935: 932: 928: 924: 919: 916: 912: 904: 903: 902: 869: 866: 862: 851: 845: 842: 837: 834: 830: 823: 817: 812: 808: 804: 798: 792: 785: 784: 783: 753: 749: 743: 740: 737: 732: 729: 726: 722: 718: 715: 712: 705: 701: 697: 694: 686: 673: 669: 665: 658: 654: 650: 644: 638: 632: 626: 623: 617: 614: 608: 603: 599: 591: 590: 589: 579: 577: 560: 556: 544: 542: 523: 519: 507: 489: 485: 462: 438: 434: 389: 385: 375: 371: 348: 344: 340: 333: 329: 325: 320: 316: 305: 301: 297: 292: 287: 283: 277: 266: 260: 257: 250: 246: 242: 232: 216: 212: 206: 202: 196: 186: 183: 180: 175: 172: 169: 165: 161: 154: 150: 146: 141: 135: 132: 128: 123: 117: 114: 109: 106: 96: 95: 94: 92: 88: 80: 78: 75: 73: 69: 65: 61: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 19: 1618: 1546:Hybrid types 1429: 1408: 1328: 1324: 1249: 1246: 1242: 1230: 1222: 1115: 1112: 992:is given by 987: 980: 888: 773: 583: 545: 508: 367: 84: 76: 68:small signal 64:steady state 58:to obtain a 53: 49:optical gain 15: 1563:Other Types 1490:Laser diode 1483:Basic types 60:time-domain 18:laser diode 1662:Categories 1421:References 1628:Materials 1386:− 1343:λ 1340:δ 1303:μ 1287:μ 1276:μ 1272:∑ 1268:ϵ 1202:λ 1199:δ 1190:− 1175:λ 1172:δ 1169:μ 1166:− 1157:λ 1148:μ 1144:λ 1079:λ 1075:δ 1062:μ 1058:λ 1054:− 1045:λ 1019:β 1008:μ 1004:β 963:Γ 954:τ 950:α 843:− 809:λ 793:λ 754:μ 738:μ 727:μ 723:∑ 719:ϵ 698:α 695:− 670:λ 666:δ 659:μ 655:λ 651:− 639:λ 627:− 615:α 604:μ 557:τ 520:τ 486:τ 463:β 435:τ 413:Γ 386:τ 345:τ 334:μ 330:β 321:μ 302:τ 293:− 288:μ 278:μ 274:Γ 251:μ 217:μ 207:μ 197:μ 193:Γ 181:μ 170:μ 166:∑ 162:− 151:τ 142:− 37:electrons 1578:(VECSEL) 376:region, 1572:(VCSEL) 1409:where I 981:where N 889:where λ 93:modes: 41:current 29:photons 1643:(GaAs) 1637:(InAs) 1607:Theory 1113:where 374:active 1589:(ICL) 1555:laser 1538:(ECL) 1532:(QCL) 1516:(DFB) 1510:(DBR) 1504:(SCH) 87:modes 1498:(DH) 1492:(LD) 1236:and 31:and 16:The 66:or 1664:: 1415:th 1240:. 983:tr 899:th 895:th 74:. 51:. 1463:e 1456:t 1449:v 1411:0 1393:) 1389:1 1378:h 1375:t 1371:I 1365:0 1361:I 1353:( 1349:k 1346:= 1299:P 1293:M 1290:= 1282:1 1279:= 1265:+ 1262:1 1206:2 1196:) 1193:1 1187:n 1184:( 1178:+ 1161:0 1153:= 1130:μ 1126:s 1122:s 1118:0 1116:β 1093:2 1089:) 1083:s 1071:/ 1067:) 1049:s 1041:( 1038:2 1035:( 1032:+ 1029:1 1023:0 1013:= 990:μ 988:β 958:p 946:1 941:+ 936:r 933:t 929:N 925:= 920:h 917:t 913:N 891:0 870:h 867:t 863:N 858:) 855:) 852:t 849:( 846:N 838:h 835:t 831:N 827:( 824:k 818:+ 813:0 805:= 802:) 799:t 796:( 780:g 776:μ 750:P 744:M 741:= 733:1 730:= 716:+ 713:1 706:0 702:N 692:] 687:2 683:) 674:g 648:) 645:t 642:( 633:2 630:( 624:1 621:[ 618:N 609:= 600:G 586:μ 584:G 561:p 524:n 490:r 439:p 390:n 349:r 341:N 326:+ 317:P 313:) 306:p 298:1 284:G 270:( 267:= 261:t 258:d 247:P 243:d 213:P 203:G 187:M 184:= 176:1 173:= 155:n 147:N 136:V 133:e 129:I 124:= 118:t 115:d 110:N 107:d 35:(

Index

laser diode
rate equations
ordinary differential equations
photons
charge carriers
electrons
current
carrier lifetime
optical gain
numerical integration
time-domain
steady state
small signal
semiconductor lasers
modes
optical cavity
elementary charge
active
stimulated recombination
spatial hole burning
spectral hole burning
v
t
e

Semiconductor lasers
Laser diode
Double heterostructure laser
Separate confinement heterostructure laser
Distributed Bragg reflector laser

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.