Knowledge (XXG)

Lattice (discrete subgroup)

Source 📝

35: 68: 2417:
nilpotent Lie group (equivalently it does not contain a nontrivial compact subgroup) then a discrete subgroup is a lattice if and only if it is not contained in a proper connected subgroup (this generalises the fact that a discrete subgroup in a vector space is a lattice if and only if it spans the
4481:
The real rank of a Lie group has a significant influence on the behaviour of the lattices it contains. In particular the behaviour of lattices in the first two families of groups (and to a lesser extent that of lattices in the latter two) differs much from that of irreducible lattices in groups of
1062:
is a matter of what it is designed to achieve. Maybe the most obvious idea is to say that a subgroup "approximates" a larger group is that the larger group can be covered by the translates of a "small" subset by all elements in the subgroups. In a locally compact topological group there are two
6701:(the group of 2 by 2 matrices with determinant 1) any isomorphism of lattices is essentially induced by an isomorphism between the groups themselves. In particular, a lattice in a Lie group "remembers" the ambient Lie group through its group structure. The first statement is sometimes called 6267: 2353:
Not every locally compact group contains a lattice, and there is no general group-theoretical sufficient condition for this. On the other hand, there are plenty of more specific settings where such criteria exist. For example, the existence or non-existence of lattices in
4737:
The property known as (T) was introduced by Kazhdan to study the algebraic structure lattices in certain Lie groups when the classical, more geometric methods failed or at least were not as efficient. The fundamental result when studying lattices is the following:
2837:
The criterion for nilpotent Lie groups to have a lattice given above does not apply to more general solvable Lie groups. It remains true that any lattice in a solvable Lie group is uniform and that lattices in solvable groups are finitely presented.
7050:
It is easily seen from the basic theory of group actions on trees that uniform tree lattices are virtually free groups. Thus the more interesting tree lattices are the non-uniform ones, equivalently those for which the quotient graph
3172: 2336: 1145: 3811: 6142: 6598: 2380:. This is sufficient to imply the existence of a lattice in a Lie group, but in the more general setting of locally compact groups there exist simple groups without lattices, for example the "Neretin groups". 6541: 5115: 3361: 4752:
it is possible to classify semisimple Lie groups according to whether or not they have the property. As a consequence we get the following result, further illustrating the dichotomy of the previous section:
1075:, so it gives finite mass to compact subsets, the second definition is more general. The definition of a lattice used in mathematics relies upon the second meaning (in particular to include such examples as 6721:
provides (for Lie groups and algebraic groups over local fields of higher rank) a strengthening of both local and strong rigidity, dealing with arbitrary homomorphisms from a lattice in an algebraic group
3052: 1903: 1060: 3679: 3596: 4840:. For uniform lattices this is a direct consequence of cocompactness. In the non-uniform case this can be proved using reduction theory. It is easier to prove finite presentability for groups with 3407: 4821: 4726: 4590: 3466: 6835: 6782: 6699: 3739: 2929: 2264: 2221: 6440: 5811:
A class of groups with similar properties (with respect to lattices) to real semisimple Lie groups are semisimple algebraic groups over local fields of characteristic 0, for example the
1453: 4642: 3858: 1316: 6022: 5205: 3972: 3925: 7157: 2829:
Finally, a nilpotent group is isomorphic to a lattice in a nilpotent Lie group if and only if it contains a subgroup of finite index which is torsion-free and finitely generated.
7075: 5757: 5397: 3275: 2737: 2393:
For nilpotent groups the theory simplifies much from the general case, and stays similar to the case of Abelian groups. All lattices in a nilpotent Lie group are uniform, and if
4524: 4345: 4240: 4132: 1533: 7364: 7045: 7001: 6940: 5257: 6081: 5919: 5890: 5841: 5711: 3512: 2077: 2048: 1829: 1767: 1580: 1001: 972: 6471: 5553: 4929: 2761: 2599: 2555: 2511: 2463: 7476: 7430: 1018:
Rigorously defining the meaning of "approximation of a continuous group by a discrete subgroup" in the previous paragraph in order to get a notion generalising the example
6397: 6352: 5283: 5025: 4026: 3201: 2997: 2951: 513: 488: 451: 7281:, all of whose vertex groups are finite, and under additional necessary assumptions on the index of the edge groups and the size of the vertex groups, then the action of 6134: 5142: 4448: 1855: 6107: 2172: 1971: 1799: 1671: 1407: 5843:. There is an arithmetic construction similar to the real case, and the dichotomy between higher rank and rank one also holds in this case, in a more marked form. Let 7299: 7275: 5504: 5323: 5166: 4407: 4302: 4194: 3878: 3619: 3536: 3080: 2824: 2675: 2635: 2144: 1991: 1923: 1691: 1623: 1336: 1204: 1499: 6302: 6052: 5674: 4905: 4475: 4381: 4276: 4168: 4077: 1251: 1379: 4999: 815: 7496: 7450: 7404: 7384: 7327: 7237: 7217: 7197: 7177: 7103: 6960: 6895: 6875: 6491: 6375: 6322: 5951: 5861: 5797: 5777: 5731: 5637: 5617: 5597: 5577: 5484: 5464: 5437: 5417: 5371: 5343: 5303: 5225: 4973: 4949: 4875: 4050: 4004: 3486: 3295: 3229: 3100: 2975: 2882: 2784: 2695: 2655: 2575: 2531: 2483: 2439: 2411: 2124: 2104: 2011: 1943: 1738: 1718: 1643: 1603: 1473: 1356: 1271: 1224: 1184: 6966:, in which a basis of neighbourhoods of the identity is given by the stabilisers of finite subtrees, which are compact). Any group which is a lattice in some 7243:
which in this case is a tree. In contrast to the characteristic 0 case such lattices can be nonuniform, and in this case they are never finitely generated.
3105: 2269: 1078: 3744: 860:
as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.
945:
Lattices are best thought of as discrete approximations of continuous groups (such as Lie groups). For example, it is intuitively clear that the subgroup
6262:{\displaystyle \mathrm {SL} _{2}\left(\mathbb {Z} \left\right)\subset \mathrm {SL} _{2}(\mathbb {R} )\times \mathrm {SL} _{2}(\mathbb {Q} _{p})} 7106: 373: 5759:
are called locally symmetric spaces. There is thus a bijective correspondence between complete locally symmetric spaces locally isomorphic to
8127: 8137:
Gelander, Tsachik (2014). "Lectures on lattices and locally symmetric spaces". In Bestvina, Mladen; Sageev, Michah; Vogtmann, Karen (eds.).
6837:
are not locally rigid. In fact they are accumulation points (in the Chabauty topology) of lattices of smaller covolume, as demonstrated by
6553: 323: 7498:), more general than the stronger condition that the quotient be finite (as proven by the very existence of nonuniform tree lattices). 6631:
results state that in most situations every subgroup which is sufficiently "close" to a lattice (in the intuitive sense, formalised by
6496: 5030: 3300: 808: 318: 8077: 8047: 8024: 7984: 7810: 2373:. It is also not very hard to find unimodular groups without lattices, for example certain nilpotent Lie groups as explained below. 6442:
of adélic points is well-defined (modulo some technicalities) and it is a locally compact group which naturally contains the group
3002: 6639:) is actually conjugated to the original lattice by an element of the ambient Lie group. A consequence of local rigidity and the 1860: 8188: 4837: 2342: 1021: 8178: 3624: 3541: 1158:. Uniform lattices are quasi-isometric to their ambient groups, but non-uniform ones are not even coarsely equivalent to it. 734: 3366: 4760: 4665: 4529: 5350: 4655:
while all normal subgroups of irreducible lattices in higher rank are either of finite index or contained in their center;
801: 6605: 6547: 1012: 3419: 6794: 6741: 232: 6661: 3688: 2891: 2226: 2183: 6600:
to more classical S-arithmetic quotients. This fact makes the adèle groups very effective as tools in the theory of
6277:. The Margulis arithmeticity theorem applies to this setting as well. In particular, if at least two of the factors 2841:
Not all finitely generated solvable groups are lattices in a Lie group. An algebraic criterion is that the group be
864: 6406: 8173: 7514:
Bader, Uri; Caprace, Pierre-Emmanuel; Gelander, Tsachik; Mozes, Shahar (2012). "Simple groups without lattices".
4084: 1412: 1068: 845: 7240: 4595: 6640: 2791: 2787: 1004: 616: 350: 227: 115: 42:, a discrete subgroup of the continuous Heisenberg Lie group. (The coloring and edges are only for visual aid.) 28: 6730:. It was proven by Grigori Margulis and is an essential ingredient in the proof of his arithmeticity theorem. 3816: 1276: 8183: 7478:
be of "finite volume" in a suitable sense (which can be expressed combinatorially in terms of the action of
6838: 6738:
The only semisimple Lie groups for which Mostow rigidity does not hold are all groups locally isomorphic to
6655: 6493:-rational point as a discrete subgroup. The Borel–Harish-Chandra theorem extends to this setting, and 5978: 5171: 4833: 3930: 3883: 2366: 7118: 5443: 2885: 898: 766: 556: 7252: 7054: 5736: 5376: 3234: 2700: 883: 6963: 4743:
A lattice in a locally compact group has property (T) if and only if the group itself has property (T).
4489: 4413: 4310: 4205: 4097: 2365:. This allows for the easy construction of groups without lattices, for example the group of invertible 1504: 906: 837: 640: 7332: 7013: 6969: 6908: 6621:
Another group of phenomena concerning lattices in semisimple algebraic groups is collectively known as
5233: 2341:
Any finite-index subgroup of a lattice is also a lattice in the same group. More generally, a subgroup
6057: 5895: 5866: 5817: 5690: 3491: 2053: 2024: 1808: 1746: 1538: 977: 948: 8152: 6785: 6445: 5534: 4910: 4053: 2742: 2580: 2536: 2492: 2444: 580: 568: 186: 120: 8193: 7455: 7409: 5677: 4659: 2486: 887: 882:
Lattices are also well-studied in some other classes of groups, in particular groups associated to
871:. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of 155: 50: 7846:
Gelander, Tsachik (15 September 2004). "Homotopy type and volume of locally symmetric manifolds".
6380: 6335: 5262: 5004: 4009: 3203:
a consequence of the arithmetic construction is that any semisimple Lie group contains a lattice.
3184: 2980: 2934: 2361:
As we mentioned, a necessary condition for a group to contain a lattice is that the group must be
1071:) or measure-theoretical (a subset of finite Haar measure). Note that since the Haar measure is a 496: 471: 434: 8142: 7957: 7904: 7855: 7783: 7757: 7659: 7549: 7523: 7110: 6112: 5120: 4418: 918: 140: 112: 8070:
Algebraic groups and number theory. (Translated from the 1991 Russian original by Rachel Rowen.)
7432:
being finite. The general existence theorem is more subtle: it is necessary and sufficient that
4823:
do not have Kazhdan's property (T) while irreducible lattices in all other simple Lie groups do;
1834: 6086: 2149: 1948: 1776: 1648: 1384: 8123: 8073: 8065: 8043: 8020: 7980: 7806: 7010:
The discreteness in this case is easy to see from the group action on the tree: a subgroup of
6636: 6632: 5640: 4952: 4749: 4243: 849: 841: 711: 545: 388: 282: 7284: 7260: 5489: 5308: 5151: 4386: 4281: 4173: 3863: 3604: 3521: 3065: 2797: 2660: 2608: 2129: 1976: 1908: 1676: 1608: 1321: 1189: 8015:
Tree lattices With appendices by H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg, and J. Tits
7941: 7914: 7865: 7767: 7643: 7533: 6601: 5681: 4092: 2859: 2842: 2414: 2362: 2080: 1478: 910: 876: 872: 696: 688: 680: 672: 664: 652: 592: 532: 522: 364: 306: 181: 150: 39: 8108: 8087: 8057: 7994: 7953: 7820: 7779: 7686: 7655: 7545: 6280: 6030: 5645: 4883: 4453: 4354: 4249: 4141: 4059: 1229: 863:
The theory is particularly rich for lattices in semisimple Lie groups or more generally in
8104: 8100: 8083: 8053: 8039: 7990: 7949: 7816: 7775: 7682: 7651: 7628: 7541: 7278: 6902: 5526: 4652: 4029: 3983: 2954: 2602: 1364: 1151: 857: 780: 773: 759: 716: 604: 527: 357: 271: 211: 91: 24: 6844:
As lattices in rank-one p-adic groups are virtually free groups they are very non-rigid.
4978: 8156: 7301:
on the Bass-Serre tree associated to the graph of groups realises it as a tree lattice.
7481: 7435: 7389: 7369: 7312: 7222: 7202: 7182: 7162: 7088: 6945: 6880: 6860: 6628: 6476: 6400: 6360: 6307: 5936: 5846: 5782: 5762: 5716: 5622: 5602: 5582: 5562: 5469: 5449: 5422: 5402: 5356: 5328: 5288: 5210: 4958: 4934: 4860: 4135: 4035: 3989: 3471: 3280: 3214: 3085: 3059: 2960: 2867: 2769: 2680: 2640: 2560: 2516: 2468: 2424: 2396: 2109: 2089: 1996: 1928: 1723: 1703: 1628: 1588: 1458: 1341: 1256: 1209: 1169: 1155: 926: 914: 909:(through the construction of locally homogeneous manifolds), in number theory (through 902: 787: 723: 413: 393: 330: 295: 216: 206: 191: 176: 130: 107: 6713:(Mostow proved it for cocompact lattices and Prasad extended it to the general case). 3167:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )\subset \mathrm {SL} _{2}(\mathbb {R} )} 2331:{\displaystyle \mathrm {SL} _{n}(\mathbb {Z} )\subset \mathrm {SL} _{n}(\mathbb {R} )} 1140:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )\subset \mathrm {SL} _{2}(\mathbb {R} )} 34: 8167: 7961: 7553: 6898: 6717: 6706: 5510: 4878: 4200: 3806:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} )\times \mathrm {SL} _{2}(\mathbb {R} )} 2178: 1359: 1072: 922: 706: 628: 462: 335: 201: 7787: 7663: 5960:
then there are uncountably many commensurability classes of non-arithmetic lattices.
5486:
and we see that the quotient manifold is of finite Riemannian volume if and only if
1696:
In the case of discrete subgroups this invariant measure coincides locally with the
8013: 6710: 6647:
there are only finitely many (up to conjugation) lattices with covolume bounded by
6355: 5812: 5556: 4841: 4645: 3055: 2377: 2370: 1720:
being a lattice is equivalent to it having a fundamental domain (for the action on
1697: 929: 561: 260: 249: 196: 171: 166: 125: 96: 59: 7869: 6784:. In this case there are in fact continuously many lattices and they give rise to 3514:
is said to be irreducible if either of the following equivalent conditions hold:
1585:
A slightly more sophisticated formulation is as follows: suppose in addition that
7932:
Lubotzky, Alexander (1991). "Lattices in rank one Lie groups over local fields".
4844:; however, there is a geometric proof which works for all semisimple Lie groups. 8072:. Pure and Applied Mathematics. Vol. 139. Boston, MA: Academic Press, Inc. 7113: 5514: 5346: 5145: 1625:
is discrete it is also unimodular and by general theorems there exists a unique
1064: 868: 5579:
is not compact it is not definite and hence not an inner product: however when
4079:). The semisimple Lie groups of real rank 1 without compact factors are (up to 3181:
in a semisimple Lie group. Since all semisimple Lie groups can be defined over
1147:) but the first also has its own interest (such lattices are called uniform). 5964:
In the latter case all lattices are in fact free groups (up to finite index).
4348: 829: 728: 456: 7918: 6608:
are usually stated and proven for adélic groups rather than for Lie groups.
2355: 1008: 549: 7977:
Adeles and algebraic groups. With appendices by M. Demazure and Takashi Ono
6273:
This arithmetic construction can be generalised to obtain the notion of an
7537: 67: 6643:
is Wang's theorem: in a given group (with a fixed Haar measure), for any
5800: 4351:
coefficients which preserve a "quaternionic quadratic form" of signature
2177:
All of these examples are uniform. A non-uniform example is given by the
86: 7805:. Progress in Mathematics. Vol. 212. Birkhäuser Verlag. Chapter 7. 6658:
states that for lattices in simple Lie groups not locally isomorphic to
5509:
Interesting examples in this class of Riemannian spaces include compact
7979:. Progress in Mathematics. Vol. 23. Birkhäuser. pp. iii+126. 7945: 7771: 7647: 7386:
contain a lattice? The existence of a uniform lattice is equivalent to
4080: 428: 342: 4450:(the real form of rank 1 corresponding to the exceptional Lie algebra 7895:
Gelander, Tsachik (December 2011). "Volume versus rank of lattices".
7860: 7762: 7047:
is discrete if and only if all vertex stabilisers are finite groups.
7105:
is a local field of positive characteristic (i.e. a completion of a
6593:{\displaystyle \mathrm {G} (F)\backslash \mathrm {G} (\mathbb {A} )} 1003:
in some sense, while both groups are essentially different: one is
8147: 7909: 7528: 4658:
Conjecturally, arithmetic lattices in higher-rank groups have the
2794:
since it is itself nilpotent); in fact it is generated by at most
1831:
is a uniform lattice if and only if there exists a compact subset
1206:
a discrete subgroup (this means that there exists a neighbourhood
6625:. Here are three classical examples of results in this category. 6536:{\displaystyle \mathrm {G} (F)\subset \mathrm {G} (\mathbb {A} )} 5110:{\displaystyle g_{\gamma }(v,w)=g_{e}(\gamma ^{*}v,\gamma ^{*}w)} 3356:{\displaystyle \Gamma _{1}\subset G_{1},\Gamma _{2}\subset G_{2}} 7109:
of a curve over a finite field, for example the field of formal
7077:
is infinite. The existence of such lattices is not easy to see.
6877:
be a tree with a cocompact group of automorphisms; for example,
5799:. This correspondence can be extended to all lattices by adding 2485:
can be defined over the rationals. That is, if and only if the
2079:. A slightly more complicated example is given by the discrete 7748:
Raghunathan, M. S. (2004). "The congruence subgroup problem".
6136:
is a real Lie group. An example of such a lattice is given by
5972:
More generally one can look at lattices in groups of the form
5779:
and of finite Riemannian volume, and torsion-free lattices in
5733:
if and only if it is discrete and torsion-free. The quotients
3685:
An example of an irreducible lattice is given by the subgroup
3177:
Generalising the construction above one gets the notion of an
3047:{\displaystyle \Gamma =G\cap \mathrm {GL} _{n}(\mathbb {Z} )} 1740:
by left-translations) of finite volume for the Haar measure.
8117: 7462: 7416: 7061: 6571: 5743: 5383: 4651:
Lattices in rank 1 Lie groups have infinite, infinite index
4648:) but all irreducible lattices in the others are arithmetic; 3409:
is a lattice as well. Roughly, a lattice is then said to be
2533:
is a nilpotent simply connected Lie group whose Lie algebra
1898:{\displaystyle G=\bigcup {}_{\gamma \in \Gamma }\,C\gamma } 5619:
is a maximal compact subgroup it can be used to define a
4848:
Riemannian manifolds associated to lattices in Lie groups
4056:
elements with at least one real eigenvalue distinct from
1700:
and hence a discrete subgroup in a locally compact group
1063:
immediately available notions of "small": topological (a
1055:{\displaystyle \mathbb {Z} ^{n}\subset \mathbb {R} ^{n}} 1011:, while the other is not finitely generated and has the 16:
Discrete subgroup in a locally compact topological group
3674:{\displaystyle G_{i_{1}}\times \ldots \times G_{i_{k}}} 3591:{\displaystyle G_{i_{1}}\times \ldots \times G_{i_{k}}} 2021:
The fundamental, and simplest, example is the subgroup
897:
Lattices are of interest in many areas of mathematics:
875:
states that in most cases all lattices are obtained as
7309:
More generally one can ask the following question: if
3402:{\displaystyle \Gamma _{1}\times \Gamma _{2}\subset G} 974:
of integer vectors "looks like" the real vector space
7484: 7458: 7438: 7412: 7392: 7372: 7335: 7315: 7287: 7263: 7225: 7205: 7185: 7165: 7121: 7091: 7057: 7016: 6972: 6948: 6911: 6883: 6863: 6797: 6744: 6664: 6556: 6499: 6479: 6448: 6409: 6383: 6363: 6338: 6310: 6283: 6145: 6115: 6089: 6060: 6033: 5981: 5939: 5898: 5869: 5849: 5820: 5785: 5765: 5739: 5719: 5693: 5648: 5625: 5605: 5585: 5565: 5537: 5492: 5472: 5452: 5425: 5405: 5379: 5359: 5331: 5311: 5291: 5265: 5236: 5213: 5174: 5154: 5123: 5033: 5007: 4981: 4961: 4937: 4913: 4886: 4863: 4816:{\displaystyle \mathrm {SO} (n,1),\mathrm {SU} (n,1)} 4763: 4721:{\displaystyle \mathrm {SO} (n,1),\mathrm {SU} (n,1)} 4668: 4598: 4585:{\displaystyle \mathrm {SU} (2,1),\mathrm {SU} (3,1)} 4532: 4492: 4456: 4421: 4389: 4357: 4313: 4284: 4252: 4208: 4176: 4144: 4100: 4062: 4038: 4012: 3992: 3933: 3886: 3880:
is the Galois map sending a matric with coefficients
3866: 3819: 3747: 3691: 3627: 3607: 3544: 3524: 3494: 3474: 3422: 3369: 3303: 3283: 3237: 3217: 3187: 3108: 3088: 3068: 3005: 2983: 2963: 2937: 2894: 2870: 2800: 2772: 2745: 2703: 2683: 2663: 2643: 2611: 2583: 2563: 2539: 2519: 2495: 2471: 2447: 2427: 2399: 2272: 2229: 2186: 2152: 2132: 2112: 2092: 2056: 2027: 1999: 1979: 1951: 1931: 1911: 1863: 1837: 1811: 1779: 1749: 1726: 1706: 1679: 1651: 1631: 1611: 1591: 1541: 1507: 1481: 1461: 1415: 1387: 1367: 1344: 1324: 1279: 1259: 1232: 1212: 1192: 1172: 1081: 1024: 980: 951: 499: 474: 437: 1693:
is a lattice if and only if this measure is finite.
8099:. Ergebnisse de Mathematik und ihrer Grenzgebiete. 8038:. Ergebnisse de Mathematik und ihrer Grenzgebiete. 4486:There exists non-arithmetic lattices in all groups 8012: 7490: 7470: 7444: 7424: 7398: 7378: 7358: 7321: 7293: 7269: 7231: 7211: 7191: 7171: 7151: 7097: 7069: 7039: 6995: 6962:is a locally compact group (when endowed with the 6954: 6934: 6889: 6869: 6829: 6776: 6693: 6592: 6535: 6485: 6465: 6434: 6391: 6369: 6346: 6316: 6296: 6261: 6128: 6101: 6075: 6046: 6016: 5945: 5913: 5884: 5855: 5835: 5791: 5771: 5751: 5725: 5705: 5668: 5631: 5611: 5591: 5571: 5547: 5498: 5478: 5458: 5431: 5411: 5391: 5365: 5337: 5317: 5297: 5277: 5251: 5219: 5199: 5160: 5136: 5109: 5019: 4993: 4967: 4943: 4923: 4899: 4869: 4815: 4720: 4636: 4584: 4518: 4469: 4442: 4401: 4375: 4339: 4296: 4270: 4234: 4188: 4162: 4126: 4071: 4044: 4020: 3998: 3966: 3919: 3872: 3852: 3805: 3733: 3673: 3613: 3590: 3530: 3506: 3480: 3460: 3401: 3355: 3289: 3269: 3223: 3195: 3166: 3094: 3074: 3046: 2991: 2969: 2945: 2923: 2876: 2818: 2778: 2755: 2731: 2689: 2669: 2649: 2629: 2593: 2569: 2549: 2525: 2505: 2477: 2457: 2441:contains a lattice if and only if the Lie algebra 2433: 2405: 2330: 2258: 2215: 2166: 2138: 2118: 2098: 2071: 2042: 2005: 1985: 1965: 1937: 1917: 1897: 1849: 1823: 1793: 1761: 1732: 1712: 1685: 1665: 1637: 1617: 1597: 1574: 1527: 1493: 1467: 1447: 1401: 1373: 1350: 1330: 1310: 1265: 1245: 1218: 1198: 1178: 1139: 1054: 995: 966: 507: 482: 445: 4728:which have non-congruence finite-index subgroups. 3461:{\displaystyle G=G_{1}\times \ldots \times G_{r}} 6830:{\displaystyle \mathrm {PSL} _{2}(\mathbb {C} )} 6777:{\displaystyle \mathrm {PSL} _{2}(\mathbb {R} )} 3277:there is an obvious construction of lattices in 7897:Journal für die reine und angewandte Mathematik 7627:Gromov, Misha; Piatetski-Shapiro, Ilya (1987). 6694:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} )} 6304:are noncompact then any irreducible lattice in 5684:of non-compact type without Euclidean factors. 3734:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )} 3102:; the simplest example of this is the subgroup 2924:{\displaystyle \mathrm {GL} _{n}(\mathbb {R} )} 2266:, and also by the higher-dimensional analogues 2259:{\displaystyle \mathrm {SL} _{2}(\mathbb {R} )} 2216:{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )} 8019:. Progress in mathematics. Birkhäuser Verlag. 5399:is a Riemannian manifold locally isometric to 7679:Commensurabilities among Lattices in PU (1,n) 5285:are by definition isometries for this metric 4832:Lattices in semisimple Lie groups are always 1805:otherwise). Equivalently a discrete subgroup 809: 8: 7882: 7833: 7735: 7711: 7629:"Nonarithmetic groups in Lobachevsky spaces" 7239:is a tree lattice through its action on the 6435:{\displaystyle G=\mathrm {G} (\mathbb {A} )} 3413:if it does not come from this construction. 1305: 1292: 8036:Discrete subgroups of semisimple Lie groups 7614: 7602: 7590: 7578: 7566: 2854:Arithmetic groups and existence of lattices 2557:has only rational structure constants, and 2376:A stronger condition than unimodularity is 1448:{\displaystyle \mu (G/\Gamma )<+\infty } 5933:is at least 2 all irreducible lattices in 4637:{\displaystyle \mathrm {SU} (n,1),n\geq 4} 816: 802: 254: 80: 45: 8146: 8011:Bass, Hyman; Lubotzky, Alexander (2001). 7908: 7859: 7761: 7527: 7483: 7457: 7437: 7411: 7391: 7371: 7336: 7334: 7314: 7286: 7262: 7224: 7204: 7184: 7164: 7128: 7124: 7123: 7120: 7090: 7056: 7017: 7015: 6973: 6971: 6947: 6912: 6910: 6882: 6862: 6820: 6819: 6810: 6799: 6796: 6767: 6766: 6757: 6746: 6743: 6684: 6683: 6674: 6666: 6663: 6583: 6582: 6574: 6557: 6555: 6526: 6525: 6517: 6500: 6498: 6478: 6449: 6447: 6425: 6424: 6416: 6408: 6385: 6384: 6382: 6362: 6339: 6337: 6309: 6288: 6282: 6250: 6246: 6245: 6235: 6227: 6216: 6215: 6206: 6198: 6175: 6167: 6166: 6155: 6147: 6144: 6120: 6114: 6088: 6067: 6063: 6062: 6059: 6038: 6032: 6008: 5992: 5980: 5938: 5905: 5901: 5900: 5897: 5876: 5872: 5871: 5868: 5848: 5827: 5823: 5822: 5819: 5784: 5764: 5738: 5718: 5713:acts freely, properly discontinuously on 5692: 5658: 5647: 5624: 5604: 5584: 5564: 5539: 5538: 5536: 5491: 5471: 5451: 5424: 5404: 5378: 5358: 5330: 5310: 5290: 5264: 5235: 5212: 5185: 5173: 5153: 5128: 5122: 5095: 5079: 5066: 5038: 5032: 5006: 4980: 4960: 4936: 4915: 4914: 4912: 4891: 4885: 4862: 4790: 4764: 4762: 4695: 4669: 4667: 4599: 4597: 4559: 4533: 4531: 4493: 4491: 4461: 4455: 4431: 4426: 4420: 4388: 4356: 4314: 4312: 4283: 4251: 4209: 4207: 4175: 4143: 4101: 4099: 4061: 4037: 4014: 4013: 4011: 3991: 3957: 3951: 3938: 3932: 3910: 3904: 3891: 3885: 3865: 3818: 3796: 3795: 3786: 3778: 3767: 3766: 3757: 3749: 3746: 3718: 3711: 3710: 3701: 3693: 3690: 3663: 3658: 3637: 3632: 3626: 3606: 3580: 3575: 3554: 3549: 3543: 3523: 3493: 3473: 3452: 3433: 3421: 3387: 3374: 3368: 3347: 3334: 3321: 3308: 3302: 3282: 3261: 3248: 3236: 3216: 3189: 3188: 3186: 3157: 3156: 3147: 3139: 3128: 3127: 3118: 3110: 3107: 3087: 3067: 3037: 3036: 3027: 3019: 3004: 2985: 2984: 2982: 2962: 2939: 2938: 2936: 2914: 2913: 2904: 2896: 2893: 2869: 2799: 2771: 2747: 2746: 2744: 2708: 2702: 2682: 2662: 2642: 2610: 2585: 2584: 2582: 2562: 2541: 2540: 2538: 2518: 2513:are rational numbers. More precisely: if 2497: 2496: 2494: 2470: 2449: 2448: 2446: 2426: 2398: 2321: 2320: 2311: 2303: 2292: 2291: 2282: 2274: 2271: 2249: 2248: 2239: 2231: 2228: 2206: 2205: 2196: 2188: 2185: 2156: 2151: 2131: 2111: 2091: 2063: 2059: 2058: 2055: 2034: 2030: 2029: 2026: 1998: 1978: 1955: 1950: 1930: 1910: 1888: 1876: 1874: 1862: 1836: 1810: 1783: 1778: 1748: 1725: 1705: 1678: 1655: 1650: 1630: 1610: 1590: 1540: 1517: 1506: 1480: 1460: 1425: 1414: 1391: 1386: 1366: 1343: 1323: 1299: 1278: 1258: 1237: 1231: 1211: 1191: 1171: 1130: 1129: 1120: 1112: 1101: 1100: 1091: 1083: 1080: 1046: 1042: 1041: 1031: 1027: 1026: 1023: 987: 983: 982: 979: 958: 954: 953: 950: 501: 500: 498: 476: 475: 473: 439: 438: 436: 7801:Lubotzky, Alexander; Segal, Dan (2003). 7723: 7699: 7677:Deligne, Pierre; Mostow, George (1993). 7277:is the fundamental group of an infinite 2957:(i.e. the polynomial equations defining 2083:inside the continuous Heisenberg group. 33: 7506: 6354:is a semisimple algebraic group over a 5001:belong to the tangent space at a point 3853:{\displaystyle g\mapsto (g,\sigma (g))} 2146:of finite index (i.e. the quotient set 1773:(or cocompact) when the quotient space 1311:{\displaystyle \Gamma \cap U=\{e_{G}\}} 372: 138: 48: 6017:{\displaystyle G=\prod _{p\in S}G_{p}} 5200:{\displaystyle x\mapsto \gamma ^{-1}x} 3967:{\displaystyle a_{i}-b_{i}{\sqrt {2}}} 3920:{\displaystyle a_{i}+b_{i}{\sqrt {2}}} 2106:is a discrete group then a lattice in 852:. In the special case of subgroups of 374:Classification of finite simple groups 7452:be unimodular, and that the quotient 7219:-split rank one, then any lattice in 7152:{\displaystyle \mathbb {F} _{p}((t))} 6054:is a semisimple algebraic group over 4052:(an abelian subgroup containing only 7: 7247:Tree lattices from Bass–Serre theory 6604:. In particular modern forms of the 2050:which is a lattice in the Lie group 886:and automorphisms groups of regular 832:and related areas of mathematics, a 7081:Tree lattices from algebraic groups 7070:{\displaystyle \Gamma \backslash T} 5752:{\displaystyle \Gamma \backslash X} 5540: 5392:{\displaystyle \Gamma \backslash G} 4916: 4083:) those in the following list (see 3270:{\displaystyle G=G_{1}\times G_{2}} 2766:A lattice in a nilpotent Lie group 2748: 2732:{\displaystyle \exp ^{-1}(\Gamma )} 2586: 2542: 2498: 2450: 7406:being unimodular and the quotient 7343: 7340: 7337: 7288: 7264: 7058: 7024: 7021: 7018: 6980: 6977: 6974: 6919: 6916: 6913: 6806: 6803: 6800: 6753: 6750: 6747: 6670: 6667: 6575: 6558: 6518: 6501: 6450: 6417: 6340: 6231: 6228: 6202: 6199: 6151: 6148: 6121: 6096: 5740: 5694: 5493: 5380: 5312: 4794: 4791: 4768: 4765: 4699: 4696: 4673: 4670: 4603: 4600: 4563: 4560: 4537: 4534: 4519:{\displaystyle \mathrm {SO} (n,1)} 4497: 4494: 4340:{\displaystyle \mathrm {Sp} (n,1)} 4318: 4315: 4235:{\displaystyle \mathrm {SU} (n,1)} 4213: 4210: 4127:{\displaystyle \mathrm {SO} (n,1)} 4105: 4102: 3782: 3779: 3753: 3750: 3697: 3694: 3608: 3525: 3495: 3384: 3371: 3331: 3305: 3143: 3140: 3114: 3111: 3069: 3023: 3020: 3006: 2900: 2897: 2723: 2664: 2307: 2304: 2278: 2275: 2235: 2232: 2192: 2189: 2161: 2133: 1980: 1960: 1912: 1883: 1812: 1788: 1750: 1680: 1660: 1612: 1528:{\displaystyle W\subset G/\Gamma } 1522: 1442: 1430: 1396: 1325: 1280: 1193: 1116: 1113: 1087: 1084: 932:and other combinatorial objects). 917:(through the study of homogeneous 901:(as particularly nice examples of 14: 8119:Introduction to Arithmetic Groups 7750:Proc. Indian Acad. Sci. Math. Sci 7359:{\displaystyle \mathrm {Aut} (T)} 7040:{\displaystyle \mathrm {Aut} (T)} 6996:{\displaystyle \mathrm {Aut} (T)} 6935:{\displaystyle \mathrm {Aut} (T)} 6791:Nonuniform lattices in the group 5252:{\displaystyle x\mapsto \gamma x} 2849:Lattices in semisimple Lie groups 2601:(in the more elementary sense of 1475:-invariant (meaning that for any 8122:. Deductive Press. p. 492. 8097:Discrete subgroups of Lie groups 7179:an algebraic group defined over 6905:tree. The group of automorphisms 6076:{\displaystyle \mathbb {Q} _{p}} 5914:{\displaystyle \mathbb {Q} _{p}} 5885:{\displaystyle \mathbb {Q} _{p}} 5836:{\displaystyle \mathbb {Q} _{p}} 5706:{\displaystyle \Gamma \subset G} 4836:, and actually satisfy stronger 3507:{\displaystyle \Gamma \subset G} 2931:which is defined over the field 2072:{\displaystyle \mathbb {R} ^{n}} 2043:{\displaystyle \mathbb {Z} ^{n}} 1824:{\displaystyle \Gamma \subset G} 1762:{\displaystyle \Gamma \subset G} 1575:{\displaystyle \mu (gW)=\mu (W)} 996:{\displaystyle \mathbb {R} ^{n}} 967:{\displaystyle \mathbb {Z} ^{n}} 66: 6466:{\displaystyle \mathrm {G} (F)} 5548:{\displaystyle {\mathfrak {g}}} 4924:{\displaystyle {\mathfrak {g}}} 4662:but there are many lattices in 3488:into simple factors, a lattice 2756:{\displaystyle {\mathfrak {n}}} 2594:{\displaystyle {\mathfrak {n}}} 2550:{\displaystyle {\mathfrak {n}}} 2506:{\displaystyle {\mathfrak {n}}} 2458:{\displaystyle {\mathfrak {n}}} 2384:Lattices in solvable Lie groups 1186:be a locally compact group and 921:on the quotient spaces) and in 7681:. Princeton University Press. 7366:, under which conditions does 7353: 7347: 7146: 7143: 7137: 7134: 7034: 7028: 6990: 6984: 6929: 6923: 6824: 6816: 6771: 6763: 6688: 6680: 6587: 6579: 6568: 6562: 6530: 6522: 6511: 6505: 6460: 6454: 6429: 6421: 6256: 6241: 6220: 6212: 5240: 5178: 5104: 5072: 5056: 5044: 4810: 4798: 4784: 4772: 4715: 4703: 4689: 4677: 4619: 4607: 4579: 4567: 4553: 4541: 4513: 4501: 4370: 4358: 4334: 4322: 4265: 4253: 4229: 4217: 4157: 4145: 4121: 4109: 4006:is the maximal dimension of a 3847: 3844: 3838: 3826: 3823: 3800: 3792: 3771: 3763: 3728: 3725: 3715: 3707: 3161: 3153: 3132: 3124: 3041: 3033: 2918: 2910: 2813: 2807: 2726: 2720: 2624: 2618: 2325: 2317: 2296: 2288: 2253: 2245: 2210: 2202: 1993:is automatically a lattice in 1569: 1563: 1554: 1545: 1433: 1419: 1358:if in addition there exists a 1134: 1126: 1105: 1097: 735:Infinite dimensional Lie group 1: 7870:10.1215/S0012-7094-04-12432-7 7471:{\displaystyle H\backslash T} 7425:{\displaystyle H\backslash T} 6734:Nonrigidity in low dimensions 6726:into another algebraic group 5807:Lattices in p-adic Lie groups 925:(through the construction of 858:geometric notion of a lattice 8068:; Rapinchuk, Andrei (1994). 6548:strong approximation theorem 6392:{\displaystyle \mathbb {A} } 6347:{\displaystyle \mathrm {G} } 5325:is any discrete subgroup in 5278:{\displaystyle \gamma \in G} 5020:{\displaystyle \gamma \in G} 4877:is a Lie group then from an 4732: 4660:congruence subgroup property 4021:{\displaystyle \mathbb {R} } 3741:which we view as a subgroup 3297:from the smaller groups: if 3196:{\displaystyle \mathbb {Q} } 2992:{\displaystyle \mathbb {Q} } 2946:{\displaystyle \mathbb {Q} } 2358:is a well-understood topic. 1925:is any discrete subgroup in 1645:-invariant Borel measure on 1013:cardinality of the continuum 856:, this amounts to the usual 508:{\displaystyle \mathbb {Z} } 483:{\displaystyle \mathbb {Z} } 446:{\displaystyle \mathbb {Z} } 8116:Witte-Morris, Dave (2015). 8095:Raghunathan, M. S. (1972). 6129:{\displaystyle G_{\infty }} 5863:be an algebraic group over 5531:A natural bilinear form on 5137:{\displaystyle \gamma ^{*}} 4443:{\displaystyle F_{4}^{-20}} 3054:. A fundamental theorem of 2977:have their coefficients in 2349:Which groups have lattices? 2345:to a lattice is a lattice. 865:semisimple algebraic groups 844:with the property that the 233:List of group theory topics 8210: 8034:Margulis, Grigory (1991). 7250: 6109:is allowed, in which case 5524: 5466:defines a Haar measure on 4482:higher rank. For example: 2857: 1850:{\displaystyle C\subset G} 1605:is unimodular, then since 38:A portion of the discrete 19:For discrete subgroups of 18: 7848:Duke Mathematical Journal 6328:Lattices in adelic groups 6102:{\displaystyle p=\infty } 5639:-invariant metric on the 4347:(groups of matrices with 4085:List of simple Lie groups 3978:Rank 1 versus higher rank 2999:) then it has a subgroup 2367:upper triangular matrices 2167:{\displaystyle G/\Gamma } 1966:{\displaystyle G/\Gamma } 1794:{\displaystyle G/\Gamma } 1666:{\displaystyle G/\Gamma } 1402:{\displaystyle G/\Gamma } 1069:relatively compact subset 890:(the latter are known as 7329:is a closed subgroup of 6641:Kazhdan-Margulis theorem 6635:or by the topology on a 5521:Locally symmetric spaces 5353:by left-translations on 5351:properly discontinuously 5168:) of the diffeomorphism 3468:is the decomposition of 1226:of the identity element 936:Generalities on lattices 351:Elementary abelian group 228:Glossary of group theory 29:Lattice (disambiguation) 7919:10.1515/CRELLE.2011.085 7294:{\displaystyle \Gamma } 7270:{\displaystyle \Gamma } 6839:hyperbolic Dehn surgery 6656:Mostow rigidity theorem 5803:on the geometric side. 5499:{\displaystyle \Gamma } 5318:{\displaystyle \Gamma } 5161:{\displaystyle \gamma } 4402:{\displaystyle n\geq 2} 4297:{\displaystyle n\geq 2} 4189:{\displaystyle n\geq 2} 3873:{\displaystyle \sigma } 3614:{\displaystyle \Gamma } 3531:{\displaystyle \Gamma } 3082:is always a lattice in 3075:{\displaystyle \Gamma } 2819:{\displaystyle \dim(N)} 2739:generates a lattice in 2670:{\displaystyle \Gamma } 2637:generates a lattice in 2630:{\displaystyle \exp(L)} 2139:{\displaystyle \Gamma } 1986:{\displaystyle \Gamma } 1918:{\displaystyle \Gamma } 1686:{\displaystyle \Gamma } 1618:{\displaystyle \Gamma } 1338:is called a lattice in 1331:{\displaystyle \Gamma } 1199:{\displaystyle \Gamma } 8189:Geometric group theory 8139:Geometric group theory 7516:Bull. London Math. Soc 7492: 7472: 7446: 7426: 7400: 7380: 7360: 7323: 7295: 7271: 7233: 7213: 7193: 7173: 7153: 7099: 7071: 7041: 6997: 6956: 6936: 6891: 6871: 6831: 6778: 6695: 6594: 6537: 6487: 6467: 6436: 6393: 6371: 6348: 6318: 6298: 6263: 6130: 6103: 6077: 6048: 6018: 5947: 5915: 5886: 5857: 5837: 5793: 5773: 5753: 5727: 5707: 5670: 5633: 5613: 5593: 5573: 5549: 5500: 5480: 5460: 5444:Riemannian volume form 5433: 5413: 5393: 5367: 5339: 5319: 5299: 5279: 5253: 5221: 5201: 5162: 5138: 5111: 5021: 4995: 4969: 4951:) one can construct a 4945: 4925: 4901: 4871: 4853:Left-invariant metrics 4817: 4733:Kazhdan's property (T) 4722: 4638: 4586: 4520: 4471: 4444: 4403: 4377: 4341: 4298: 4272: 4236: 4190: 4164: 4128: 4073: 4046: 4022: 4000: 3968: 3921: 3874: 3854: 3807: 3735: 3675: 3615: 3592: 3532: 3508: 3482: 3462: 3403: 3357: 3291: 3271: 3225: 3197: 3168: 3096: 3076: 3048: 2993: 2971: 2947: 2925: 2886:linear algebraic group 2878: 2820: 2780: 2757: 2733: 2691: 2671: 2651: 2631: 2595: 2571: 2551: 2527: 2507: 2479: 2459: 2435: 2421:A nilpotent Lie group 2407: 2332: 2260: 2217: 2168: 2140: 2126:is exactly a subgroup 2120: 2100: 2073: 2044: 2007: 1987: 1967: 1939: 1919: 1899: 1851: 1825: 1795: 1763: 1734: 1714: 1687: 1667: 1639: 1619: 1599: 1576: 1529: 1495: 1494:{\displaystyle g\in G} 1469: 1449: 1409:which is finite (i.e. 1403: 1381:on the quotient space 1375: 1352: 1332: 1312: 1267: 1247: 1220: 1200: 1180: 1141: 1056: 997: 968: 899:geometric group theory 767:Linear algebraic group 509: 484: 447: 43: 27:. For other uses, see 8179:Differential geometry 7493: 7473: 7447: 7427: 7401: 7381: 7361: 7324: 7296: 7272: 7234: 7214: 7194: 7174: 7154: 7100: 7072: 7042: 6998: 6964:compact-open topology 6957: 6937: 6892: 6872: 6832: 6779: 6696: 6595: 6550:relates the quotient 6538: 6488: 6468: 6437: 6394: 6372: 6349: 6319: 6299: 6297:{\displaystyle G_{p}} 6264: 6131: 6104: 6078: 6049: 6047:{\displaystyle G_{p}} 6019: 5948: 5916: 5887: 5858: 5838: 5794: 5774: 5754: 5728: 5708: 5671: 5669:{\displaystyle X=G/K} 5634: 5614: 5594: 5574: 5550: 5501: 5481: 5461: 5434: 5414: 5394: 5368: 5340: 5320: 5300: 5280: 5254: 5222: 5202: 5163: 5139: 5112: 5022: 4996: 4970: 4946: 4926: 4907:on the tangent space 4902: 4900:{\displaystyle g_{e}} 4872: 4838:finiteness conditions 4828:Finiteness properties 4818: 4723: 4639: 4587: 4521: 4472: 4470:{\displaystyle F_{4}} 4445: 4414:exceptional Lie group 4404: 4378: 4376:{\displaystyle (n,1)} 4342: 4299: 4273: 4271:{\displaystyle (n,1)} 4237: 4191: 4165: 4163:{\displaystyle (n,1)} 4129: 4074: 4072:{\displaystyle \pm 1} 4047: 4023: 4001: 3969: 3922: 3875: 3855: 3808: 3736: 3676: 3616: 3593: 3533: 3509: 3483: 3463: 3404: 3358: 3292: 3272: 3226: 3198: 3169: 3097: 3077: 3049: 2994: 2972: 2948: 2926: 2879: 2821: 2781: 2758: 2734: 2692: 2672: 2652: 2632: 2596: 2572: 2552: 2528: 2508: 2480: 2460: 2436: 2408: 2333: 2261: 2218: 2169: 2141: 2121: 2101: 2074: 2045: 2008: 1988: 1968: 1940: 1920: 1900: 1852: 1826: 1796: 1764: 1735: 1715: 1688: 1668: 1640: 1620: 1600: 1577: 1530: 1496: 1470: 1450: 1404: 1376: 1353: 1333: 1313: 1268: 1248: 1246:{\displaystyle e_{G}} 1221: 1201: 1181: 1142: 1057: 998: 969: 907:differential geometry 838:locally compact group 510: 485: 448: 37: 8141:. pp. 249–282. 7975:Weil, André (1982). 7836:, Proposition 13.17. 7482: 7456: 7436: 7410: 7390: 7370: 7333: 7313: 7285: 7261: 7241:Bruhat–Tits building 7223: 7203: 7183: 7163: 7119: 7089: 7055: 7014: 6970: 6946: 6909: 6881: 6861: 6795: 6742: 6662: 6554: 6497: 6477: 6446: 6407: 6381: 6361: 6336: 6308: 6281: 6143: 6113: 6087: 6058: 6031: 5979: 5937: 5896: 5867: 5847: 5818: 5783: 5763: 5737: 5717: 5691: 5678:Riemannian manifolds 5646: 5623: 5603: 5583: 5563: 5535: 5490: 5470: 5450: 5423: 5403: 5377: 5357: 5329: 5309: 5305:. In particular, if 5289: 5263: 5234: 5211: 5172: 5152: 5121: 5031: 5005: 4979: 4959: 4935: 4931:(the Lie algebra of 4911: 4884: 4861: 4761: 4666: 4596: 4530: 4490: 4454: 4419: 4387: 4355: 4311: 4282: 4250: 4206: 4174: 4142: 4136:real quadratic forms 4098: 4060: 4036: 4010: 3990: 3931: 3884: 3864: 3817: 3745: 3689: 3625: 3605: 3601:The intersection of 3542: 3522: 3492: 3472: 3420: 3367: 3301: 3281: 3235: 3231:splits as a product 3215: 3185: 3106: 3086: 3066: 3003: 2981: 2961: 2935: 2892: 2868: 2798: 2770: 2743: 2701: 2681: 2661: 2641: 2609: 2581: 2561: 2537: 2517: 2493: 2469: 2445: 2425: 2397: 2389:Nilpotent Lie groups 2270: 2227: 2184: 2150: 2130: 2110: 2090: 2054: 2025: 1997: 1977: 1949: 1929: 1909: 1861: 1835: 1809: 1777: 1747: 1724: 1704: 1677: 1673:up to scaling. Then 1649: 1629: 1609: 1589: 1539: 1505: 1501:and any open subset 1479: 1459: 1413: 1385: 1374:{\displaystyle \mu } 1365: 1342: 1322: 1277: 1257: 1230: 1210: 1190: 1170: 1079: 1022: 978: 949: 497: 472: 435: 8157:2014arXiv1402.0962G 7726:, pp. 263–270. 7538:10.1112/blms/bdr061 7305:Existence criterion 5968:S-arithmetic groups 4994:{\displaystyle v,w} 4439: 3211:When the Lie group 2487:structure constants 941:Informal discussion 141:Group homomorphisms 51:Algebraic structure 8066:Platonov, Vladimir 8042:. pp. x+388. 7946:10.1007/BF01895641 7772:10.1007/BF02829437 7648:10.1007/bf02698928 7488: 7468: 7442: 7422: 7396: 7376: 7356: 7319: 7291: 7267: 7229: 7209: 7189: 7169: 7149: 7095: 7067: 7037: 6993: 6952: 6932: 6887: 6867: 6827: 6786:Teichmüller spaces 6774: 6691: 6590: 6533: 6483: 6463: 6432: 6389: 6367: 6344: 6314: 6294: 6275:S-arithmetic group 6259: 6126: 6099: 6073: 6044: 6014: 6003: 5943: 5911: 5882: 5853: 5833: 5789: 5769: 5749: 5723: 5703: 5666: 5629: 5609: 5599:is semisimple and 5589: 5569: 5545: 5496: 5476: 5456: 5429: 5409: 5389: 5363: 5335: 5315: 5295: 5275: 5249: 5217: 5197: 5158: 5134: 5107: 5017: 4991: 4965: 4941: 4921: 4897: 4867: 4834:finitely presented 4813: 4718: 4634: 4592:, and possibly in 4582: 4516: 4467: 4440: 4422: 4399: 4373: 4337: 4294: 4268: 4232: 4186: 4160: 4124: 4069: 4042: 4018: 3996: 3964: 3917: 3870: 3850: 3803: 3731: 3671: 3611: 3588: 3528: 3518:The projection of 3504: 3478: 3458: 3416:More formally, if 3399: 3363:are lattices then 3353: 3287: 3267: 3221: 3193: 3179:arithmetic lattice 3164: 3092: 3072: 3044: 2989: 2967: 2943: 2921: 2874: 2816: 2792:finitely presented 2788:finitely generated 2776: 2753: 2729: 2687: 2667: 2647: 2627: 2591: 2567: 2547: 2523: 2503: 2475: 2455: 2431: 2403: 2328: 2256: 2213: 2164: 2136: 2116: 2096: 2069: 2040: 2003: 1983: 1963: 1935: 1915: 1895: 1847: 1821: 1791: 1759: 1730: 1710: 1683: 1663: 1635: 1615: 1595: 1572: 1525: 1491: 1465: 1445: 1399: 1371: 1348: 1328: 1308: 1263: 1243: 1216: 1196: 1176: 1152:coarse equivalence 1150:Other notions are 1137: 1052: 1005:finitely generated 993: 964: 884:Kac–Moody algebras 617:Special orthogonal 505: 480: 443: 324:Lagrange's theorem 44: 8129:978-0-9865716-0-2 7934:Geom. Funct. Anal 7883:Witte-Morris 2015 7834:Witte-Morris 2015 7736:Witte-Morris 2015 7712:Witte-Morris 2015 7491:{\displaystyle H} 7445:{\displaystyle H} 7399:{\displaystyle H} 7379:{\displaystyle H} 7322:{\displaystyle H} 7253:Bass–Serre theory 7232:{\displaystyle G} 7212:{\displaystyle F} 7192:{\displaystyle F} 7172:{\displaystyle G} 7098:{\displaystyle F} 7003:is then called a 6955:{\displaystyle T} 6890:{\displaystyle T} 6870:{\displaystyle T} 6637:character variety 6633:Chabauty topology 6602:automorphic forms 6486:{\displaystyle F} 6370:{\displaystyle F} 6324:is S-arithmetic. 6317:{\displaystyle G} 6183: 5988: 5946:{\displaystyle G} 5856:{\displaystyle G} 5792:{\displaystyle G} 5772:{\displaystyle X} 5726:{\displaystyle X} 5641:homogeneous space 5632:{\displaystyle G} 5612:{\displaystyle K} 5592:{\displaystyle G} 5572:{\displaystyle G} 5479:{\displaystyle G} 5459:{\displaystyle g} 5432:{\displaystyle g} 5412:{\displaystyle G} 5366:{\displaystyle G} 5345:(so that it acts 5338:{\displaystyle G} 5298:{\displaystyle g} 5220:{\displaystyle G} 4968:{\displaystyle G} 4953:Riemannian metric 4944:{\displaystyle G} 4870:{\displaystyle G} 4750:harmonic analysis 4093:orthogonal groups 4045:{\displaystyle G} 3999:{\displaystyle G} 3962: 3915: 3723: 3681:is not a lattice. 3481:{\displaystyle G} 3290:{\displaystyle G} 3224:{\displaystyle G} 3095:{\displaystyle G} 2970:{\displaystyle G} 2877:{\displaystyle G} 2779:{\displaystyle N} 2690:{\displaystyle N} 2657:; conversely, if 2650:{\displaystyle N} 2570:{\displaystyle L} 2526:{\displaystyle N} 2478:{\displaystyle N} 2434:{\displaystyle N} 2406:{\displaystyle N} 2119:{\displaystyle G} 2099:{\displaystyle G} 2006:{\displaystyle G} 1938:{\displaystyle G} 1733:{\displaystyle G} 1713:{\displaystyle G} 1638:{\displaystyle G} 1598:{\displaystyle G} 1468:{\displaystyle G} 1351:{\displaystyle G} 1266:{\displaystyle G} 1219:{\displaystyle U} 1179:{\displaystyle G} 1154:and the stronger 911:arithmetic groups 877:arithmetic groups 850:invariant measure 842:discrete subgroup 826: 825: 401: 400: 283:Alternating group 240: 239: 8201: 8174:Algebraic groups 8160: 8150: 8133: 8112: 8091: 8061: 8030: 8018: 7999: 7998: 7972: 7966: 7965: 7929: 7923: 7922: 7912: 7903:(661): 237–248. 7892: 7886: 7880: 7874: 7873: 7863: 7843: 7837: 7831: 7825: 7824: 7798: 7792: 7791: 7765: 7745: 7739: 7733: 7727: 7721: 7715: 7709: 7703: 7697: 7691: 7690: 7674: 7668: 7667: 7636:Publ. Math. IHÉS 7633: 7624: 7618: 7615:Raghunathan 1972 7612: 7606: 7603:Raghunathan 1972 7600: 7594: 7591:Raghunathan 1972 7588: 7582: 7579:Raghunathan 1972 7576: 7570: 7567:Raghunathan 1972 7564: 7558: 7557: 7531: 7511: 7497: 7495: 7494: 7489: 7477: 7475: 7474: 7469: 7451: 7449: 7448: 7443: 7431: 7429: 7428: 7423: 7405: 7403: 7402: 7397: 7385: 7383: 7382: 7377: 7365: 7363: 7362: 7357: 7346: 7328: 7326: 7325: 7320: 7300: 7298: 7297: 7292: 7276: 7274: 7273: 7268: 7238: 7236: 7235: 7230: 7218: 7216: 7215: 7210: 7198: 7196: 7195: 7190: 7178: 7176: 7175: 7170: 7158: 7156: 7155: 7150: 7133: 7132: 7127: 7104: 7102: 7101: 7096: 7076: 7074: 7073: 7068: 7046: 7044: 7043: 7038: 7027: 7002: 7000: 6999: 6994: 6983: 6961: 6959: 6958: 6953: 6941: 6939: 6938: 6933: 6922: 6896: 6894: 6893: 6888: 6876: 6874: 6873: 6868: 6836: 6834: 6833: 6828: 6823: 6815: 6814: 6809: 6783: 6781: 6780: 6775: 6770: 6762: 6761: 6756: 6700: 6698: 6697: 6692: 6687: 6679: 6678: 6673: 6617:Rigidity results 6599: 6597: 6596: 6591: 6586: 6578: 6561: 6542: 6540: 6539: 6534: 6529: 6521: 6504: 6492: 6490: 6489: 6484: 6472: 6470: 6469: 6464: 6453: 6441: 6439: 6438: 6433: 6428: 6420: 6398: 6396: 6395: 6390: 6388: 6376: 6374: 6373: 6368: 6353: 6351: 6350: 6345: 6343: 6323: 6321: 6320: 6315: 6303: 6301: 6300: 6295: 6293: 6292: 6268: 6266: 6265: 6260: 6255: 6254: 6249: 6240: 6239: 6234: 6219: 6211: 6210: 6205: 6193: 6189: 6188: 6184: 6176: 6170: 6160: 6159: 6154: 6135: 6133: 6132: 6127: 6125: 6124: 6108: 6106: 6105: 6100: 6082: 6080: 6079: 6074: 6072: 6071: 6066: 6053: 6051: 6050: 6045: 6043: 6042: 6023: 6021: 6020: 6015: 6013: 6012: 6002: 5952: 5950: 5949: 5944: 5920: 5918: 5917: 5912: 5910: 5909: 5904: 5891: 5889: 5888: 5883: 5881: 5880: 5875: 5862: 5860: 5859: 5854: 5842: 5840: 5839: 5834: 5832: 5831: 5826: 5798: 5796: 5795: 5790: 5778: 5776: 5775: 5770: 5758: 5756: 5755: 5750: 5732: 5730: 5729: 5724: 5712: 5710: 5709: 5704: 5682:symmetric spaces 5675: 5673: 5672: 5667: 5662: 5638: 5636: 5635: 5630: 5618: 5616: 5615: 5610: 5598: 5596: 5595: 5590: 5578: 5576: 5575: 5570: 5555:is given by the 5554: 5552: 5551: 5546: 5544: 5543: 5505: 5503: 5502: 5497: 5485: 5483: 5482: 5477: 5465: 5463: 5462: 5457: 5438: 5436: 5435: 5430: 5419:with the metric 5418: 5416: 5415: 5410: 5398: 5396: 5395: 5390: 5372: 5370: 5369: 5364: 5344: 5342: 5341: 5336: 5324: 5322: 5321: 5316: 5304: 5302: 5301: 5296: 5284: 5282: 5281: 5276: 5258: 5256: 5255: 5250: 5226: 5224: 5223: 5218: 5206: 5204: 5203: 5198: 5193: 5192: 5167: 5165: 5164: 5159: 5143: 5141: 5140: 5135: 5133: 5132: 5116: 5114: 5113: 5108: 5100: 5099: 5084: 5083: 5071: 5070: 5043: 5042: 5026: 5024: 5023: 5018: 5000: 4998: 4997: 4992: 4974: 4972: 4971: 4966: 4950: 4948: 4947: 4942: 4930: 4928: 4927: 4922: 4920: 4919: 4906: 4904: 4903: 4898: 4896: 4895: 4876: 4874: 4873: 4868: 4822: 4820: 4819: 4814: 4797: 4771: 4727: 4725: 4724: 4719: 4702: 4676: 4653:normal subgroups 4644:(the last is an 4643: 4641: 4640: 4635: 4606: 4591: 4589: 4588: 4583: 4566: 4540: 4525: 4523: 4522: 4517: 4500: 4476: 4474: 4473: 4468: 4466: 4465: 4449: 4447: 4446: 4441: 4438: 4430: 4408: 4406: 4405: 4400: 4382: 4380: 4379: 4374: 4346: 4344: 4343: 4338: 4321: 4303: 4301: 4300: 4295: 4277: 4275: 4274: 4269: 4241: 4239: 4238: 4233: 4216: 4195: 4193: 4192: 4187: 4169: 4167: 4166: 4161: 4133: 4131: 4130: 4125: 4108: 4078: 4076: 4075: 4070: 4051: 4049: 4048: 4043: 4027: 4025: 4024: 4019: 4017: 4005: 4003: 4002: 3997: 3973: 3971: 3970: 3965: 3963: 3958: 3956: 3955: 3943: 3942: 3926: 3924: 3923: 3918: 3916: 3911: 3909: 3908: 3896: 3895: 3879: 3877: 3876: 3871: 3859: 3857: 3856: 3851: 3812: 3810: 3809: 3804: 3799: 3791: 3790: 3785: 3770: 3762: 3761: 3756: 3740: 3738: 3737: 3732: 3724: 3719: 3714: 3706: 3705: 3700: 3680: 3678: 3677: 3672: 3670: 3669: 3668: 3667: 3644: 3643: 3642: 3641: 3621:with any factor 3620: 3618: 3617: 3612: 3597: 3595: 3594: 3589: 3587: 3586: 3585: 3584: 3561: 3560: 3559: 3558: 3537: 3535: 3534: 3529: 3513: 3511: 3510: 3505: 3487: 3485: 3484: 3479: 3467: 3465: 3464: 3459: 3457: 3456: 3438: 3437: 3408: 3406: 3405: 3400: 3392: 3391: 3379: 3378: 3362: 3360: 3359: 3354: 3352: 3351: 3339: 3338: 3326: 3325: 3313: 3312: 3296: 3294: 3293: 3288: 3276: 3274: 3273: 3268: 3266: 3265: 3253: 3252: 3230: 3228: 3227: 3222: 3202: 3200: 3199: 3194: 3192: 3173: 3171: 3170: 3165: 3160: 3152: 3151: 3146: 3131: 3123: 3122: 3117: 3101: 3099: 3098: 3093: 3081: 3079: 3078: 3073: 3053: 3051: 3050: 3045: 3040: 3032: 3031: 3026: 2998: 2996: 2995: 2990: 2988: 2976: 2974: 2973: 2968: 2955:rational numbers 2952: 2950: 2949: 2944: 2942: 2930: 2928: 2927: 2922: 2917: 2909: 2908: 2903: 2884:is a semisimple 2883: 2881: 2880: 2875: 2860:Arithmetic group 2833:The general case 2825: 2823: 2822: 2817: 2785: 2783: 2782: 2777: 2762: 2760: 2759: 2754: 2752: 2751: 2738: 2736: 2735: 2730: 2716: 2715: 2696: 2694: 2693: 2688: 2677:is a lattice in 2676: 2674: 2673: 2668: 2656: 2654: 2653: 2648: 2636: 2634: 2633: 2628: 2600: 2598: 2597: 2592: 2590: 2589: 2577:is a lattice in 2576: 2574: 2573: 2568: 2556: 2554: 2553: 2548: 2546: 2545: 2532: 2530: 2529: 2524: 2512: 2510: 2509: 2504: 2502: 2501: 2484: 2482: 2481: 2476: 2464: 2462: 2461: 2456: 2454: 2453: 2440: 2438: 2437: 2432: 2415:simply connected 2412: 2410: 2409: 2404: 2337: 2335: 2334: 2329: 2324: 2316: 2315: 2310: 2295: 2287: 2286: 2281: 2265: 2263: 2262: 2257: 2252: 2244: 2243: 2238: 2222: 2220: 2219: 2214: 2209: 2201: 2200: 2195: 2173: 2171: 2170: 2165: 2160: 2145: 2143: 2142: 2137: 2125: 2123: 2122: 2117: 2105: 2103: 2102: 2097: 2081:Heisenberg group 2078: 2076: 2075: 2070: 2068: 2067: 2062: 2049: 2047: 2046: 2041: 2039: 2038: 2033: 2012: 2010: 2009: 2004: 1992: 1990: 1989: 1984: 1973:is compact then 1972: 1970: 1969: 1964: 1959: 1944: 1942: 1941: 1936: 1924: 1922: 1921: 1916: 1904: 1902: 1901: 1896: 1887: 1886: 1875: 1856: 1854: 1853: 1848: 1830: 1828: 1827: 1822: 1801:is compact (and 1800: 1798: 1797: 1792: 1787: 1768: 1766: 1765: 1760: 1739: 1737: 1736: 1731: 1719: 1717: 1716: 1711: 1692: 1690: 1689: 1684: 1672: 1670: 1669: 1664: 1659: 1644: 1642: 1641: 1636: 1624: 1622: 1621: 1616: 1604: 1602: 1601: 1596: 1581: 1579: 1578: 1573: 1534: 1532: 1531: 1526: 1521: 1500: 1498: 1497: 1492: 1474: 1472: 1471: 1466: 1454: 1452: 1451: 1446: 1429: 1408: 1406: 1405: 1400: 1395: 1380: 1378: 1377: 1372: 1357: 1355: 1354: 1349: 1337: 1335: 1334: 1329: 1317: 1315: 1314: 1309: 1304: 1303: 1272: 1270: 1269: 1264: 1252: 1250: 1249: 1244: 1242: 1241: 1225: 1223: 1222: 1217: 1205: 1203: 1202: 1197: 1185: 1183: 1182: 1177: 1146: 1144: 1143: 1138: 1133: 1125: 1124: 1119: 1104: 1096: 1095: 1090: 1061: 1059: 1058: 1053: 1051: 1050: 1045: 1036: 1035: 1030: 1002: 1000: 999: 994: 992: 991: 986: 973: 971: 970: 965: 963: 962: 957: 873:Grigory Margulis 818: 811: 804: 760:Algebraic groups 533:Hyperbolic group 523:Arithmetic group 514: 512: 511: 506: 504: 489: 487: 486: 481: 479: 452: 450: 449: 444: 442: 365:Schur multiplier 319:Cauchy's theorem 307:Quaternion group 255: 81: 70: 57: 46: 40:Heisenberg group 8209: 8208: 8204: 8203: 8202: 8200: 8199: 8198: 8164: 8163: 8136: 8130: 8115: 8101:Springer-Verlag 8094: 8080: 8064: 8050: 8040:Springer-Verlag 8033: 8027: 8010: 8007: 8002: 7987: 7974: 7973: 7969: 7931: 7930: 7926: 7894: 7893: 7889: 7881: 7877: 7845: 7844: 7840: 7832: 7828: 7813: 7803:Subgroup growth 7800: 7799: 7795: 7747: 7746: 7742: 7738:, Theorem 17.1. 7734: 7730: 7722: 7718: 7714:, Theorem 5.21. 7710: 7706: 7698: 7694: 7676: 7675: 7671: 7631: 7626: 7625: 7621: 7617:, Theorem 4.28. 7613: 7609: 7601: 7597: 7593:, Theorem 2.21. 7589: 7585: 7581:, Theorem 2.12. 7577: 7573: 7565: 7561: 7513: 7512: 7508: 7504: 7480: 7479: 7454: 7453: 7434: 7433: 7408: 7407: 7388: 7387: 7368: 7367: 7331: 7330: 7311: 7310: 7307: 7283: 7282: 7279:graph of groups 7259: 7258: 7255: 7249: 7221: 7220: 7201: 7200: 7181: 7180: 7161: 7160: 7122: 7117: 7116: 7087: 7086: 7083: 7053: 7052: 7012: 7011: 6968: 6967: 6944: 6943: 6907: 6906: 6879: 6878: 6859: 6858: 6855: 6850: 6798: 6793: 6792: 6745: 6740: 6739: 6736: 6703:strong rigidity 6665: 6660: 6659: 6619: 6614: 6552: 6551: 6495: 6494: 6475: 6474: 6444: 6443: 6405: 6404: 6403:then the group 6379: 6378: 6359: 6358: 6334: 6333: 6330: 6306: 6305: 6284: 6279: 6278: 6244: 6226: 6197: 6171: 6165: 6161: 6146: 6141: 6140: 6116: 6111: 6110: 6085: 6084: 6061: 6056: 6055: 6034: 6029: 6028: 6004: 5977: 5976: 5970: 5953:are arithmetic; 5935: 5934: 5899: 5894: 5893: 5870: 5865: 5864: 5845: 5844: 5821: 5816: 5815: 5809: 5781: 5780: 5761: 5760: 5735: 5734: 5715: 5714: 5689: 5688: 5644: 5643: 5621: 5620: 5601: 5600: 5581: 5580: 5561: 5560: 5533: 5532: 5529: 5527:Symmetric space 5523: 5488: 5487: 5468: 5467: 5448: 5447: 5421: 5420: 5401: 5400: 5375: 5374: 5373:) the quotient 5355: 5354: 5327: 5326: 5307: 5306: 5287: 5286: 5261: 5260: 5232: 5231: 5209: 5208: 5181: 5170: 5169: 5150: 5149: 5124: 5119: 5118: 5091: 5075: 5062: 5034: 5029: 5028: 5003: 5002: 4977: 4976: 4975:as follows: if 4957: 4956: 4933: 4932: 4909: 4908: 4887: 4882: 4881: 4859: 4858: 4855: 4850: 4830: 4759: 4758: 4735: 4664: 4663: 4594: 4593: 4528: 4527: 4488: 4487: 4457: 4452: 4451: 4417: 4416: 4385: 4384: 4353: 4352: 4309: 4308: 4280: 4279: 4248: 4247: 4244:Hermitian forms 4204: 4203: 4172: 4171: 4140: 4139: 4096: 4095: 4058: 4057: 4034: 4033: 4008: 4007: 3988: 3987: 3986:of a Lie group 3980: 3947: 3934: 3929: 3928: 3900: 3887: 3882: 3881: 3862: 3861: 3815: 3814: 3777: 3748: 3743: 3742: 3692: 3687: 3686: 3659: 3654: 3633: 3628: 3623: 3622: 3603: 3602: 3576: 3571: 3550: 3545: 3540: 3539: 3520: 3519: 3490: 3489: 3470: 3469: 3448: 3429: 3418: 3417: 3383: 3370: 3365: 3364: 3343: 3330: 3317: 3304: 3299: 3298: 3279: 3278: 3257: 3244: 3233: 3232: 3213: 3212: 3209: 3183: 3182: 3138: 3109: 3104: 3103: 3084: 3083: 3064: 3063: 3018: 3001: 3000: 2979: 2978: 2959: 2958: 2933: 2932: 2895: 2890: 2889: 2866: 2865: 2862: 2856: 2851: 2835: 2796: 2795: 2768: 2767: 2741: 2740: 2704: 2699: 2698: 2679: 2678: 2659: 2658: 2639: 2638: 2607: 2606: 2603:Lattice (group) 2579: 2578: 2559: 2558: 2535: 2534: 2515: 2514: 2491: 2490: 2467: 2466: 2443: 2442: 2423: 2422: 2418:vector space). 2413:is a connected 2395: 2394: 2391: 2386: 2351: 2302: 2273: 2268: 2267: 2230: 2225: 2224: 2187: 2182: 2181: 2148: 2147: 2128: 2127: 2108: 2107: 2088: 2087: 2057: 2052: 2051: 2028: 2023: 2022: 2019: 1995: 1994: 1975: 1974: 1947: 1946: 1927: 1926: 1907: 1906: 1905:. Note that if 1873: 1859: 1858: 1833: 1832: 1807: 1806: 1775: 1774: 1745: 1744: 1722: 1721: 1702: 1701: 1675: 1674: 1647: 1646: 1627: 1626: 1607: 1606: 1587: 1586: 1582:is satisfied). 1537: 1536: 1503: 1502: 1477: 1476: 1457: 1456: 1411: 1410: 1383: 1382: 1363: 1362: 1340: 1339: 1320: 1319: 1295: 1275: 1274: 1255: 1254: 1233: 1228: 1227: 1208: 1207: 1188: 1187: 1168: 1167: 1164: 1111: 1082: 1077: 1076: 1040: 1025: 1020: 1019: 981: 976: 975: 952: 947: 946: 943: 938: 903:discrete groups 822: 793: 792: 781:Abelian variety 774:Reductive group 762: 752: 751: 750: 749: 700: 692: 684: 676: 668: 641:Special unitary 552: 538: 537: 519: 518: 495: 494: 470: 469: 433: 432: 424: 423: 414:Discrete groups 403: 402: 358:Frobenius group 303: 290: 279: 272:Symmetric group 268: 252: 242: 241: 92:Normal subgroup 78: 58: 49: 32: 25:Lattice (group) 17: 12: 11: 5: 8207: 8205: 8197: 8196: 8191: 8186: 8184:Ergodic theory 8181: 8176: 8166: 8165: 8162: 8161: 8134: 8128: 8113: 8092: 8078: 8062: 8048: 8031: 8025: 8006: 8003: 8001: 8000: 7985: 7967: 7940:(4): 406–431. 7924: 7887: 7875: 7854:(3): 459–515. 7838: 7826: 7811: 7793: 7756:(4): 299–308. 7740: 7728: 7716: 7704: 7702:, p. 298. 7692: 7669: 7619: 7607: 7605:, Theorem 3.1. 7595: 7583: 7571: 7569:, Theorem 2.1. 7559: 7505: 7503: 7500: 7487: 7467: 7464: 7461: 7441: 7421: 7418: 7415: 7395: 7375: 7355: 7352: 7349: 7345: 7342: 7339: 7318: 7306: 7303: 7290: 7266: 7251:Main article: 7248: 7245: 7228: 7208: 7188: 7168: 7148: 7145: 7142: 7139: 7136: 7131: 7126: 7107:function field 7094: 7082: 7079: 7066: 7063: 7060: 7036: 7033: 7030: 7026: 7023: 7020: 6992: 6989: 6986: 6982: 6979: 6976: 6951: 6931: 6928: 6925: 6921: 6918: 6915: 6886: 6866: 6854: 6851: 6849: 6846: 6826: 6822: 6818: 6813: 6808: 6805: 6802: 6773: 6769: 6765: 6760: 6755: 6752: 6749: 6735: 6732: 6705:and is due to 6690: 6686: 6682: 6677: 6672: 6669: 6629:Local rigidity 6618: 6615: 6613: 6610: 6589: 6585: 6581: 6577: 6573: 6570: 6567: 6564: 6560: 6543:is a lattice. 6532: 6528: 6524: 6520: 6516: 6513: 6510: 6507: 6503: 6482: 6462: 6459: 6456: 6452: 6431: 6427: 6423: 6419: 6415: 6412: 6387: 6366: 6342: 6329: 6326: 6313: 6291: 6287: 6271: 6270: 6258: 6253: 6248: 6243: 6238: 6233: 6230: 6225: 6222: 6218: 6214: 6209: 6204: 6201: 6196: 6192: 6187: 6182: 6179: 6174: 6169: 6164: 6158: 6153: 6150: 6123: 6119: 6098: 6095: 6092: 6070: 6065: 6041: 6037: 6025: 6024: 6011: 6007: 6001: 5998: 5995: 5991: 5987: 5984: 5969: 5966: 5962: 5961: 5954: 5942: 5908: 5903: 5879: 5874: 5852: 5830: 5825: 5808: 5805: 5788: 5768: 5748: 5745: 5742: 5722: 5702: 5699: 5696: 5665: 5661: 5657: 5654: 5651: 5628: 5608: 5588: 5568: 5542: 5525:Main article: 5522: 5519: 5511:flat manifolds 5506:is a lattice. 5495: 5475: 5455: 5446:associated to 5428: 5408: 5388: 5385: 5382: 5362: 5334: 5314: 5294: 5274: 5271: 5268: 5248: 5245: 5242: 5239: 5216: 5196: 5191: 5188: 5184: 5180: 5177: 5157: 5144:indicates the 5131: 5127: 5106: 5103: 5098: 5094: 5090: 5087: 5082: 5078: 5074: 5069: 5065: 5061: 5058: 5055: 5052: 5049: 5046: 5041: 5037: 5016: 5013: 5010: 4990: 4987: 4984: 4964: 4940: 4918: 4894: 4890: 4866: 4854: 4851: 4849: 4846: 4829: 4826: 4825: 4824: 4812: 4809: 4806: 4803: 4800: 4796: 4793: 4789: 4786: 4783: 4780: 4777: 4774: 4770: 4767: 4746: 4745: 4734: 4731: 4730: 4729: 4717: 4714: 4711: 4708: 4705: 4701: 4698: 4694: 4691: 4688: 4685: 4682: 4679: 4675: 4672: 4656: 4649: 4633: 4630: 4627: 4624: 4621: 4618: 4615: 4612: 4609: 4605: 4602: 4581: 4578: 4575: 4572: 4569: 4565: 4562: 4558: 4555: 4552: 4549: 4546: 4543: 4539: 4536: 4515: 4512: 4509: 4506: 4503: 4499: 4496: 4479: 4478: 4464: 4460: 4437: 4434: 4429: 4425: 4410: 4398: 4395: 4392: 4372: 4369: 4366: 4363: 4360: 4336: 4333: 4330: 4327: 4324: 4320: 4317: 4305: 4293: 4290: 4287: 4267: 4264: 4261: 4258: 4255: 4231: 4228: 4225: 4222: 4219: 4215: 4212: 4201:unitary groups 4197: 4185: 4182: 4179: 4159: 4156: 4153: 4150: 4147: 4123: 4120: 4117: 4114: 4111: 4107: 4104: 4068: 4065: 4041: 4016: 3995: 3979: 3976: 3961: 3954: 3950: 3946: 3941: 3937: 3914: 3907: 3903: 3899: 3894: 3890: 3869: 3849: 3846: 3843: 3840: 3837: 3834: 3831: 3828: 3825: 3822: 3802: 3798: 3794: 3789: 3784: 3781: 3776: 3773: 3769: 3765: 3760: 3755: 3752: 3730: 3727: 3722: 3717: 3713: 3709: 3704: 3699: 3696: 3683: 3682: 3666: 3662: 3657: 3653: 3650: 3647: 3640: 3636: 3631: 3610: 3599: 3583: 3579: 3574: 3570: 3567: 3564: 3557: 3553: 3548: 3538:to any factor 3527: 3503: 3500: 3497: 3477: 3455: 3451: 3447: 3444: 3441: 3436: 3432: 3428: 3425: 3398: 3395: 3390: 3386: 3382: 3377: 3373: 3350: 3346: 3342: 3337: 3333: 3329: 3324: 3320: 3316: 3311: 3307: 3286: 3264: 3260: 3256: 3251: 3247: 3243: 3240: 3220: 3208: 3207:Irreducibility 3205: 3191: 3163: 3159: 3155: 3150: 3145: 3142: 3137: 3134: 3130: 3126: 3121: 3116: 3113: 3091: 3071: 3060:Harish-Chandra 3043: 3039: 3035: 3030: 3025: 3022: 3017: 3014: 3011: 3008: 2987: 2966: 2941: 2920: 2916: 2912: 2907: 2902: 2899: 2873: 2858:Main article: 2855: 2852: 2850: 2847: 2834: 2831: 2815: 2812: 2809: 2806: 2803: 2775: 2750: 2728: 2725: 2722: 2719: 2714: 2711: 2707: 2686: 2666: 2646: 2626: 2623: 2620: 2617: 2614: 2588: 2566: 2544: 2522: 2500: 2474: 2452: 2430: 2402: 2390: 2387: 2385: 2382: 2350: 2347: 2327: 2323: 2319: 2314: 2309: 2306: 2301: 2298: 2294: 2290: 2285: 2280: 2277: 2255: 2251: 2247: 2242: 2237: 2234: 2212: 2208: 2204: 2199: 2194: 2191: 2163: 2159: 2155: 2135: 2115: 2095: 2066: 2061: 2037: 2032: 2018: 2017:First examples 2015: 2002: 1982: 1962: 1958: 1954: 1934: 1914: 1894: 1891: 1885: 1882: 1879: 1872: 1869: 1866: 1846: 1843: 1840: 1820: 1817: 1814: 1790: 1786: 1782: 1758: 1755: 1752: 1729: 1709: 1682: 1662: 1658: 1654: 1634: 1614: 1594: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1524: 1520: 1516: 1513: 1510: 1490: 1487: 1484: 1464: 1444: 1441: 1438: 1435: 1432: 1428: 1424: 1421: 1418: 1398: 1394: 1390: 1370: 1347: 1327: 1307: 1302: 1298: 1294: 1291: 1288: 1285: 1282: 1262: 1240: 1236: 1215: 1195: 1175: 1163: 1160: 1156:quasi-isometry 1136: 1132: 1128: 1123: 1118: 1115: 1110: 1107: 1103: 1099: 1094: 1089: 1086: 1049: 1044: 1039: 1034: 1029: 990: 985: 961: 956: 942: 939: 937: 934: 915:ergodic theory 846:quotient space 824: 823: 821: 820: 813: 806: 798: 795: 794: 791: 790: 788:Elliptic curve 784: 783: 777: 776: 770: 769: 763: 758: 757: 754: 753: 748: 747: 744: 741: 737: 733: 732: 731: 726: 724:Diffeomorphism 720: 719: 714: 709: 703: 702: 698: 694: 690: 686: 682: 678: 674: 670: 666: 661: 660: 649: 648: 637: 636: 625: 624: 613: 612: 601: 600: 589: 588: 581:Special linear 577: 576: 569:General linear 565: 564: 559: 553: 544: 543: 540: 539: 536: 535: 530: 525: 517: 516: 503: 491: 478: 465: 463:Modular groups 461: 460: 459: 454: 441: 425: 422: 421: 416: 410: 409: 408: 405: 404: 399: 398: 397: 396: 391: 386: 383: 377: 376: 370: 369: 368: 367: 361: 360: 354: 353: 348: 339: 338: 336:Hall's theorem 333: 331:Sylow theorems 327: 326: 321: 313: 312: 311: 310: 304: 299: 296:Dihedral group 292: 291: 286: 280: 275: 269: 264: 253: 248: 247: 244: 243: 238: 237: 236: 235: 230: 222: 221: 220: 219: 214: 209: 204: 199: 194: 189: 187:multiplicative 184: 179: 174: 169: 161: 160: 159: 158: 153: 145: 144: 136: 135: 134: 133: 131:Wreath product 128: 123: 118: 116:direct product 110: 108:Quotient group 102: 101: 100: 99: 94: 89: 79: 76: 75: 72: 71: 63: 62: 15: 13: 10: 9: 6: 4: 3: 2: 8206: 8195: 8192: 8190: 8187: 8185: 8182: 8180: 8177: 8175: 8172: 8171: 8169: 8158: 8154: 8149: 8144: 8140: 8135: 8131: 8125: 8121: 8120: 8114: 8110: 8106: 8102: 8098: 8093: 8089: 8085: 8081: 8079:0-12-558180-7 8075: 8071: 8067: 8063: 8059: 8055: 8051: 8049:3-540-12179-X 8045: 8041: 8037: 8032: 8028: 8026:0-8176-4120-3 8022: 8017: 8016: 8009: 8008: 8004: 7996: 7992: 7988: 7986:3-7643-3092-9 7982: 7978: 7971: 7968: 7963: 7959: 7955: 7951: 7947: 7943: 7939: 7935: 7928: 7925: 7920: 7916: 7911: 7906: 7902: 7898: 7891: 7888: 7885:, Chapter 19. 7884: 7879: 7876: 7871: 7867: 7862: 7857: 7853: 7849: 7842: 7839: 7835: 7830: 7827: 7822: 7818: 7814: 7812:3-7643-6989-2 7808: 7804: 7797: 7794: 7789: 7785: 7781: 7777: 7773: 7769: 7764: 7759: 7755: 7751: 7744: 7741: 7737: 7732: 7729: 7725: 7724:Margulis 1991 7720: 7717: 7713: 7708: 7705: 7701: 7700:Margulis 1991 7696: 7693: 7688: 7684: 7680: 7673: 7670: 7665: 7661: 7657: 7653: 7649: 7645: 7641: 7637: 7630: 7623: 7620: 7616: 7611: 7608: 7604: 7599: 7596: 7592: 7587: 7584: 7580: 7575: 7572: 7568: 7563: 7560: 7555: 7551: 7547: 7543: 7539: 7535: 7530: 7525: 7521: 7517: 7510: 7507: 7501: 7499: 7485: 7465: 7459: 7439: 7419: 7413: 7393: 7373: 7350: 7316: 7304: 7302: 7280: 7254: 7246: 7244: 7242: 7226: 7206: 7186: 7166: 7140: 7129: 7115: 7112: 7108: 7092: 7080: 7078: 7064: 7048: 7031: 7008: 7006: 6987: 6965: 6949: 6926: 6904: 6900: 6884: 6864: 6852: 6848:Tree lattices 6847: 6845: 6842: 6840: 6811: 6789: 6787: 6758: 6733: 6731: 6729: 6725: 6720: 6719: 6718:Superrigidity 6714: 6712: 6708: 6707:George Mostow 6704: 6675: 6657: 6652: 6650: 6646: 6642: 6638: 6634: 6630: 6626: 6624: 6616: 6611: 6609: 6607: 6606:trace formula 6603: 6565: 6549: 6544: 6514: 6508: 6480: 6457: 6413: 6410: 6402: 6364: 6357: 6327: 6325: 6311: 6289: 6285: 6276: 6251: 6236: 6223: 6207: 6194: 6190: 6185: 6180: 6177: 6172: 6162: 6156: 6139: 6138: 6137: 6117: 6093: 6090: 6068: 6039: 6035: 6009: 6005: 5999: 5996: 5993: 5989: 5985: 5982: 5975: 5974: 5973: 5967: 5965: 5959: 5955: 5940: 5932: 5928: 5927: 5926: 5924: 5906: 5877: 5850: 5828: 5814: 5813:p-adic fields 5806: 5804: 5802: 5786: 5766: 5746: 5720: 5700: 5697: 5685: 5683: 5679: 5663: 5659: 5655: 5652: 5649: 5642: 5626: 5606: 5586: 5566: 5558: 5528: 5520: 5518: 5516: 5512: 5507: 5473: 5453: 5445: 5440: 5426: 5406: 5386: 5360: 5352: 5348: 5332: 5292: 5272: 5269: 5266: 5246: 5243: 5237: 5228: 5214: 5194: 5189: 5186: 5182: 5175: 5155: 5147: 5129: 5125: 5101: 5096: 5092: 5088: 5085: 5080: 5076: 5067: 5063: 5059: 5053: 5050: 5047: 5039: 5035: 5014: 5011: 5008: 4988: 4985: 4982: 4962: 4954: 4938: 4892: 4888: 4880: 4879:inner product 4864: 4852: 4847: 4845: 4843: 4839: 4835: 4827: 4807: 4804: 4801: 4787: 4781: 4778: 4775: 4756: 4755: 4754: 4751: 4744: 4741: 4740: 4739: 4712: 4709: 4706: 4692: 4686: 4683: 4680: 4661: 4657: 4654: 4650: 4647: 4646:open question 4631: 4628: 4625: 4622: 4616: 4613: 4610: 4576: 4573: 4570: 4556: 4550: 4547: 4544: 4510: 4507: 4504: 4485: 4484: 4483: 4462: 4458: 4435: 4432: 4427: 4423: 4415: 4411: 4396: 4393: 4390: 4367: 4364: 4361: 4350: 4331: 4328: 4325: 4306: 4291: 4288: 4285: 4262: 4259: 4256: 4246:of signature 4245: 4226: 4223: 4220: 4202: 4198: 4183: 4180: 4177: 4154: 4151: 4148: 4138:of signature 4137: 4118: 4115: 4112: 4094: 4090: 4089: 4088: 4086: 4082: 4066: 4063: 4055: 4039: 4031: 3993: 3985: 3977: 3975: 3959: 3952: 3948: 3944: 3939: 3935: 3912: 3905: 3901: 3897: 3892: 3888: 3867: 3841: 3835: 3832: 3829: 3820: 3787: 3774: 3758: 3720: 3702: 3664: 3660: 3655: 3651: 3648: 3645: 3638: 3634: 3629: 3600: 3581: 3577: 3572: 3568: 3565: 3562: 3555: 3551: 3546: 3517: 3516: 3515: 3501: 3498: 3475: 3453: 3449: 3445: 3442: 3439: 3434: 3430: 3426: 3423: 3414: 3412: 3396: 3393: 3388: 3380: 3375: 3348: 3344: 3340: 3335: 3327: 3322: 3318: 3314: 3309: 3284: 3262: 3258: 3254: 3249: 3245: 3241: 3238: 3218: 3206: 3204: 3180: 3175: 3148: 3135: 3119: 3089: 3061: 3057: 3028: 3015: 3012: 3009: 2964: 2956: 2905: 2887: 2871: 2861: 2853: 2848: 2846: 2844: 2839: 2832: 2830: 2827: 2810: 2804: 2801: 2793: 2789: 2773: 2764: 2717: 2712: 2709: 2705: 2684: 2644: 2621: 2615: 2612: 2604: 2564: 2520: 2488: 2472: 2428: 2419: 2416: 2400: 2388: 2383: 2381: 2379: 2374: 2372: 2371:affine groups 2368: 2364: 2359: 2357: 2348: 2346: 2344: 2343:commensurable 2339: 2312: 2299: 2283: 2240: 2197: 2180: 2179:modular group 2175: 2157: 2153: 2113: 2093: 2084: 2082: 2064: 2035: 2016: 2014: 2000: 1956: 1952: 1932: 1892: 1889: 1880: 1877: 1870: 1867: 1864: 1844: 1841: 1838: 1818: 1815: 1804: 1784: 1780: 1772: 1756: 1753: 1741: 1727: 1707: 1699: 1694: 1656: 1652: 1632: 1592: 1583: 1566: 1560: 1557: 1551: 1548: 1542: 1535:the equality 1518: 1514: 1511: 1508: 1488: 1485: 1482: 1462: 1439: 1436: 1426: 1422: 1416: 1392: 1388: 1368: 1361: 1360:Borel measure 1345: 1300: 1296: 1289: 1286: 1283: 1260: 1238: 1234: 1213: 1173: 1161: 1159: 1157: 1153: 1148: 1121: 1108: 1092: 1074: 1073:Radon measure 1070: 1066: 1047: 1037: 1032: 1016: 1014: 1010: 1006: 988: 959: 940: 935: 933: 931: 930:Cayley graphs 928: 924: 923:combinatorics 920: 916: 912: 908: 904: 900: 895: 893: 892:tree lattices 889: 885: 880: 878: 874: 870: 866: 861: 859: 855: 851: 847: 843: 839: 835: 831: 819: 814: 812: 807: 805: 800: 799: 797: 796: 789: 786: 785: 782: 779: 778: 775: 772: 771: 768: 765: 764: 761: 756: 755: 745: 742: 739: 738: 736: 730: 727: 725: 722: 721: 718: 715: 713: 710: 708: 705: 704: 701: 695: 693: 687: 685: 679: 677: 671: 669: 663: 662: 658: 654: 651: 650: 646: 642: 639: 638: 634: 630: 627: 626: 622: 618: 615: 614: 610: 606: 603: 602: 598: 594: 591: 590: 586: 582: 579: 578: 574: 570: 567: 566: 563: 560: 558: 555: 554: 551: 547: 542: 541: 534: 531: 529: 526: 524: 521: 520: 492: 467: 466: 464: 458: 455: 430: 427: 426: 420: 417: 415: 412: 411: 407: 406: 395: 392: 390: 387: 384: 381: 380: 379: 378: 375: 371: 366: 363: 362: 359: 356: 355: 352: 349: 347: 345: 341: 340: 337: 334: 332: 329: 328: 325: 322: 320: 317: 316: 315: 314: 308: 305: 302: 297: 294: 293: 289: 284: 281: 278: 273: 270: 267: 262: 259: 258: 257: 256: 251: 250:Finite groups 246: 245: 234: 231: 229: 226: 225: 224: 223: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 164: 163: 162: 157: 154: 152: 149: 148: 147: 146: 143: 142: 137: 132: 129: 127: 124: 122: 119: 117: 114: 111: 109: 106: 105: 104: 103: 98: 95: 93: 90: 88: 85: 84: 83: 82: 77:Basic notions 74: 73: 69: 65: 64: 61: 56: 52: 47: 41: 36: 30: 26: 22: 8138: 8118: 8096: 8069: 8035: 8014: 7976: 7970: 7937: 7933: 7927: 7900: 7896: 7890: 7878: 7861:math/0111165 7851: 7847: 7841: 7829: 7802: 7796: 7763:math/0503088 7753: 7749: 7743: 7731: 7719: 7707: 7695: 7678: 7672: 7639: 7635: 7622: 7610: 7598: 7586: 7574: 7562: 7519: 7515: 7509: 7308: 7256: 7114:power series 7084: 7049: 7009: 7005:tree lattice 7004: 6856: 6843: 6790: 6737: 6727: 6723: 6716: 6715: 6711:Gopal Prasad 6702: 6653: 6648: 6644: 6627: 6622: 6620: 6545: 6356:number field 6331: 6274: 6272: 6026: 5971: 5963: 5957: 5930: 5922: 5810: 5686: 5557:Killing form 5530: 5515:nilmanifolds 5508: 5441: 5229: 4856: 4842:Property (T) 4831: 4757:Lattices in 4747: 4742: 4736: 4480: 3981: 3813:via the map 3684: 3415: 3410: 3210: 3178: 3176: 3062:states that 3056:Armand Borel 2863: 2840: 2836: 2828: 2765: 2420: 2392: 2375: 2360: 2352: 2340: 2176: 2174:is finite). 2085: 2020: 1802: 1770: 1742: 1698:Haar measure 1695: 1584: 1165: 1149: 1017: 944: 896: 891: 881: 869:local fields 862: 853: 833: 827: 656: 644: 632: 620: 608: 596: 584: 572: 418: 343: 300: 287: 276: 265: 261:Cyclic group 139: 126:Free product 97:Group action 60:Group theory 55:Group theory 54: 20: 5687:A subgroup 5680:are called 5146:tangent map 4307:The groups 3411:irreducible 2790:(and hence 1803:non-uniform 848:has finite 546:Topological 385:alternating 8194:Lie groups 8168:Categories 8005:References 7642:: 93–103. 6853:Definition 6401:adèle ring 6083:. Usually 4349:quaternion 4054:semisimple 2843:polycyclic 2826:elements. 2786:is always 2378:simplicity 2363:unimodular 2356:Lie groups 1945:such that 1769:is called 1743:A lattice 1273:such that 1162:Definition 830:Lie theory 653:Symplectic 593:Orthogonal 550:Lie groups 457:Free group 182:continuous 121:Direct sum 8148:1402.0962 7962:119638780 7910:1102.3574 7554:119130421 7529:1008.2911 7522:: 55–67. 7463:∖ 7417:∖ 7289:Γ 7265:Γ 7062:∖ 7059:Γ 6903:biregular 6897:can be a 6572:∖ 6515:⊂ 6224:× 6195:⊂ 6122:∞ 6097:∞ 5997:∈ 5990:∏ 5892:of split- 5801:orbifolds 5744:∖ 5741:Γ 5698:⊂ 5695:Γ 5494:Γ 5384:∖ 5381:Γ 5313:Γ 5270:∈ 5267:γ 5244:γ 5241:↦ 5230:The maps 5187:− 5183:γ 5179:↦ 5156:γ 5130:∗ 5126:γ 5097:∗ 5093:γ 5081:∗ 5077:γ 5040:γ 5012:∈ 5009:γ 4629:≥ 4433:− 4394:≥ 4289:≥ 4181:≥ 4064:± 3984:real rank 3945:− 3868:σ 3836:σ 3824:↦ 3775:× 3652:× 3649:… 3646:× 3609:Γ 3598:is dense; 3569:× 3566:… 3563:× 3526:Γ 3499:⊂ 3496:Γ 3446:× 3443:… 3440:× 3394:⊂ 3385:Γ 3381:× 3372:Γ 3341:⊂ 3332:Γ 3315:⊂ 3306:Γ 3255:× 3136:⊂ 3070:Γ 3016:∩ 3007:Γ 2805:⁡ 2724:Γ 2718:⁡ 2710:− 2665:Γ 2616:⁡ 2300:⊂ 2162:Γ 2134:Γ 1981:Γ 1961:Γ 1913:Γ 1893:γ 1884:Γ 1881:∈ 1878:γ 1871:⋃ 1842:⊂ 1816:⊂ 1813:Γ 1789:Γ 1754:⊂ 1751:Γ 1681:Γ 1661:Γ 1613:Γ 1561:μ 1543:μ 1523:Γ 1512:⊂ 1486:∈ 1443:∞ 1431:Γ 1417:μ 1397:Γ 1369:μ 1326:Γ 1284:∩ 1281:Γ 1194:Γ 1109:⊂ 1038:⊂ 1009:countable 927:expanding 717:Conformal 605:Euclidean 212:nilpotent 7788:18414386 7664:55721623 6623:rigidity 6612:Rigidity 5925:. Then: 1318:). Then 712:Poincaré 557:Solenoid 429:Integers 419:Lattices 394:sporadic 389:Lie type 217:solvable 207:dihedral 192:additive 177:infinite 87:Subgroup 8153:Bibcode 8109:0507234 8088:1278263 8058:1090825 7995:0670072 7954:1132296 7821:1978431 7780:2067695 7687:1241644 7656:0932135 7546:2881324 7111:Laurent 6899:regular 5676:: such 4081:isogeny 4028:-split 2605:) then 2369:or the 2223:inside 1771:uniform 1065:compact 834:lattice 707:Lorentz 629:Unitary 528:Lattice 468:PSL(2, 202:abelian 113:(Semi-) 8126:  8107:  8086:  8076:  8056:  8046:  8023:  7993:  7983:  7960:  7952:  7819:  7809:  7786:  7778:  7685:  7662:  7654:  7552:  7544:  7159:) and 6645:v>0 6027:where 5921:-rank 5347:freely 5117:where 4748:Using 4383:) for 3860:where 1455:) and 913:), in 905:), in 562:Circle 493:SL(2, 382:cyclic 346:-group 197:cyclic 172:finite 167:simple 151:kernel 23:, see 8143:arXiv 7958:S2CID 7905:arXiv 7856:arXiv 7784:S2CID 7758:arXiv 7660:S2CID 7632:(PDF) 7550:S2CID 7524:arXiv 7502:Notes 5559:. If 4526:, in 4030:torus 2697:then 1857:with 1067:, or 919:flows 888:trees 867:over 840:is a 836:in a 746:Sp(∞) 743:SU(∞) 156:image 8124:ISBN 8074:ISBN 8044:ISBN 8021:ISBN 7981:ISBN 7901:2011 7807:ISBN 6857:Let 6709:and 6654:The 6546:The 6399:its 6377:and 5513:and 5442:The 5349:and 5259:for 5148:(at 5027:put 4412:The 4278:for 4199:The 4170:for 4091:The 3982:The 3058:and 1437:< 1166:Let 1007:and 740:O(∞) 729:Loop 548:and 7942:doi 7915:doi 7866:doi 7852:124 7768:doi 7754:114 7644:doi 7534:doi 7257:If 7199:of 7085:If 6942:of 6901:or 6473:of 6332:If 5958:r=1 5956:if 5929:If 5207:of 4955:on 4857:If 4242:of 4134:of 4087:): 4032:of 3927:to 2953:of 2888:in 2864:If 2802:dim 2763:. 2706:exp 2613:exp 2489:of 2465:of 2086:If 1253:of 894:). 828:In 655:Sp( 643:SU( 619:SO( 583:SL( 571:GL( 8170:: 8151:. 8105:MR 8103:. 8084:MR 8082:. 8054:MR 8052:. 7991:MR 7989:. 7956:. 7950:MR 7948:. 7936:. 7913:. 7899:. 7864:. 7850:. 7817:MR 7815:. 7782:. 7776:MR 7774:. 7766:. 7752:. 7683:MR 7658:. 7652:MR 7650:. 7640:66 7638:. 7634:. 7548:. 7542:MR 7540:. 7532:. 7520:44 7518:. 7007:. 6841:. 6788:. 6651:. 5517:. 5439:. 5227:. 4477:). 4436:20 3974:. 3174:. 2845:. 2338:. 2013:. 1015:. 879:. 631:U( 607:E( 595:O( 53:→ 8159:. 8155:: 8145:: 8132:. 8111:. 8090:. 8060:. 8029:. 7997:. 7964:. 7944:: 7938:1 7921:. 7917:: 7907:: 7872:. 7868:: 7858:: 7823:. 7790:. 7770:: 7760:: 7689:. 7666:. 7646:: 7556:. 7536:: 7526:: 7486:H 7466:T 7460:H 7440:H 7420:T 7414:H 7394:H 7374:H 7354:) 7351:T 7348:( 7344:t 7341:u 7338:A 7317:H 7227:G 7207:F 7187:F 7167:G 7147:) 7144:) 7141:t 7138:( 7135:( 7130:p 7125:F 7093:F 7065:T 7035:) 7032:T 7029:( 7025:t 7022:u 7019:A 6991:) 6988:T 6985:( 6981:t 6978:u 6975:A 6950:T 6930:) 6927:T 6924:( 6920:t 6917:u 6914:A 6885:T 6865:T 6825:) 6821:C 6817:( 6812:2 6807:L 6804:S 6801:P 6772:) 6768:R 6764:( 6759:2 6754:L 6751:S 6748:P 6728:H 6724:G 6689:) 6685:R 6681:( 6676:2 6671:L 6668:S 6649:v 6588:) 6584:A 6580:( 6576:G 6569:) 6566:F 6563:( 6559:G 6531:) 6527:A 6523:( 6519:G 6512:) 6509:F 6506:( 6502:G 6481:F 6461:) 6458:F 6455:( 6451:G 6430:) 6426:A 6422:( 6418:G 6414:= 6411:G 6386:A 6365:F 6341:G 6312:G 6290:p 6286:G 6269:. 6257:) 6252:p 6247:Q 6242:( 6237:2 6232:L 6229:S 6221:) 6217:R 6213:( 6208:2 6203:L 6200:S 6191:) 6186:] 6181:p 6178:1 6173:[ 6168:Z 6163:( 6157:2 6152:L 6149:S 6118:G 6094:= 6091:p 6069:p 6064:Q 6040:p 6036:G 6010:p 6006:G 6000:S 5994:p 5986:= 5983:G 5941:G 5931:r 5923:r 5907:p 5902:Q 5878:p 5873:Q 5851:G 5829:p 5824:Q 5787:G 5767:X 5747:X 5721:X 5701:G 5664:K 5660:/ 5656:G 5653:= 5650:X 5627:G 5607:K 5587:G 5567:G 5541:g 5474:G 5454:g 5427:g 5407:G 5387:G 5361:G 5333:G 5293:g 5273:G 5247:x 5238:x 5215:G 5195:x 5190:1 5176:x 5105:) 5102:w 5089:, 5086:v 5073:( 5068:e 5064:g 5060:= 5057:) 5054:w 5051:, 5048:v 5045:( 5036:g 5015:G 4989:w 4986:, 4983:v 4963:G 4939:G 4917:g 4893:e 4889:g 4865:G 4811:) 4808:1 4805:, 4802:n 4799:( 4795:U 4792:S 4788:, 4785:) 4782:1 4779:, 4776:n 4773:( 4769:O 4766:S 4716:) 4713:1 4710:, 4707:n 4704:( 4700:U 4697:S 4693:, 4690:) 4687:1 4684:, 4681:n 4678:( 4674:O 4671:S 4632:4 4626:n 4623:, 4620:) 4617:1 4614:, 4611:n 4608:( 4604:U 4601:S 4580:) 4577:1 4574:, 4571:3 4568:( 4564:U 4561:S 4557:, 4554:) 4551:1 4548:, 4545:2 4542:( 4538:U 4535:S 4514:) 4511:1 4508:, 4505:n 4502:( 4498:O 4495:S 4463:4 4459:F 4428:4 4424:F 4409:; 4397:2 4391:n 4371:) 4368:1 4365:, 4362:n 4359:( 4335:) 4332:1 4329:, 4326:n 4323:( 4319:p 4316:S 4304:; 4292:2 4286:n 4266:) 4263:1 4260:, 4257:n 4254:( 4230:) 4227:1 4224:, 4221:n 4218:( 4214:U 4211:S 4196:; 4184:2 4178:n 4158:) 4155:1 4152:, 4149:n 4146:( 4122:) 4119:1 4116:, 4113:n 4110:( 4106:O 4103:S 4067:1 4040:G 4015:R 3994:G 3960:2 3953:i 3949:b 3940:i 3936:a 3913:2 3906:i 3902:b 3898:+ 3893:i 3889:a 3848:) 3845:) 3842:g 3839:( 3833:, 3830:g 3827:( 3821:g 3801:) 3797:R 3793:( 3788:2 3783:L 3780:S 3772:) 3768:R 3764:( 3759:2 3754:L 3751:S 3729:) 3726:] 3721:2 3716:[ 3712:Z 3708:( 3703:2 3698:L 3695:S 3665:k 3661:i 3656:G 3639:1 3635:i 3630:G 3582:k 3578:i 3573:G 3556:1 3552:i 3547:G 3502:G 3476:G 3454:r 3450:G 3435:1 3431:G 3427:= 3424:G 3397:G 3389:2 3376:1 3349:2 3345:G 3336:2 3328:, 3323:1 3319:G 3310:1 3285:G 3263:2 3259:G 3250:1 3246:G 3242:= 3239:G 3219:G 3190:Q 3162:) 3158:R 3154:( 3149:2 3144:L 3141:S 3133:) 3129:Z 3125:( 3120:2 3115:L 3112:S 3090:G 3042:) 3038:Z 3034:( 3029:n 3024:L 3021:G 3013:G 3010:= 2986:Q 2965:G 2940:Q 2919:) 2915:R 2911:( 2906:n 2901:L 2898:G 2872:G 2814:) 2811:N 2808:( 2774:N 2749:n 2727:) 2721:( 2713:1 2685:N 2645:N 2625:) 2622:L 2619:( 2587:n 2565:L 2543:n 2521:N 2499:n 2473:N 2451:n 2429:N 2401:N 2326:) 2322:R 2318:( 2313:n 2308:L 2305:S 2297:) 2293:Z 2289:( 2284:n 2279:L 2276:S 2254:) 2250:R 2246:( 2241:2 2236:L 2233:S 2211:) 2207:Z 2203:( 2198:2 2193:L 2190:S 2158:/ 2154:G 2114:G 2094:G 2065:n 2060:R 2036:n 2031:Z 2001:G 1957:/ 1953:G 1933:G 1890:C 1868:= 1865:G 1845:G 1839:C 1819:G 1785:/ 1781:G 1757:G 1728:G 1708:G 1657:/ 1653:G 1633:G 1593:G 1570:) 1567:W 1564:( 1558:= 1555:) 1552:W 1549:g 1546:( 1519:/ 1515:G 1509:W 1489:G 1483:g 1463:G 1440:+ 1434:) 1427:/ 1423:G 1420:( 1393:/ 1389:G 1346:G 1306:} 1301:G 1297:e 1293:{ 1290:= 1287:U 1261:G 1239:G 1235:e 1214:U 1174:G 1135:) 1131:R 1127:( 1122:2 1117:L 1114:S 1106:) 1102:Z 1098:( 1093:2 1088:L 1085:S 1048:n 1043:R 1033:n 1028:Z 989:n 984:R 960:n 955:Z 854:R 817:e 810:t 803:v 699:8 697:E 691:7 689:E 683:6 681:E 675:4 673:F 667:2 665:G 659:) 657:n 647:) 645:n 635:) 633:n 623:) 621:n 611:) 609:n 599:) 597:n 587:) 585:n 575:) 573:n 515:) 502:Z 490:) 477:Z 453:) 440:Z 431:( 344:p 309:Q 301:n 298:D 288:n 285:A 277:n 274:S 266:n 263:Z 31:. 21:R

Index

Lattice (group)
Lattice (disambiguation)

Heisenberg group
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.