Knowledge (XXG)

Laser drilling

Source đź“ť

590:, the melt layer flow and melt expulsion can be modeled using hydrodynamic equations (Ganesh et al.,1997). Melt expulsion occurs when the vapor pressure is applied on the liquid free surface which in turn pushes the melt away in the radial direction. In order to achieve fine melt expulsion, the melt flow pattern needs to be predicted very precisely, especially the melt flow velocity at the hole's edge. Thus, a 2-D 1943: 424: 601:
Ganesh's model for melt ejection is comprehensive and can be used for different stages of the hole drilling process. However, the calculation is very time consuming and Solana, et al. (2001), presented a simplified time dependent model that assumes that the melt expulsion velocity is only along the
197:
In early work (Körner, et al., 1996), the proportion of material removed by melt expulsion was found to increase as intensity increased. More recent work (Voisey, et al., 2000) shows that the fraction of the material removed by melt expulsion, referred to as melt ejection fraction (MEF), drops when
77:
Incremental improvements in laser process and control technologies have led to substantial increases in the number of cooling holes used in turbine engines. Fundamental to these improvements and increased use of laser drilled holes is an understanding of the relationship between process parameters
22:
is the process of creating thru-holes, referred to as “popped” holes or “percussion drilled” holes, by repeatedly pulsing focused laser energy on a material. The diameter of these holes can be as small as 0.002” (~50 μm). If larger holes are required, the laser is moved around the circumference of
201:
A better finish can be achieved if the melt is ejected in fine droplets. Generally speaking, droplet size decreases with increasing pulse intensity. This is due to the increased vaporization rate and thus a thinner molten layer. For the longer pulse duration, the greater total energy input helps
827:
Grad and Mozina (1998) further demonstrated the effect of pulse shapes. A 12 ns spike was added at the beginning, middle, and the end of a 5 ms pulse. When the 12 ns spike was added to the beginning of the long laser pulse, where no melt had been produced, no significant effect on removal was
215:
incorporate solid, fluid, temperature, and pressure during laser drilling, but it is computationally demanding. Yao, et al. (2001) developed a 2-D transient model, in which a Knudsen layer is considered at the melt-vapor front, and the model is suited for shorter pulse and high peak power
214:
hole drilling and the drilling process is transient. Kar and Mazumder (1990) extended the model to 2-D, but melt expulsion was not explicitly considered. A more rigorous treatment of melt expulsion has been presented by Ganesh, et al. (1997), which is a 2-D transient generalized model to
823:
Roos (1980) showed that a 200 ÎĽs train consisting of 0.5 ÎĽs pulses produced superior results for drilling metals than a 200 ÎĽs flat shaped pulse. Anisimov, et al. (1984) discovered that process efficiency improved by accelerating the melt during the pulse.
743: 124:
duration and energy playing an important role. Generally speaking, ablation dominates when a Q-switched Nd:YAG laser is used. On the other hand, melt expulsion, the means by which a hole is created through melting the material, dominates when a
605:
The liquid will move upwards with velocity u as a consequence of the pressure gradient along the vertical walls, which is given in turn by the difference between the ablation pressure and the surface tension divided by the penetration depth
567:
is assumed to exist at the melt-vapor front where the state variables undergo discontinuous changes across the layer. By considering the discontinuity across the Knudsen layer, Yao, et al. (2001) simulated the surface recess velocity
233: 198:
laser energy further increases. The initial increase in melt expulsion on raising the beam power has been tentatively attributed to an increase in the pressure and pressure gradient generated within the hole by vaporization.
1404:
Solana, Pablo; Kapadia, Phiroze; Dowden, John; Rodden, William S.O.; Kudesia, Sean S.; Hand, Duncan P.; Jones, Julian D.C. (2001). "Time dependent ablation and liquid ejection processes during the laser drilling of metals".
69:
and machined components. Their ability to drill holes at shallow angles to the surface at rates of between 0.3 and 3 holes per second has enabled new designs incorporating film-cooling holes for improved
1491:
Anisimov, V. N.; Arutyunyan, R. V.; Baranov, V. Yu.; Bolshov, L. A.; Velikhov, E. P.; et al. (1984-01-01). "Materials processing by high-repetition-rate pulsed excimer and carbon dioxide lasers".
149:, peak power in the order of sub MW/cm, and material removal rate of ten to hundreds of micrometers per pulse. For machining processes by each laser, ablation and melt expulsion typically coexist. 813: 623: 491: 171:
The "best of both worlds" is a single system capable of both "fine" and "coarse" melt expulsion. "Fine" melt expulsion produces features with excellent wall definition and small
117:
The energy required to remove material by melting is about 25% of that needed to vaporize the same volume, so a process that removes material by melting is often favored.
1113:
Körner, C.; Mayerhofer, R.; Hartmann, M.; Bergmann, H. W. (1996). "Physical and material aspects in using visible laser pulses of nanosecond duration for ablation".
419:{\displaystyle I_{abs}+k\left({\frac {\partial T}{\partial z}}+r{\frac {\partial T}{\partial r}}\right)+\rho _{l}\nu _{i}L_{v}-\rho _{v}\nu _{v}(c_{p}T_{i}+E_{v})=0} 90:
Following is a summary of technical insights about the laser drilling process and the relationship between process parameters and hole quality and drilling speed.
909: 227:
At the melt-vapor front, the Stefan boundary condition is normally applied to describe the laser energy absorption (Kar and Mazumda, 1990; Yao, et al., 2001).
572:
distribution, along the radial direction at different times, which indicates the material ablation rate is changing significantly across the Knudsen layer.
1318:
Ganesh, R.K.; Faghri, A.; Hahn, Y. (1997). "A generalized thermal modeling for laser drilling process—I. Mathematical modeling and numerical methodology".
1232:
Chan, C. L.; Mazumder, J. (1987). "One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction".
210:
Chan and Mazumder (1987) developed a 1-D steady state model to incorporate liquid expulsion consideration but the 1-D assumption is not suited for high
1903: 190:
for which the recoil and surface tension forces are equal is the critical temperature for liquid expulsion. For instance, liquid expulsion from
839:
Forsman, et al. (2007) demonstrated that a double pulse stream produced increased drilling and cutting rates with significantly cleaner holes.
31:
Laser drilling is one of the few techniques for producing high-aspect-ratio holes—holes with a depth-to-diameter ratio much greater than 10:1.
1035:
Kestenbaum, A.; D'Amico, J.F.; Blumenstock, B.J.; DeAngelo, M.A. (1990). "Laser drilling of microvias in epoxy-glass printed circuit boards".
1216: 1275:
Kar, A.; Mazumder, J. (1990-10-15). "Two-dimensional model for material damage due to melting and vaporization during laser irradiation".
1019: 828:
observed. On the other hand, when the spike was added at the middle and the end of the long pulse, the improvement of the drilling
1642: 617:
of liquid motion on the vertical wall is a good approximation to model the melt expulsion after the initial stage of drilling.
832:
was 80 and 90%, respectively. The effect of inter-pulse shaping has also been investigated. Low and Li (2001) showed that a
1812: 1581:
Low, D.K.Y; Li, L; Byrd, P.J (2001). "The influence of temporal pulse train modulation during laser percussion drilling".
1868: 781: 1672: 35: 1164:
Voisey, K.T.; Cheng, C.F.; Clyne, T.W. (2000). "Quantification of Melt Ejection Phenomena During Laser Drilling".
738:{\displaystyle \rho {\frac {\partial u(r,t)}{\partial t}}=P(t)+\mu {\frac {\partial ^{2}u(r,t)}{\partial r^{2}}}} 435: 1542:
Grad, Ladislav; MoĹľina, Janez (1998). "Laser pulse shape influence on optically induced dynamic processes".
1361:
Zhang, W.; Yao, Y.L.; Chen, K. (2001-09-01). "Modelling and Analysis of UV Laser Micromachining of Copper".
505:
describes temporal input laser intensity including pulse width, repetition rate, and pulse temporal shape.
120:
Whether melting or vaporization is more dominant in a laser drilling process depends on many factors, with
1842: 1662: 858: 1730: 975: 928: 134: 65:
for drilling small (0.3–1 mm diameter typical) cylindrical holes at 15–90° to the surface in cast,
43: 141:
per pulse. A flash lamp pumped Nd:YAG laser normally has a pulse duration on the order of hundreds of
1967: 1837: 1720: 1708: 1635: 1590: 1547: 1500: 1457: 1414: 1327: 1284: 1241: 1122: 1079: 510: 129:
pumped Nd:YAG laser is used. A Q-switched Nd:YAG laser normally has pulse duration in the order of
1888: 1807: 1747: 1667: 54: 1972: 1386: 1146: 172: 956: 1908: 1782: 1757: 1606: 1563: 1524: 1516: 1473: 1430: 1378: 1343: 1300: 1257: 1212: 1181: 1138: 1095: 1052: 1015: 913: 161: 202:
form a thicker molten layer and results in the expulsion of correspondingly larger droplets.
1918: 1883: 1863: 1832: 1598: 1555: 1508: 1465: 1422: 1370: 1335: 1292: 1249: 1204: 1173: 1130: 1087: 1044: 1007: 176: 58: 1946: 1827: 1817: 1628: 988: 941: 614: 165: 71: 1594: 1551: 1504: 1461: 1418: 1331: 1288: 1245: 1126: 1083: 1923: 1913: 1873: 1822: 1740: 1693: 1677: 581: 216: 1602: 1559: 1426: 1339: 1070:
Basu, S.; DebRoy, T. (1992-10-15). "Liquid metal expulsion during laser irradiation".
884: 1961: 1878: 1858: 1799: 1725: 853: 564: 1390: 1150: 1898: 1767: 1762: 1703: 957:"PCB Laser Technology for Rigid and Flex HDI – Via Formation, Structuring, Routing" 591: 211: 153: 103: 39: 34:
Laser-drilled high-aspect-ratio holes are used in many applications, including the
1201:
Damage caused during laser drilling of thermal spray TBCs on superalloy substrates
836:
of linearly increasing magnitude had a significant effect on expulsion processes.
613:
Assuming that the drilling front is moving at a constant velocity, the following
164:
acting on the surface due to vaporization must be sufficiently large to overcome
1928: 1789: 1772: 1752: 833: 183: 157: 146: 142: 121: 66: 50: 1777: 829: 498: 194:
can take place when the temperature at the center of the hole exceeds 3780 K.
138: 130: 111: 1610: 1567: 1520: 1477: 1434: 1382: 1347: 1304: 1261: 1185: 1142: 1099: 1056: 1011: 1893: 1735: 1715: 1698: 760: 126: 1528: 560:
denote liquid phase, vapor phase and vapor-liquid interface, respectively.
1374: 1177: 1043:(4). Institute of Electrical and Electronics Engineers (IEEE): 1055–1062. 563:
If the laser intensity is high and pulse duration is short, the so-called
1512: 1203:. ICALEO 2001. Jacksonville FL: Laser Institute of America. p. 257. 848: 595: 538: 191: 110:") of the workpiece material through absorption of energy from a focused 107: 79: 1006:. Proceedings of 3rd Electronics Packaging Technology Conference. IEEE. 1134: 530: 99: 42:, aerospace turbine-engine cooling holes, laser fusion components, and 1448:
Roos, Sven-Olov (1980). "Laser drilling with different pulse shapes".
1208: 1037:
IEEE Transactions on Components, Hybrids, and Manufacturing Technology
1469: 1296: 1253: 1091: 1048: 908:
Bovatsek, Jim; Tamhankar, Ashwini; Patel, Rajesh (November 1, 2012).
602:
hole wall, and can give results with a minimum computational effort.
910:"Ultraviolet lasers: UV lasers improve PCB manufacturing processes" 1651: 62: 160:. For melt expulsion to occur, a molten layer must form and the 885:"Superpulse A nanosecond pulse format to improve laser drilling" 1624: 1199:
Voisey, K. T.; Thompson, J. A.; Clyne, T. W. (14–18 Oct 2001).
1363:
The International Journal of Advanced Manufacturing Technology
133:, peak power on the order of ten to hundreds of MW/cm, and a 98:
Laser drilling of cylindrical holes generally occurs through
152:
Melt expulsion arises as a result of the rapid build-up of
16:
Process of creating thru-holes using laser cutting methods
1620: 23:
the “popped” hole until the desired diameter is created.
1369:(5). Springer Science and Business Media LLC: 323–331. 1121:(2). Springer Science and Business Media LLC: 123–131. 497:
is the laser absorption coefficient depending on laser
1115:
Applied Physics A: Materials Science & Processing
785: 626: 438: 236: 168:
forces and expel the molten material from the hole.
1851: 1798: 1686: 1172:. San Francisco: Cambridge University Press (CUP). 1002:Gan, E.K.W.; Zheng, H.Y.; Lim, G.C. (7 Dec 2000). 807: 737: 485: 418: 182:The recoil force is a strong function of the peak 767:is the pressure gradient along the liquid layer, 525:are distances along axial and radial directions, 74:, reduced noise, and lower NOx and CO emissions. 548:the latent heat of vaporization. The subscripts 1320:International Journal of Heat and Mass Transfer 808:{\displaystyle 2\sigma \over {\bar {\delta }}} 175:while "coarse" melt expulsion, such as used in 1004:Laser drilling of micro-vias in PCB substrates 955:Meier, Dieter J.; Schmidt, Stephan H. (2002). 1636: 771:is the difference between the vapor pressure 8: 594:transient model is used and accordingly the 223:Laser energy absorption and melt-vapor front 1643: 1629: 1621: 156:(recoil force) within a cavity created by 878: 876: 874: 794: 793: 783: 726: 693: 686: 630: 625: 471: 443: 437: 401: 388: 378: 365: 355: 342: 332: 322: 290: 264: 241: 235: 1546:. 127–129 (1–2). Elsevier BV: 999–1004. 61:have benefited from the productivity of 1904:Multiple-prism grating laser oscillator 870: 486:{\displaystyle I_{abs}=I(t)^{-\beta z}} 984: 973: 937: 926: 883:Forsman, A; et al. (June 2007). 7: 719: 690: 656: 633: 301: 293: 275: 267: 14: 1240:(11). AIP Publishing: 4579–4586. 493:is the absorbed laser intensity, 1942: 1941: 1583:Optics and Lasers in Engineering 1456:(9). AIP Publishing: 5061–5063. 1283:(8). AIP Publishing: 3884–3891. 1078:(8). AIP Publishing: 3317–3322. 44:printed circuit board micro-vias 598:and continuity equations used. 1813:Amplified spontaneous emission 1499:(1). The Optical Society: 18. 1326:(14). Elsevier BV: 3351–3360. 799: 714: 702: 677: 671: 651: 639: 468: 461: 407: 371: 1: 1603:10.1016/s0143-8166(01)00008-2 1560:10.1016/s0169-4332(97)00781-2 1427:10.1016/s0030-4018(01)01072-0 1340:10.1016/s0017-9310(96)00368-7 1413:(1–2). Elsevier BV: 97–112. 962:. LPKF Laser and Electronics 179:, removes material quickly. 1869:Chirped pulse amplification 1589:(3). Elsevier BV: 149–164. 1989: 1673:List of laser applications 1450:Journal of Applied Physics 1277:Journal of Applied Physics 1234:Journal of Applied Physics 1072:Journal of Applied Physics 1937: 1658: 501:and target material, and 1012:10.1109/eptc.2000.906394 778:and the surface tension 1544:Applied Surface Science 1663:List of laser articles 983:Cite journal requires 936:Cite journal requires 859:List of laser articles 809: 739: 487: 420: 106:(also referred to as " 1407:Optics Communications 1375:10.1007/s001700170056 1178:10.1557/proc-617-j5.6 810: 755:is the melt density, 740: 488: 421: 135:material removal rate 78:and hole quality and 1838:Population inversion 1513:10.1364/ao.23.000018 782: 624: 580:After obtaining the 517:is the temperature, 436: 234: 1889:Laser beam profiler 1808:Active laser medium 1748:Free-electron laser 1668:List of laser types 1595:2001OptLE..35..149L 1552:1998ApSS..127..999G 1505:1984ApOpt..23...18A 1462:1980JAP....51.5061R 1419:2001OptCo.191...97S 1332:1997IJHMT..40.3351G 1289:1990JAP....68.3884K 1246:1987JAP....62.4579C 1127:1996ApPhA..63..123K 1084:1992JAP....72.3317B 890:. Photonics Spectra 177:percussion drilling 55:aircraft propulsion 1135:10.1007/bf01567639 819:Pulse shape effect 792: 735: 483: 416: 173:heat-affected zone 162:pressure gradients 94:Physical phenomena 1955: 1954: 1909:Optical amplifier 1758:Solid-state laser 1218:978-0-912035-71-0 1209:10.2351/1.5059872 914:Laser Focus World 805: 802: 765:P(t)=(ΔP(t)/x(t)) 733: 663: 511:heat conductivity 308: 282: 49:Manufacturers of 1980: 1945: 1944: 1919:Optical isolator 1884:Injection seeder 1864:Beam homogenizer 1843:Ultrashort pulse 1833:Lasing threshold 1645: 1638: 1631: 1622: 1615: 1614: 1578: 1572: 1571: 1539: 1533: 1532: 1488: 1482: 1481: 1470:10.1063/1.328358 1445: 1439: 1438: 1401: 1395: 1394: 1358: 1352: 1351: 1315: 1309: 1308: 1297:10.1063/1.346275 1272: 1266: 1265: 1254:10.1063/1.339053 1229: 1223: 1222: 1196: 1190: 1189: 1161: 1155: 1154: 1110: 1104: 1103: 1092:10.1063/1.351452 1067: 1061: 1060: 1049:10.1109/33.62548 1032: 1026: 1025: 999: 993: 992: 986: 981: 979: 971: 969: 967: 961: 952: 946: 945: 939: 934: 932: 924: 922: 920: 905: 899: 898: 896: 895: 889: 880: 814: 812: 811: 806: 804: 803: 795: 784: 744: 742: 741: 736: 734: 732: 731: 730: 717: 698: 697: 687: 664: 662: 654: 631: 492: 490: 489: 484: 482: 481: 454: 453: 425: 423: 422: 417: 406: 405: 393: 392: 383: 382: 370: 369: 360: 359: 347: 346: 337: 336: 327: 326: 314: 310: 309: 307: 299: 291: 283: 281: 273: 265: 252: 251: 186:. The value of T 59:power generation 1988: 1987: 1983: 1982: 1981: 1979: 1978: 1977: 1958: 1957: 1956: 1951: 1933: 1847: 1828:Laser linewidth 1818:Continuous wave 1794: 1687:Types of lasers 1682: 1654: 1649: 1619: 1618: 1580: 1579: 1575: 1541: 1540: 1536: 1490: 1489: 1485: 1447: 1446: 1442: 1403: 1402: 1398: 1360: 1359: 1355: 1317: 1316: 1312: 1274: 1273: 1269: 1231: 1230: 1226: 1219: 1198: 1197: 1193: 1166:MRS Proceedings 1163: 1162: 1158: 1112: 1111: 1107: 1069: 1068: 1064: 1034: 1033: 1029: 1022: 1001: 1000: 996: 982: 972: 965: 963: 959: 954: 953: 949: 935: 925: 918: 916: 907: 906: 902: 893: 891: 887: 882: 881: 872: 867: 845: 821: 780: 779: 776: 763:of the liquid, 722: 718: 689: 688: 655: 632: 622: 621: 615:linear equation 588: 578: 571: 546: 467: 439: 434: 433: 397: 384: 374: 361: 351: 338: 328: 318: 300: 292: 274: 266: 263: 259: 237: 232: 231: 225: 208: 206:Previous models 189: 166:surface tension 96: 88: 72:fuel efficiency 51:turbine engines 29: 17: 12: 11: 5: 1986: 1984: 1976: 1975: 1970: 1960: 1959: 1953: 1952: 1950: 1949: 1938: 1935: 1934: 1932: 1931: 1926: 1924:Output coupler 1921: 1916: 1914:Optical cavity 1911: 1906: 1901: 1896: 1891: 1886: 1881: 1876: 1874:Gain-switching 1871: 1866: 1861: 1855: 1853: 1849: 1848: 1846: 1845: 1840: 1835: 1830: 1825: 1823:Laser ablation 1820: 1815: 1810: 1804: 1802: 1796: 1795: 1793: 1792: 1787: 1786: 1785: 1780: 1775: 1770: 1765: 1755: 1750: 1745: 1744: 1743: 1738: 1733: 1728: 1723: 1721:Carbon dioxide 1713: 1712: 1711: 1709:Liquid-crystal 1706: 1696: 1694:Chemical laser 1690: 1688: 1684: 1683: 1681: 1680: 1678:Laser acronyms 1675: 1670: 1665: 1659: 1656: 1655: 1650: 1648: 1647: 1640: 1633: 1625: 1617: 1616: 1573: 1534: 1493:Applied Optics 1483: 1440: 1396: 1353: 1310: 1267: 1224: 1217: 1191: 1156: 1105: 1062: 1027: 1020: 994: 985:|journal= 947: 938:|journal= 900: 869: 868: 866: 863: 862: 861: 856: 851: 844: 841: 820: 817: 801: 798: 791: 788: 774: 749: 748: 729: 725: 721: 716: 713: 710: 707: 704: 701: 696: 692: 685: 682: 679: 676: 673: 670: 667: 661: 658: 653: 650: 647: 644: 641: 638: 635: 629: 586: 582:vapor pressure 577: 576:Melt expulsion 574: 569: 544: 480: 477: 474: 470: 466: 463: 460: 457: 452: 449: 446: 442: 430: 429: 415: 412: 409: 404: 400: 396: 391: 387: 381: 377: 373: 368: 364: 358: 354: 350: 345: 341: 335: 331: 325: 321: 317: 313: 306: 303: 298: 295: 289: 286: 280: 277: 272: 269: 262: 258: 255: 250: 247: 244: 240: 224: 221: 217:laser ablation 207: 204: 187: 95: 92: 87: 84: 28: 25: 20:Laser drilling 15: 13: 10: 9: 6: 4: 3: 2: 1985: 1974: 1971: 1969: 1966: 1965: 1963: 1948: 1940: 1939: 1936: 1930: 1927: 1925: 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1879:Gaussian beam 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1859:Beam expander 1857: 1856: 1854: 1850: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1805: 1803: 1801: 1800:Laser physics 1797: 1791: 1788: 1784: 1781: 1779: 1776: 1774: 1771: 1769: 1766: 1764: 1761: 1760: 1759: 1756: 1754: 1751: 1749: 1746: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1718: 1717: 1714: 1710: 1707: 1705: 1702: 1701: 1700: 1697: 1695: 1692: 1691: 1689: 1685: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1657: 1653: 1646: 1641: 1639: 1634: 1632: 1627: 1626: 1623: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1577: 1574: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1538: 1535: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1487: 1484: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1441: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1400: 1397: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1357: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1314: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1271: 1268: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1228: 1225: 1220: 1214: 1210: 1206: 1202: 1195: 1192: 1187: 1183: 1179: 1175: 1171: 1167: 1160: 1157: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1109: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1063: 1058: 1054: 1050: 1046: 1042: 1038: 1031: 1028: 1023: 1021:0-7803-6644-1 1017: 1013: 1009: 1005: 998: 995: 990: 977: 958: 951: 948: 943: 930: 915: 911: 904: 901: 886: 879: 877: 875: 871: 864: 860: 857: 855: 854:Laser cutting 852: 850: 847: 846: 842: 840: 837: 835: 831: 825: 818: 816: 796: 789: 786: 777: 770: 766: 762: 758: 754: 747: 727: 723: 711: 708: 705: 699: 694: 683: 680: 674: 668: 665: 659: 648: 645: 642: 636: 627: 620: 619: 618: 616: 611: 609: 603: 599: 597: 593: 589: 583: 575: 573: 566: 565:Knudsen layer 561: 559: 555: 551: 547: 540: 536: 532: 528: 524: 520: 516: 512: 508: 504: 500: 496: 478: 475: 472: 464: 458: 455: 450: 447: 444: 440: 428: 413: 410: 402: 398: 394: 389: 385: 379: 375: 366: 362: 356: 352: 348: 343: 339: 333: 329: 323: 319: 315: 311: 304: 296: 287: 284: 278: 270: 260: 256: 253: 248: 245: 242: 238: 230: 229: 228: 222: 220: 218: 213: 205: 203: 199: 195: 193: 185: 180: 178: 174: 169: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 128: 123: 118: 115: 113: 109: 105: 101: 93: 91: 85: 83: 81: 75: 73: 68: 64: 60: 56: 52: 47: 45: 41: 40:engine blocks 37: 32: 26: 24: 21: 1899:Mode locking 1852:Laser optics 1586: 1582: 1576: 1543: 1537: 1496: 1492: 1486: 1453: 1449: 1443: 1410: 1406: 1399: 1366: 1362: 1356: 1323: 1319: 1313: 1280: 1276: 1270: 1237: 1233: 1227: 1200: 1194: 1169: 1165: 1159: 1118: 1114: 1108: 1075: 1071: 1065: 1040: 1036: 1030: 1003: 997: 976:cite journal 964:. Retrieved 950: 929:cite journal 917:. Retrieved 903: 892:. Retrieved 838: 826: 822: 772: 768: 764: 756: 752: 750: 745: 612: 607: 604: 600: 592:axisymmetric 584: 579: 562: 557: 553: 549: 542: 534: 526: 522: 518: 514: 506: 502: 494: 431: 426: 226: 212:aspect ratio 209: 200: 196: 181: 170: 154:gas pressure 151: 143:microseconds 119: 116: 104:vaporization 97: 89: 76: 48: 33: 30: 27:Applications 19: 18: 1968:Hole making 1929:Q-switching 1790:X-ray laser 1783:Ti-sapphire 1753:Laser diode 1731:Helium–neon 834:pulse train 184:temperature 158:evaporation 147:millisecond 139:micrometers 131:nanoseconds 122:laser pulse 67:sheet metal 36:oil gallery 1962:Categories 894:2014-07-20 865:References 830:efficiency 499:wavelength 112:laser beam 1973:Machining 1894:M squared 1716:Gas laser 1699:Dye laser 1611:0143-8166 1568:0169-4332 1521:0003-6935 1478:0021-8979 1435:0030-4018 1383:0268-3768 1348:0017-9310 1305:0021-8979 1262:0021-8979 1186:0272-9172 1143:0947-8396 1100:0021-8979 1057:0148-6411 800:¯ 797:δ 790:σ 761:viscosity 720:∂ 691:∂ 684:μ 657:∂ 634:∂ 628:ρ 476:β 473:− 363:ν 353:ρ 349:− 330:ν 320:ρ 302:∂ 294:∂ 276:∂ 268:∂ 137:of a few 127:flashtube 1947:Category 1741:Nitrogen 1529:18204507 1391:17600502 1151:97443562 849:Drilling 843:See also 596:momentum 539:velocity 192:titanium 108:ablation 80:drilling 57:and for 38:of some 1726:Excimer 1591:Bibcode 1548:Bibcode 1501:Bibcode 1458:Bibcode 1415:Bibcode 1328:Bibcode 1285:Bibcode 1242:Bibcode 1123:Bibcode 1080:Bibcode 966:20 July 919:20 July 759:is the 531:density 509:is the 100:melting 82:speed. 1768:Nd:YAG 1763:Er:YAG 1704:Bubble 1652:Lasers 1609:  1566:  1527:  1519:  1476:  1433:  1389:  1381:  1346:  1303:  1260:  1215:  1184:  1149:  1141:  1098:  1055:  1018:  751:where 432:where 86:Theory 63:lasers 1773:Raman 1387:S2CID 1147:S2CID 960:(PDF) 888:(PDF) 769:ΔP(t) 145:to a 1778:Ruby 1607:ISSN 1564:ISSN 1525:PMID 1517:ISSN 1474:ISSN 1431:ISSN 1379:ISSN 1344:ISSN 1301:ISSN 1258:ISSN 1213:ISBN 1182:ISSN 1139:ISSN 1096:ISSN 1053:ISSN 1016:ISBN 989:help 968:2014 942:help 921:2014 556:and 537:the 521:and 503:I(t) 102:and 53:for 1736:Ion 1599:doi 1556:doi 1509:doi 1466:doi 1423:doi 1411:191 1371:doi 1336:doi 1293:doi 1250:doi 1205:doi 1174:doi 1170:617 1131:doi 1088:doi 1045:doi 1008:doi 746:(2) 529:is 427:(1) 1964:: 1605:. 1597:. 1587:35 1585:. 1562:. 1554:. 1523:. 1515:. 1507:. 1497:23 1495:. 1472:. 1464:. 1454:51 1452:. 1429:. 1421:. 1409:. 1385:. 1377:. 1367:18 1365:. 1342:. 1334:. 1324:40 1322:. 1299:. 1291:. 1281:68 1279:. 1256:. 1248:. 1238:62 1236:. 1211:. 1180:. 1168:. 1145:. 1137:. 1129:. 1119:63 1117:. 1094:. 1086:. 1076:72 1074:. 1051:. 1041:13 1039:. 1014:. 980:: 978:}} 974:{{ 933:: 931:}} 927:{{ 912:. 873:^ 815:. 610:. 552:, 541:, 533:, 513:, 219:. 188:cr 114:. 46:. 1644:e 1637:t 1630:v 1613:. 1601:: 1593:: 1570:. 1558:: 1550:: 1531:. 1511:: 1503:: 1480:. 1468:: 1460:: 1437:. 1425:: 1417:: 1393:. 1373:: 1350:. 1338:: 1330:: 1307:. 1295:: 1287:: 1264:. 1252:: 1244:: 1221:. 1207:: 1188:. 1176:: 1153:. 1133:: 1125:: 1102:. 1090:: 1082:: 1059:. 1047:: 1024:. 1010:: 991:) 987:( 970:. 944:) 940:( 923:. 897:. 787:2 775:v 773:P 757:ÎĽ 753:p 728:2 724:r 715:) 712:t 709:, 706:r 703:( 700:u 695:2 681:+ 678:) 675:t 672:( 669:P 666:= 660:t 652:) 649:t 646:, 643:r 640:( 637:u 608:x 587:v 585:p 570:v 568:V 558:i 554:v 550:l 545:v 543:L 535:v 527:p 523:r 519:z 515:T 507:k 495:β 479:z 469:) 465:t 462:( 459:I 456:= 451:s 448:b 445:a 441:I 414:0 411:= 408:) 403:v 399:E 395:+ 390:i 386:T 380:p 376:c 372:( 367:v 357:v 344:v 340:L 334:i 324:l 316:+ 312:) 305:r 297:T 288:r 285:+ 279:z 271:T 261:( 257:k 254:+ 249:s 246:b 243:a 239:I

Index

oil gallery
engine blocks
printed circuit board micro-vias
turbine engines
aircraft propulsion
power generation
lasers
sheet metal
fuel efficiency
drilling
melting
vaporization
ablation
laser beam
laser pulse
flashtube
nanoseconds
material removal rate
micrometers
microseconds
millisecond
gas pressure
evaporation
pressure gradients
surface tension
heat-affected zone
percussion drilling
temperature
titanium
aspect ratio

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑