Knowledge (XXG)

Greatest element and least element

Source 📝

33: 2128: 5110: 5090:, and when no confusion is likely, i.e. when one is not talking about partial orders of numbers that already contain elements 0 and 1 different from bottom and top. The existence of least and greatest elements is a special 6727: 175: 5931: 5601: 5501: 5888: 6467: 5469: 5441: 4516: 2255: 2179: 991: 382: 5145: 6612: 6503: 5971: 5569: 5218: 4926: 1968: 6559: 6427: 6371: 4387: 4090: 912: 7047: 5174: 5019: 4858: 4483: 4439: 4288: 4252: 4168: 4122: 4031: 3952: 3880: 3733: 3607: 3378: 3212: 3123: 3064: 2977: 2746: 2601: 2432: 2222: 1359: 1049: 958: 863: 732: 349: 7009: 6948: 6890: 6082: 5331: 5303: 5275: 5247: 3324: 3006: 2778: 2567: 2397: 2368: 32: 6861: 6193: 6138: 6112: 6053: 5785: 5363: 4214: 3799: 3551: 3525: 3479: 3424: 3275: 3245: 2868: 2834: 2808: 2538: 1729: 1700: 1390: 1152: 1123: 697: 668: 518: 489: 6835: 6809: 6662: 5640: 3842: 3701: 3180: 3032: 2945: 2512: 2462: 2339: 2281: 1674: 1247: 1097: 639: 587: 460: 408: 6754: 5848: 5821: 5537: 2631: 6919: 3453: 1566: 6239: 6526: 6394: 6318: 5739: 5406: 5042: 4997: 4738: 4613: 3999: 3150: 3091: 1537: 1219: 310: 6968: 6774: 6632: 6579: 6338: 6295: 6259: 6213: 6167: 6024: 6004: 5759: 5716: 5383: 4974: 4949: 4878: 4829: 4809: 4785: 4760: 4715: 4695: 4675: 4655: 4635: 4590: 4566: 4539: 4407: 4352: 4328: 4308: 4188: 4146: 4051: 3972: 3920: 3900: 3819: 3773: 3753: 3671: 3651: 3627: 3571: 3499: 3398: 3352: 3295: 2908: 2888: 2714: 2694: 2482: 2307: 2105: 2084: 2056: 2036: 2012: 1988: 1941: 1920: 1899: 1878: 1858: 1834: 1813: 1793: 1773: 1753: 1648: 1627: 1606: 1586: 1510: 1490: 1470: 1450: 1430: 1410: 1327: 1307: 1287: 1267: 1192: 1172: 1071: 1017: 827: 801: 776: 756: 611: 561: 541: 432: 287: 259: 239: 215: 101: 81: 57: 2635:
A set can have several maximal elements without having a greatest element. Like upper bounds and maximal elements, greatest elements may fail to exist.
5652: 7097: 2181:
has two maximal elements, viz. 3 and 4, none of which is greatest. It has one minimal element, viz. 1, which is also its least element.
7083: 5667: 6667: 2127: 5662: 5657: 178: 3152:
This is because unlike the definition of "greatest element", the definition of "maximal element" includes an important
5091: 5415:, the set of numbers with their square less than 2 has upper bounds but no greatest element and no least upper bound. 7089: 2910:
is always comparable to itself. Consequently, the only pairs of elements that could possibly be incomparable are
2111:
Even if a set has some upper bounds, it need not have a greatest element, as shown by the example of the negative
4788: 758:
can have at most one greatest element and it can have at most one least element. Whenever a greatest element of
5471:
the set of numbers less than or equal to 1 has a greatest element, viz. 1, which is also its least upper bound.
106: 5673: 5066:
The least and greatest element of the whole partially ordered set play a special role and are also called
4928:
in the topmost picture is an example), then the notions of maximal element and greatest element coincide.
996: 266: 7121: 7116: 5604: 4486: 2435: 735: 218: 5893: 5577: 5477: 5853: 5087: 5054: 6432: 5449: 5421: 4492: 2231: 2134: 967: 358: 5128: 6584: 6472: 5936: 5542: 5179: 4887: 2841: 2189:
of the set, which are elements that are not strictly smaller than any other element in the set.
1947: 6531: 6399: 6343: 4357: 4060: 882: 7014: 5157: 5002: 4841: 4456: 4412: 4261: 4222: 4151: 4095: 4004: 3925: 3853: 3706: 3580: 3361: 3185: 3096: 3037: 2950: 2719: 2574: 2405: 2195: 1332: 1022: 931: 836: 705: 322: 7093: 7070: 6982: 6924: 6866: 6058: 5307: 5279: 5251: 5223: 3300: 2982: 2751: 2543: 2373: 2344: 2116: 6840: 6172: 6117: 6091: 6029: 5764: 5336: 4193: 3778: 3530: 3504: 3458: 3403: 3254: 3221: 2847: 2813: 2787: 2517: 1705: 1679: 1366: 1128: 1102: 673: 647: 494: 468: 6814: 6788: 6637: 5610: 4956:
If the notions of maximal element and greatest element coincide on every two-element subset
3824: 3680: 3159: 3011: 2924: 2491: 2441: 2318: 2260: 1653: 1226: 1076: 618: 566: 439: 387: 6732: 5826: 5799: 5510: 2607: 6895: 5412: 4832: 3429: 2286: 2186: 1542: 177:
has one greatest element, viz. 30, and one least element, viz. 1. These elements are also
6218: 6508: 6376: 6300: 5721: 5443:
the set of numbers less than 1 has a least upper bound, viz. 1, but no greatest element.
5388: 5024: 4979: 4720: 4595: 3981: 3132: 3073: 1519: 1201: 292: 6953: 6759: 6617: 6564: 6323: 6280: 6244: 6198: 6152: 6009: 5989: 5744: 5701: 5368: 4959: 4934: 4863: 4814: 4794: 4770: 4745: 4700: 4680: 4660: 4640: 4620: 4575: 4551: 4524: 4392: 4337: 4313: 4293: 4173: 4131: 4036: 3957: 3905: 3885: 3848: 3804: 3758: 3738: 3656: 3636: 3612: 3556: 3484: 3383: 3337: 3280: 2893: 2873: 2699: 2679: 2467: 2292: 2225: 2119:(the number 0 in this case) does not imply the existence of a greatest element either. 2090: 2069: 2041: 2021: 1997: 1973: 1926: 1905: 1884: 1863: 1843: 1819: 1798: 1778: 1758: 1738: 1633: 1612: 1591: 1571: 1495: 1475: 1455: 1435: 1415: 1395: 1312: 1292: 1272: 1252: 1177: 1157: 1056: 1002: 961: 812: 786: 761: 741: 596: 546: 526: 417: 352: 272: 244: 224: 200: 86: 66: 42: 7110: 5504: 5113: 4545:
greatest element. Thus if a set has a greatest element then it is necessarily unique.
2664: 2651: 36: 6085: 5974: 5098: 4255: 2915: 190: 4092:
However, the uniqueness conclusion is no longer guaranteed if the preordered set
2185:
A greatest element of a subset of a preordered set should not be confused with a
5148: 4881: 4569: 2639: 2112: 922: 865:
has a greatest element (resp. a least element) then this element is also called
186: 7049:
would have two maximal, but no greatest element, contradicting the coincidence.
5678: 2642:
the maximal element and the greatest element coincide; and it is also called
17: 5681:— a non-strict order such that every non-empty set has a least element 3553:
holds, which shows that all pairs of distinct (i.e. non-equal) elements in
2672:
Role of (in)comparability in distinguishing greatest vs. maximal elements
5698:
Of course, in this particular example, there exists only one element in
5109: 3609:
can not possibly have a greatest element (because a greatest element of
7069:
The notion of locality requires the function's domain to be at least a
5122: 60: 6892:
In the second case, the definition of maximal element requires that
4762:
has several maximal elements then it cannot have a greatest element.
543:
is on in the above definition, the definition of a least element of
4951:
has a greatest element, the notions coincide, too, as stated above.
2748:
has to do with what elements they are comparable to. Two elements
5108: 2918:
partially ordered sets) may have elements that are incomparable.
2126: 31: 6776:
and not maximal). This contradicts the ascending chain condition.
5086:. The notation of 0 and 1 is used preferably when the poset is a 2676:
One of the most important differences between a greatest element
5408:
but no least upper bound, and no greatest element (cf. picture).
4033:
is also partially ordered then it is possible to conclude that
3093:
This is not required of maximal elements. Maximal elements of
6722:{\displaystyle s_{1}<s_{2}<\cdots <s_{n}<\cdots } 5097:
Further introductory information is found in the article on
3330:
Example where all elements are maximal but none are greatest
1735:
to the definition of a greatest element given before. Thus
4354:
is a greatest element (and thus also a maximal element) of
2115:. This example also demonstrates that the existence of a 5082:(1), respectively. If both exist, the poset is called a 4931:
However, this is not a necessary condition for whenever
2914:
pairs. In general, however, preordered sets (and even
2123:
Contrast to maximal elements and local/absolute maximums
3954:
and moreover, as a consequence of the greatest element
2646:; in the case of function values it is also called the 7017: 6985: 6956: 6927: 6898: 6869: 6843: 6817: 6791: 6762: 6735: 6670: 6664:
Repeating this argument, an infinite ascending chain
6640: 6620: 6587: 6567: 6534: 6511: 6475: 6435: 6402: 6379: 6346: 6326: 6303: 6283: 6247: 6221: 6201: 6175: 6155: 6120: 6094: 6061: 6032: 6012: 5992: 5939: 5896: 5856: 5829: 5802: 5767: 5747: 5724: 5704: 5613: 5580: 5545: 5513: 5480: 5452: 5424: 5391: 5371: 5339: 5310: 5282: 5254: 5226: 5182: 5160: 5131: 5027: 5005: 4982: 4962: 4937: 4890: 4866: 4844: 4817: 4797: 4773: 4748: 4723: 4703: 4683: 4663: 4643: 4623: 4598: 4578: 4554: 4527: 4495: 4459: 4415: 4395: 4360: 4340: 4316: 4296: 4264: 4225: 4196: 4176: 4154: 4134: 4098: 4063: 4039: 4007: 3984: 3960: 3928: 3908: 3888: 3856: 3827: 3807: 3781: 3761: 3741: 3709: 3683: 3659: 3639: 3615: 3583: 3559: 3533: 3507: 3487: 3461: 3432: 3406: 3386: 3364: 3340: 3303: 3283: 3257: 3224: 3188: 3162: 3135: 3099: 3076: 3040: 3014: 2985: 2953: 2927: 2896: 2876: 2850: 2816: 2790: 2754: 2722: 2702: 2682: 2610: 2577: 2546: 2520: 2494: 2470: 2444: 2408: 2376: 2347: 2321: 2295: 2263: 2234: 2198: 2137: 2093: 2072: 2044: 2024: 2014:(however, it may be possible that some other element 2000: 1976: 1950: 1929: 1908: 1887: 1866: 1846: 1822: 1801: 1781: 1761: 1741: 1708: 1682: 1656: 1636: 1615: 1594: 1574: 1545: 1522: 1498: 1478: 1458: 1438: 1418: 1398: 1369: 1335: 1315: 1295: 1275: 1255: 1229: 1204: 1180: 1160: 1131: 1105: 1079: 1059: 1025: 1005: 970: 934: 885: 839: 815: 789: 764: 744: 708: 676: 650: 621: 599: 569: 549: 529: 497: 471: 442: 420: 390: 361: 325: 295: 275: 247: 227: 203: 109: 89: 69: 45: 4310:
has exactly one element. All pairs of elements from
4128:also partially ordered. For example, suppose that 3034:; so by its very definition, a greatest element of 2840:if they are not comparable. Because preorders are 2604:is defined to mean a maximal element of the subset 7041: 7003: 6962: 6942: 6913: 6884: 6855: 6829: 6803: 6768: 6748: 6721: 6656: 6626: 6606: 6573: 6553: 6520: 6497: 6461: 6421: 6388: 6365: 6332: 6312: 6289: 6253: 6233: 6207: 6187: 6161: 6132: 6106: 6076: 6047: 6018: 5998: 5965: 5925: 5882: 5842: 5815: 5779: 5753: 5733: 5710: 5634: 5595: 5563: 5531: 5495: 5463: 5435: 5400: 5377: 5357: 5325: 5297: 5269: 5241: 5212: 5168: 5139: 5036: 5013: 4991: 4968: 4943: 4920: 4872: 4852: 4823: 4803: 4779: 4754: 4732: 4709: 4689: 4669: 4649: 4629: 4607: 4584: 4560: 4533: 4510: 4477: 4433: 4401: 4381: 4346: 4322: 4302: 4282: 4246: 4208: 4182: 4162: 4140: 4116: 4084: 4045: 4025: 3993: 3966: 3946: 3914: 3894: 3874: 3836: 3813: 3793: 3767: 3747: 3727: 3695: 3665: 3645: 3621: 3601: 3565: 3545: 3519: 3493: 3473: 3447: 3418: 3392: 3372: 3346: 3318: 3289: 3269: 3239: 3206: 3174: 3144: 3117: 3085: 3058: 3026: 3000: 2971: 2939: 2902: 2882: 2862: 2828: 2802: 2772: 2740: 2708: 2688: 2625: 2595: 2561: 2532: 2506: 2476: 2456: 2426: 2391: 2362: 2333: 2301: 2275: 2249: 2216: 2173: 2099: 2078: 2050: 2030: 2006: 1982: 1962: 1935: 1914: 1893: 1872: 1852: 1828: 1807: 1787: 1767: 1747: 1723: 1694: 1668: 1642: 1621: 1600: 1580: 1560: 1531: 1504: 1484: 1464: 1444: 1424: 1404: 1384: 1353: 1321: 1301: 1281: 1261: 1241: 1213: 1186: 1166: 1146: 1117: 1091: 1065: 1043: 1011: 985: 952: 906: 857: 821: 795: 770: 750: 726: 691: 662: 633: 605: 581: 555: 535: 512: 483: 454: 426: 402: 376: 343: 304: 281: 253: 233: 209: 169: 95: 75: 51: 778:exists and is unique then this element is called 2668:. Similar conclusions hold for least elements. 2131:In the above divisibility order, the red subset 3629:would, in particular, have to be comparable to 3358:(distinct) elements and define a partial order 3129:required to be comparable to every element in 8: 7036: 7024: 5352: 5340: 5207: 5183: 4915: 4897: 2168: 2144: 289:that is smaller than every other element of 241:that is greater than every other element of 164: 116: 4697:and moreover, any other maximal element of 4548:If it exists, then the greatest element of 523:By switching the side of the relation that 5057:always has a greatest and a least element. 63:of 60, partially ordered by the relation " 7016: 6984: 6955: 6926: 6897: 6868: 6842: 6816: 6790: 6761: 6740: 6734: 6707: 6688: 6675: 6669: 6645: 6639: 6619: 6592: 6586: 6566: 6545: 6533: 6510: 6480: 6474: 6453: 6440: 6434: 6407: 6401: 6378: 6351: 6345: 6325: 6302: 6282: 6246: 6220: 6200: 6174: 6154: 6119: 6093: 6060: 6031: 6011: 5991: 5957: 5944: 5938: 5914: 5901: 5895: 5874: 5861: 5855: 5834: 5828: 5807: 5801: 5766: 5746: 5723: 5703: 5612: 5587: 5583: 5582: 5579: 5544: 5512: 5487: 5483: 5482: 5479: 5454: 5453: 5451: 5426: 5425: 5423: 5390: 5370: 5338: 5309: 5281: 5253: 5225: 5181: 5165: 5161: 5159: 5133: 5132: 5130: 5026: 5010: 5006: 5004: 4981: 4961: 4936: 4889: 4865: 4849: 4845: 4843: 4816: 4796: 4772: 4747: 4722: 4702: 4682: 4662: 4642: 4622: 4597: 4577: 4553: 4526: 4494: 4458: 4414: 4394: 4359: 4339: 4315: 4295: 4263: 4224: 4195: 4175: 4159: 4155: 4153: 4148:is a non-empty set and define a preorder 4133: 4097: 4062: 4038: 4006: 3983: 3959: 3927: 3922:will necessarily be a maximal element of 3907: 3887: 3855: 3826: 3806: 3780: 3760: 3740: 3708: 3682: 3658: 3638: 3614: 3582: 3558: 3532: 3506: 3486: 3460: 3431: 3405: 3385: 3369: 3365: 3363: 3339: 3302: 3282: 3256: 3223: 3187: 3161: 3134: 3098: 3075: 3039: 3013: 2984: 2952: 2926: 2895: 2875: 2849: 2815: 2789: 2753: 2721: 2701: 2681: 2609: 2576: 2545: 2519: 2493: 2469: 2443: 2407: 2375: 2346: 2320: 2311:if the following condition is satisfied: 2294: 2262: 2233: 2197: 2136: 2092: 2071: 2043: 2023: 1999: 1975: 1949: 1928: 1907: 1886: 1865: 1845: 1821: 1800: 1780: 1760: 1740: 1707: 1681: 1655: 1635: 1614: 1593: 1573: 1544: 1521: 1497: 1477: 1457: 1437: 1417: 1397: 1368: 1334: 1314: 1294: 1274: 1254: 1228: 1203: 1179: 1159: 1130: 1104: 1078: 1058: 1024: 1004: 969: 933: 921:Greatest elements are closely related to 884: 838: 814: 788: 763: 743: 707: 675: 649: 620: 598: 568: 548: 528: 496: 470: 441: 419: 389: 360: 324: 294: 274: 246: 226: 202: 108: 88: 68: 44: 5653:Essential supremum and essential infimum 3735:because there is exactly one element in 170:{\displaystyle S=\{1,2,3,5,6,10,15,30\}} 7082:Davey, B. A.; Priestley, H. A. (2002). 7062: 5691: 3882:does happen to have a greatest element 3156:statement. The defining condition for 2066:for there to exist some upper bound of 1392:In particular, any greatest element of 3277:(so elements that are incomparable to 3066:must, in particular, be comparable to 2038:). In particular, it is possible for 5761:itself, so the second condition "and 7: 4290:is partially ordered if and only if 563:is obtained. Explicitly, an element 6614:contradicts the incomparability of 6505:The latter must be incomparable to 6373:must exist that is incomparable to 29:Element ≥ (or ≤) each other element 7085:Introduction to Lattices and Order 5607:, this set has upper bounds, e.g. 917:Relationship to upper/lower bounds 181:, respectively, of the red subset. 25: 5668:Limit superior and limit inferior 1944:(which can happen if and only if 5926:{\displaystyle g_{2}\leq g_{1},} 5596:{\displaystyle \mathbb {R} ^{2}} 5496:{\displaystyle \mathbb {R} ^{2}} 3673:has no such element). However, 2662:. Together they are called the 6320:but no greatest element. Since 5883:{\displaystyle g_{1}\leq g_{2}} 4409:has at least two elements then 1154:Importantly, an upper bound of 269:, that is, it is an element of 6811:be a maximal element, for any 6462:{\displaystyle s_{1}<s_{2}} 6297:has just one maximal element, 6277:Assume for contradiction that 5626: 5614: 5526: 5514: 5125:has no upper bound in the set 4472: 4460: 4428: 4416: 4373: 4361: 4277: 4265: 4111: 4099: 4076: 4064: 4020: 4008: 3941: 3929: 3869: 3857: 3722: 3710: 3596: 3584: 3201: 3189: 3112: 3100: 3053: 3041: 2966: 2954: 2735: 2723: 2590: 2578: 2421: 2409: 2211: 2199: 1902:that is not an upper bound of 1348: 1336: 1038: 1026: 947: 935: 898: 886: 852: 840: 721: 709: 338: 326: 1: 6729:can be found (such that each 5464:{\displaystyle \mathbb {R} ,} 5436:{\displaystyle \mathbb {R} ,} 4835:, it has one maximal element. 4717:will necessarily be equal to 4677:is also a maximal element of 4511:{\displaystyle S\subseteq P.} 2250:{\displaystyle S\subseteq P.} 2174:{\displaystyle S=\{1,2,3,4\}} 1539:In the particular case where 1198:required to be an element of 986:{\displaystyle S\subseteq P.} 377:{\displaystyle S\subseteq P.} 6429:cannot be maximal, that is, 5663:Maximal and minimal elements 5658:Initial and terminal objects 5642:It has no least upper bound. 5140:{\displaystyle \mathbb {R} } 3821:itself (which of course, is 2650:, to avoid confusion with a 179:maximal and minimal elements 6607:{\displaystyle s_{2}\leq m} 6498:{\displaystyle s_{2}\in S.} 6169:is a maximal element, then 6006:is the greatest element of 5966:{\displaystyle g_{1}=g_{2}} 5564:{\displaystyle 0<x<1} 5213:{\displaystyle \{a,b,c,d\}} 4921:{\displaystyle S=\{1,2,4\}} 4637:is the greatest element of 3755:that is both comparable to 3577:comparable. Consequently, 3182:to be a maximal element of 1963:{\displaystyle u\not \in S} 641:and if it also satisfies: 462:and if it also satisfies: 7138: 7090:Cambridge University Press 6554:{\displaystyle m<s_{2}} 6422:{\displaystyle s_{1}\in S} 6366:{\displaystyle s_{1}\in S} 4592:that is also contained in 4382:{\displaystyle (R,\leq ).} 4085:{\displaystyle (P,\leq ).} 2921:By definition, an element 2484:if and only if there does 1412:is also an upper bound of 907:{\displaystyle (P,\leq ).} 7042:{\displaystyle S=\{a,b\}} 5169:{\displaystyle \,\leq \,} 5014:{\displaystyle \,\leq \,} 4853:{\displaystyle \,\leq \,} 4789:ascending chain condition 4478:{\displaystyle (P,\leq )} 4434:{\displaystyle (R,\leq )} 4283:{\displaystyle (R,\leq )} 4247:{\displaystyle i,j\in R.} 4163:{\displaystyle \,\leq \,} 4117:{\displaystyle (P,\leq )} 4026:{\displaystyle (P,\leq )} 3947:{\displaystyle (P,\leq )} 3875:{\displaystyle (P,\leq )} 3728:{\displaystyle (S,\leq )} 3602:{\displaystyle (S,\leq )} 3373:{\displaystyle \,\leq \,} 3207:{\displaystyle (P,\leq )} 3118:{\displaystyle (P,\leq )} 3059:{\displaystyle (P,\leq )} 2972:{\displaystyle (P,\leq )} 2947:is a greatest element of 2870:is true for all elements 2741:{\displaystyle (P,\leq )} 2596:{\displaystyle (P,\leq )} 2427:{\displaystyle (P,\leq )} 2217:{\displaystyle (P,\leq )} 1994:be a greatest element of 1755:is a greatest element of 1492:is a greatest element of 1354:{\displaystyle (P,\leq )} 1269:is a greatest element of 1044:{\displaystyle (P,\leq )} 953:{\displaystyle (P,\leq )} 858:{\displaystyle (P,\leq )} 727:{\displaystyle (P,\leq )} 344:{\displaystyle (P,\leq )} 221:(poset) is an element of 7011:were incomparable, then 7004:{\displaystyle a,b\in P} 6943:{\displaystyle s\leq m.} 6885:{\displaystyle m\leq s.} 6077:{\displaystyle s\leq g.} 5850:are both greatest, then 5326:{\displaystyle b\leq d.} 5298:{\displaystyle b\leq c,} 5270:{\displaystyle a\leq d,} 5242:{\displaystyle a\leq c,} 4838:When the restriction of 3703:is a maximal element of 3319:{\displaystyle s\leq m.} 3001:{\displaystyle s\leq g,} 2773:{\displaystyle x,y\in P} 2562:{\displaystyle s\neq m.} 2464:is a maximal element of 2392:{\displaystyle s\leq m.} 2363:{\displaystyle m\leq s,} 2062:have a greatest element 1650:is an element such that 1452:) but an upper bound of 6856:{\displaystyle s\leq m} 6188:{\displaystyle M\leq g} 6133:{\displaystyle g\neq s} 6107:{\displaystyle g\leq s} 6048:{\displaystyle s\in S,} 5780:{\displaystyle \geq m,} 5358:{\displaystyle \{a,b\}} 4831:has a greatest element 4209:{\displaystyle i\leq j} 3794:{\displaystyle \geq m,} 3546:{\displaystyle j\leq i} 3520:{\displaystyle i\leq j} 3474:{\displaystyle i\neq j} 3419:{\displaystyle i\leq j} 3270:{\displaystyle m\leq s} 3240:{\displaystyle s\in P,} 2863:{\displaystyle x\leq x} 2829:{\displaystyle y\leq x} 2803:{\displaystyle x\leq y} 2533:{\displaystyle m\leq s} 1724:{\displaystyle s\in S,} 1695:{\displaystyle s\leq u} 1385:{\displaystyle g\in S.} 1147:{\displaystyle s\in S.} 1118:{\displaystyle s\leq u} 830:is defined similarly. 692:{\displaystyle s\in S.} 663:{\displaystyle l\leq s} 513:{\displaystyle s\in S.} 484:{\displaystyle s\leq g} 7043: 7005: 6970:is a greatest element. 6964: 6944: 6915: 6886: 6857: 6831: 6830:{\displaystyle s\in S} 6805: 6804:{\displaystyle m\in S} 6770: 6750: 6723: 6658: 6657:{\displaystyle s_{1}.} 6628: 6608: 6575: 6555: 6522: 6499: 6463: 6423: 6390: 6367: 6340:is not greatest, some 6334: 6314: 6291: 6255: 6235: 6209: 6189: 6163: 6134: 6108: 6078: 6049: 6020: 6000: 5967: 5927: 5884: 5844: 5817: 5781: 5755: 5735: 5718:that is comparable to 5712: 5674:Upper and lower bounds 5636: 5635:{\displaystyle (1,0).} 5597: 5565: 5533: 5497: 5465: 5437: 5402: 5379: 5359: 5327: 5299: 5271: 5243: 5214: 5170: 5141: 5117: 5038: 5015: 4993: 4970: 4945: 4922: 4874: 4854: 4825: 4805: 4781: 4756: 4734: 4711: 4691: 4671: 4651: 4631: 4609: 4586: 4562: 4535: 4512: 4479: 4435: 4403: 4383: 4348: 4324: 4304: 4284: 4248: 4210: 4184: 4164: 4142: 4118: 4086: 4047: 4027: 3995: 3968: 3948: 3916: 3896: 3876: 3838: 3837:{\displaystyle \leq m} 3815: 3795: 3769: 3749: 3729: 3697: 3696:{\displaystyle m\in S} 3667: 3647: 3623: 3603: 3567: 3547: 3521: 3495: 3475: 3449: 3420: 3394: 3374: 3348: 3320: 3291: 3271: 3241: 3208: 3176: 3175:{\displaystyle m\in P} 3146: 3119: 3087: 3060: 3028: 3027:{\displaystyle s\in P} 3002: 2973: 2941: 2940:{\displaystyle g\in P} 2904: 2884: 2864: 2830: 2804: 2774: 2742: 2710: 2696:and a maximal element 2690: 2654:. The dual terms are 2627: 2597: 2563: 2534: 2508: 2507:{\displaystyle s\in S} 2478: 2458: 2457:{\displaystyle m\in S} 2428: 2393: 2364: 2335: 2334:{\displaystyle s\in S} 2303: 2277: 2276:{\displaystyle m\in S} 2251: 2218: 2182: 2175: 2101: 2080: 2052: 2032: 2018:a greatest element of 2008: 1984: 1964: 1937: 1916: 1895: 1874: 1854: 1830: 1809: 1789: 1769: 1749: 1725: 1696: 1670: 1669:{\displaystyle u\in S} 1644: 1623: 1602: 1582: 1562: 1533: 1506: 1486: 1466: 1446: 1426: 1406: 1386: 1355: 1323: 1303: 1283: 1263: 1243: 1242:{\displaystyle g\in P} 1215: 1188: 1168: 1148: 1119: 1093: 1092:{\displaystyle u\in P} 1067: 1045: 1013: 987: 954: 908: 859: 823: 797: 772: 752: 728: 693: 664: 635: 634:{\displaystyle l\in S} 607: 583: 582:{\displaystyle l\in P} 557: 537: 514: 485: 456: 455:{\displaystyle g\in S} 428: 404: 403:{\displaystyle g\in P} 378: 345: 306: 283: 255: 235: 211: 182: 171: 97: 77: 53: 7044: 7006: 6965: 6945: 6916: 6887: 6858: 6832: 6806: 6771: 6751: 6749:{\displaystyle s_{i}} 6724: 6659: 6629: 6609: 6576: 6556: 6523: 6500: 6464: 6424: 6391: 6368: 6335: 6315: 6292: 6256: 6236: 6210: 6190: 6164: 6135: 6109: 6079: 6050: 6021: 6001: 5968: 5928: 5885: 5845: 5843:{\displaystyle g_{2}} 5818: 5816:{\displaystyle g_{1}} 5782: 5756: 5741:which is necessarily 5736: 5713: 5637: 5605:lexicographical order 5598: 5566: 5534: 5532:{\displaystyle (x,y)} 5498: 5466: 5438: 5403: 5380: 5360: 5328: 5300: 5272: 5244: 5215: 5171: 5142: 5112: 5092:completeness property 5048:Sufficient conditions 5039: 5016: 4994: 4971: 4946: 4923: 4875: 4855: 4826: 4806: 4782: 4757: 4735: 4712: 4692: 4672: 4652: 4632: 4610: 4587: 4563: 4536: 4513: 4487:partially ordered set 4480: 4436: 4404: 4389:So in particular, if 4384: 4349: 4325: 4305: 4285: 4249: 4211: 4185: 4165: 4143: 4119: 4087: 4048: 4028: 3996: 3969: 3949: 3917: 3897: 3877: 3839: 3816: 3796: 3770: 3750: 3730: 3698: 3668: 3648: 3624: 3604: 3568: 3548: 3522: 3496: 3476: 3450: 3421: 3395: 3375: 3349: 3321: 3292: 3272: 3242: 3214:can be reworded as: 3209: 3177: 3147: 3120: 3088: 3061: 3029: 3003: 2974: 2942: 2905: 2885: 2865: 2831: 2805: 2775: 2743: 2711: 2691: 2628: 2626:{\displaystyle S:=P.} 2598: 2564: 2535: 2509: 2479: 2459: 2436:partially ordered set 2429: 2394: 2365: 2336: 2304: 2278: 2252: 2219: 2176: 2130: 2102: 2081: 2053: 2033: 2009: 1985: 1965: 1938: 1917: 1896: 1875: 1860:is an upper bound of 1855: 1831: 1810: 1795:is an upper bound of 1790: 1770: 1750: 1726: 1697: 1671: 1645: 1624: 1603: 1588:is an upper bound of 1583: 1563: 1534: 1507: 1487: 1467: 1447: 1427: 1407: 1387: 1356: 1324: 1309:is an upper bound of 1304: 1284: 1264: 1244: 1216: 1189: 1169: 1149: 1120: 1094: 1068: 1046: 1014: 988: 955: 909: 860: 824: 798: 773: 753: 736:partially ordered set 729: 694: 665: 636: 608: 584: 558: 538: 515: 486: 457: 429: 405: 379: 346: 307: 284: 256: 236: 219:partially ordered set 212: 172: 98: 78: 54: 35: 7015: 6983: 6954: 6925: 6914:{\displaystyle m=s,} 6896: 6867: 6841: 6815: 6789: 6760: 6733: 6668: 6638: 6618: 6585: 6581:'s maximality while 6565: 6532: 6509: 6473: 6433: 6400: 6377: 6344: 6324: 6301: 6281: 6245: 6219: 6199: 6173: 6153: 6118: 6092: 6059: 6030: 6010: 5990: 5937: 5894: 5854: 5827: 5800: 5765: 5745: 5722: 5702: 5611: 5578: 5543: 5511: 5478: 5450: 5422: 5389: 5369: 5337: 5308: 5280: 5252: 5224: 5180: 5158: 5129: 5094:of a partial order. 5088:complemented lattice 5025: 5021:is a total order on 5003: 4980: 4960: 4935: 4888: 4864: 4842: 4815: 4795: 4771: 4746: 4721: 4701: 4681: 4661: 4641: 4621: 4596: 4576: 4552: 4525: 4493: 4457: 4413: 4393: 4358: 4338: 4314: 4294: 4262: 4223: 4194: 4174: 4152: 4132: 4096: 4061: 4037: 4005: 3982: 3974:being comparable to 3958: 3926: 3906: 3886: 3854: 3825: 3805: 3779: 3759: 3739: 3707: 3681: 3657: 3637: 3613: 3581: 3557: 3531: 3505: 3485: 3459: 3448:{\displaystyle i=j.} 3430: 3404: 3384: 3362: 3354:is a set containing 3338: 3301: 3281: 3255: 3222: 3186: 3160: 3133: 3097: 3074: 3038: 3012: 2983: 2951: 2925: 2894: 2874: 2848: 2814: 2788: 2752: 2720: 2716:of a preordered set 2700: 2680: 2608: 2575: 2544: 2518: 2492: 2468: 2442: 2406: 2374: 2345: 2319: 2293: 2261: 2232: 2196: 2135: 2091: 2070: 2042: 2022: 1998: 1974: 1948: 1927: 1906: 1885: 1864: 1844: 1820: 1799: 1779: 1759: 1739: 1733:completely identical 1706: 1680: 1654: 1634: 1613: 1592: 1572: 1561:{\displaystyle P=S,} 1543: 1520: 1496: 1476: 1456: 1436: 1416: 1396: 1367: 1333: 1313: 1293: 1273: 1253: 1227: 1202: 1178: 1158: 1129: 1103: 1077: 1057: 1023: 1003: 968: 932: 883: 837: 813: 787: 783:greatest element of 762: 742: 706: 674: 648: 619: 597: 567: 547: 527: 495: 469: 440: 418: 414:greatest element of 388: 359: 323: 293: 273: 245: 225: 201: 107: 87: 67: 43: 6921:so it follows that 6756:is incomparable to 6469:must hold for some 6273:see above. — 6234:{\displaystyle M=g} 6215:is greatest, hence 5571:has no upper bound. 5507:, the set of pairs 4445:greatest elements. 4330:are comparable and 4057:maximal element of 3801:that element being 2640:totally ordered set 2571:maximal element of 1568:the definition of " 7039: 7001: 6960: 6940: 6911: 6882: 6853: 6827: 6801: 6766: 6746: 6719: 6654: 6624: 6604: 6571: 6551: 6521:{\displaystyle m,} 6518: 6495: 6459: 6419: 6389:{\displaystyle m.} 6386: 6363: 6330: 6313:{\displaystyle m,} 6310: 6287: 6251: 6231: 6205: 6185: 6159: 6130: 6104: 6074: 6045: 6016: 5996: 5963: 5923: 5880: 5840: 5813: 5777: 5751: 5734:{\displaystyle m,} 5731: 5708: 5632: 5593: 5561: 5529: 5493: 5461: 5433: 5401:{\displaystyle d,} 5398: 5375: 5355: 5323: 5295: 5267: 5239: 5210: 5166: 5137: 5118: 5037:{\displaystyle P.} 5034: 5011: 4992:{\displaystyle P,} 4989: 4966: 4941: 4918: 4870: 4850: 4821: 4801: 4777: 4752: 4733:{\displaystyle g.} 4730: 4707: 4687: 4667: 4647: 4627: 4608:{\displaystyle S.} 4605: 4582: 4558: 4531: 4508: 4475: 4431: 4399: 4379: 4344: 4320: 4300: 4280: 4244: 4206: 4190:by declaring that 4180: 4160: 4138: 4114: 4082: 4043: 4023: 3994:{\displaystyle P,} 3991: 3964: 3944: 3912: 3892: 3872: 3847:In contrast, if a 3834: 3811: 3791: 3765: 3745: 3725: 3693: 3663: 3643: 3619: 3599: 3563: 3543: 3517: 3491: 3471: 3445: 3416: 3400:by declaring that 3390: 3370: 3344: 3316: 3297:are ignored) then 3287: 3267: 3237: 3204: 3172: 3145:{\displaystyle P.} 3142: 3115: 3086:{\displaystyle P.} 3083: 3056: 3024: 2998: 2969: 2937: 2900: 2880: 2860: 2844:(which means that 2836:; they are called 2826: 2800: 2770: 2738: 2706: 2686: 2623: 2593: 2559: 2530: 2504: 2474: 2454: 2424: 2389: 2360: 2331: 2299: 2273: 2247: 2214: 2183: 2171: 2097: 2076: 2058:to simultaneously 2048: 2028: 2004: 1980: 1960: 1933: 1912: 1891: 1870: 1850: 1826: 1805: 1785: 1765: 1745: 1721: 1692: 1666: 1640: 1619: 1598: 1578: 1558: 1532:{\displaystyle S.} 1529: 1512:if and only if it 1502: 1482: 1462: 1442: 1422: 1402: 1382: 1351: 1319: 1299: 1279: 1259: 1239: 1214:{\displaystyle S.} 1211: 1184: 1164: 1144: 1115: 1089: 1063: 1041: 1009: 983: 950: 904: 855: 819: 804:. The terminology 793: 768: 748: 724: 689: 660: 631: 603: 579: 553: 533: 510: 481: 452: 424: 400: 374: 341: 305:{\displaystyle S.} 302: 279: 251: 231: 207: 183: 167: 103:". The red subset 93: 73: 49: 7099:978-0-521-78451-1 7071:topological space 6963:{\displaystyle m} 6769:{\displaystyle m} 6627:{\displaystyle m} 6574:{\displaystyle m} 6333:{\displaystyle m} 6290:{\displaystyle S} 6254:{\displaystyle M} 6208:{\displaystyle g} 6162:{\displaystyle M} 6019:{\displaystyle S} 5999:{\displaystyle g} 5754:{\displaystyle m} 5711:{\displaystyle S} 5378:{\displaystyle c} 5365:has upper bounds 5154:Let the relation 4969:{\displaystyle S} 4944:{\displaystyle S} 4873:{\displaystyle S} 4824:{\displaystyle P} 4804:{\displaystyle S} 4780:{\displaystyle P} 4755:{\displaystyle S} 4710:{\displaystyle S} 4690:{\displaystyle S} 4670:{\displaystyle g} 4650:{\displaystyle S} 4630:{\displaystyle g} 4585:{\displaystyle S} 4561:{\displaystyle S} 4541:can have at most 4534:{\displaystyle S} 4402:{\displaystyle R} 4347:{\displaystyle R} 4323:{\displaystyle R} 4303:{\displaystyle R} 4183:{\displaystyle R} 4141:{\displaystyle R} 4046:{\displaystyle g} 3967:{\displaystyle g} 3915:{\displaystyle g} 3895:{\displaystyle g} 3814:{\displaystyle m} 3768:{\displaystyle m} 3748:{\displaystyle S} 3666:{\displaystyle S} 3646:{\displaystyle S} 3622:{\displaystyle S} 3566:{\displaystyle S} 3494:{\displaystyle S} 3393:{\displaystyle S} 3347:{\displaystyle S} 3290:{\displaystyle m} 2903:{\displaystyle x} 2890:), every element 2883:{\displaystyle x} 2709:{\displaystyle m} 2689:{\displaystyle g} 2477:{\displaystyle S} 2370:then necessarily 2302:{\displaystyle S} 2117:least upper bound 2100:{\displaystyle P} 2079:{\displaystyle S} 2051:{\displaystyle S} 2031:{\displaystyle S} 2007:{\displaystyle S} 1983:{\displaystyle u} 1936:{\displaystyle S} 1915:{\displaystyle S} 1894:{\displaystyle P} 1873:{\displaystyle S} 1853:{\displaystyle u} 1829:{\displaystyle S} 1808:{\displaystyle S} 1788:{\displaystyle g} 1768:{\displaystyle S} 1748:{\displaystyle g} 1643:{\displaystyle u} 1622:{\displaystyle S} 1601:{\displaystyle S} 1581:{\displaystyle u} 1505:{\displaystyle S} 1485:{\displaystyle P} 1465:{\displaystyle S} 1445:{\displaystyle P} 1425:{\displaystyle S} 1405:{\displaystyle S} 1322:{\displaystyle S} 1302:{\displaystyle g} 1282:{\displaystyle S} 1262:{\displaystyle g} 1187:{\displaystyle P} 1167:{\displaystyle S} 1066:{\displaystyle u} 1012:{\displaystyle S} 822:{\displaystyle S} 809:least element of 796:{\displaystyle S} 771:{\displaystyle S} 751:{\displaystyle S} 606:{\displaystyle S} 593:least element of 556:{\displaystyle S} 536:{\displaystyle s} 427:{\displaystyle S} 282:{\displaystyle S} 254:{\displaystyle S} 234:{\displaystyle S} 210:{\displaystyle S} 96:{\displaystyle y} 76:{\displaystyle x} 52:{\displaystyle P} 16:(Redirected from 7129: 7103: 7088:(2nd ed.). 7074: 7067: 7050: 7048: 7046: 7045: 7040: 7010: 7008: 7007: 7002: 6977: 6971: 6969: 6967: 6966: 6961: 6950:In other words, 6949: 6947: 6946: 6941: 6920: 6918: 6917: 6912: 6891: 6889: 6888: 6883: 6862: 6860: 6859: 6854: 6836: 6834: 6833: 6828: 6810: 6808: 6807: 6802: 6783: 6777: 6775: 6773: 6772: 6767: 6755: 6753: 6752: 6747: 6745: 6744: 6728: 6726: 6725: 6720: 6712: 6711: 6693: 6692: 6680: 6679: 6663: 6661: 6660: 6655: 6650: 6649: 6633: 6631: 6630: 6625: 6613: 6611: 6610: 6605: 6597: 6596: 6580: 6578: 6577: 6572: 6560: 6558: 6557: 6552: 6550: 6549: 6527: 6525: 6524: 6519: 6504: 6502: 6501: 6496: 6485: 6484: 6468: 6466: 6465: 6460: 6458: 6457: 6445: 6444: 6428: 6426: 6425: 6420: 6412: 6411: 6395: 6393: 6392: 6387: 6372: 6370: 6369: 6364: 6356: 6355: 6339: 6337: 6336: 6331: 6319: 6317: 6316: 6311: 6296: 6294: 6293: 6288: 6268: 6262: 6260: 6258: 6257: 6252: 6240: 6238: 6237: 6232: 6214: 6212: 6211: 6206: 6194: 6192: 6191: 6186: 6168: 6166: 6165: 6160: 6147: 6141: 6139: 6137: 6136: 6131: 6113: 6111: 6110: 6105: 6088:, this renders ( 6083: 6081: 6080: 6075: 6054: 6052: 6051: 6046: 6025: 6023: 6022: 6017: 6005: 6003: 6002: 5997: 5984: 5978: 5972: 5970: 5969: 5964: 5962: 5961: 5949: 5948: 5932: 5930: 5929: 5924: 5919: 5918: 5906: 5905: 5889: 5887: 5886: 5881: 5879: 5878: 5866: 5865: 5849: 5847: 5846: 5841: 5839: 5838: 5822: 5820: 5819: 5814: 5812: 5811: 5794: 5788: 5787:" was redundant. 5786: 5784: 5783: 5778: 5760: 5758: 5757: 5752: 5740: 5738: 5737: 5732: 5717: 5715: 5714: 5709: 5696: 5641: 5639: 5638: 5633: 5602: 5600: 5599: 5594: 5592: 5591: 5586: 5570: 5568: 5567: 5562: 5538: 5536: 5535: 5530: 5502: 5500: 5499: 5494: 5492: 5491: 5486: 5470: 5468: 5467: 5462: 5457: 5442: 5440: 5439: 5434: 5429: 5413:rational numbers 5407: 5405: 5404: 5399: 5384: 5382: 5381: 5376: 5364: 5362: 5361: 5356: 5332: 5330: 5329: 5324: 5304: 5302: 5301: 5296: 5276: 5274: 5273: 5268: 5248: 5246: 5245: 5240: 5219: 5217: 5216: 5211: 5175: 5173: 5172: 5167: 5146: 5144: 5143: 5138: 5136: 5043: 5041: 5040: 5035: 5020: 5018: 5017: 5012: 4998: 4996: 4995: 4990: 4975: 4973: 4972: 4967: 4950: 4948: 4947: 4942: 4927: 4925: 4924: 4919: 4879: 4877: 4876: 4871: 4859: 4857: 4856: 4851: 4830: 4828: 4827: 4822: 4810: 4808: 4807: 4802: 4786: 4784: 4783: 4778: 4761: 4759: 4758: 4753: 4739: 4737: 4736: 4731: 4716: 4714: 4713: 4708: 4696: 4694: 4693: 4688: 4676: 4674: 4673: 4668: 4656: 4654: 4653: 4648: 4636: 4634: 4633: 4628: 4614: 4612: 4611: 4606: 4591: 4589: 4588: 4583: 4567: 4565: 4564: 4559: 4540: 4538: 4537: 4532: 4517: 4515: 4514: 4509: 4484: 4482: 4481: 4476: 4453:Throughout, let 4440: 4438: 4437: 4432: 4408: 4406: 4405: 4400: 4388: 4386: 4385: 4380: 4353: 4351: 4350: 4345: 4329: 4327: 4326: 4321: 4309: 4307: 4306: 4301: 4289: 4287: 4286: 4281: 4253: 4251: 4250: 4245: 4215: 4213: 4212: 4207: 4189: 4187: 4186: 4181: 4169: 4167: 4166: 4161: 4147: 4145: 4144: 4139: 4123: 4121: 4120: 4115: 4091: 4089: 4088: 4083: 4052: 4050: 4049: 4044: 4032: 4030: 4029: 4024: 4000: 3998: 3997: 3992: 3973: 3971: 3970: 3965: 3953: 3951: 3950: 3945: 3921: 3919: 3918: 3913: 3901: 3899: 3898: 3893: 3881: 3879: 3878: 3873: 3843: 3841: 3840: 3835: 3820: 3818: 3817: 3812: 3800: 3798: 3797: 3792: 3774: 3772: 3771: 3766: 3754: 3752: 3751: 3746: 3734: 3732: 3731: 3726: 3702: 3700: 3699: 3694: 3672: 3670: 3669: 3664: 3652: 3650: 3649: 3644: 3628: 3626: 3625: 3620: 3608: 3606: 3605: 3600: 3572: 3570: 3569: 3564: 3552: 3550: 3549: 3544: 3526: 3524: 3523: 3518: 3500: 3498: 3497: 3492: 3480: 3478: 3477: 3472: 3454: 3452: 3451: 3446: 3425: 3423: 3422: 3417: 3399: 3397: 3396: 3391: 3379: 3377: 3376: 3371: 3353: 3351: 3350: 3345: 3325: 3323: 3322: 3317: 3296: 3294: 3293: 3288: 3276: 3274: 3273: 3268: 3246: 3244: 3243: 3238: 3213: 3211: 3210: 3205: 3181: 3179: 3178: 3173: 3151: 3149: 3148: 3143: 3124: 3122: 3121: 3116: 3092: 3090: 3089: 3084: 3065: 3063: 3062: 3057: 3033: 3031: 3030: 3025: 3007: 3005: 3004: 2999: 2978: 2976: 2975: 2970: 2946: 2944: 2943: 2938: 2909: 2907: 2906: 2901: 2889: 2887: 2886: 2881: 2869: 2867: 2866: 2861: 2835: 2833: 2832: 2827: 2809: 2807: 2806: 2801: 2779: 2777: 2776: 2771: 2747: 2745: 2744: 2739: 2715: 2713: 2712: 2707: 2695: 2693: 2692: 2687: 2665:absolute extrema 2660:absolute minimum 2648:absolute maximum 2632: 2630: 2629: 2624: 2602: 2600: 2599: 2594: 2568: 2566: 2565: 2560: 2539: 2537: 2536: 2531: 2513: 2511: 2510: 2505: 2483: 2481: 2480: 2475: 2463: 2461: 2460: 2455: 2433: 2431: 2430: 2425: 2398: 2396: 2395: 2390: 2369: 2367: 2366: 2361: 2340: 2338: 2337: 2332: 2308: 2306: 2305: 2300: 2283:is said to be a 2282: 2280: 2279: 2274: 2256: 2254: 2253: 2248: 2223: 2221: 2220: 2215: 2180: 2178: 2177: 2172: 2106: 2104: 2103: 2098: 2085: 2083: 2082: 2077: 2057: 2055: 2054: 2049: 2037: 2035: 2034: 2029: 2013: 2011: 2010: 2005: 1989: 1987: 1986: 1981: 1969: 1967: 1966: 1961: 1942: 1940: 1939: 1934: 1921: 1919: 1918: 1913: 1900: 1898: 1897: 1892: 1879: 1877: 1876: 1871: 1859: 1857: 1856: 1851: 1835: 1833: 1832: 1827: 1814: 1812: 1811: 1806: 1794: 1792: 1791: 1786: 1774: 1772: 1771: 1766: 1754: 1752: 1751: 1746: 1730: 1728: 1727: 1722: 1701: 1699: 1698: 1693: 1675: 1673: 1672: 1667: 1649: 1647: 1646: 1641: 1628: 1626: 1625: 1620: 1607: 1605: 1604: 1599: 1587: 1585: 1584: 1579: 1567: 1565: 1564: 1559: 1538: 1536: 1535: 1530: 1511: 1509: 1508: 1503: 1491: 1489: 1488: 1483: 1471: 1469: 1468: 1463: 1451: 1449: 1448: 1443: 1431: 1429: 1428: 1423: 1411: 1409: 1408: 1403: 1391: 1389: 1388: 1383: 1360: 1358: 1357: 1352: 1328: 1326: 1325: 1320: 1308: 1306: 1305: 1300: 1288: 1286: 1285: 1280: 1268: 1266: 1265: 1260: 1248: 1246: 1245: 1240: 1220: 1218: 1217: 1212: 1193: 1191: 1190: 1185: 1173: 1171: 1170: 1165: 1153: 1151: 1150: 1145: 1124: 1122: 1121: 1116: 1098: 1096: 1095: 1090: 1072: 1070: 1069: 1064: 1050: 1048: 1047: 1042: 1018: 1016: 1015: 1010: 992: 990: 989: 984: 959: 957: 956: 951: 913: 911: 910: 905: 864: 862: 861: 856: 828: 826: 825: 820: 802: 800: 799: 794: 777: 775: 774: 769: 757: 755: 754: 749: 733: 731: 730: 725: 698: 696: 695: 690: 669: 667: 666: 661: 640: 638: 637: 632: 612: 610: 609: 604: 588: 586: 585: 580: 562: 560: 559: 554: 542: 540: 539: 534: 519: 517: 516: 511: 490: 488: 487: 482: 461: 459: 458: 453: 433: 431: 430: 425: 409: 407: 406: 401: 383: 381: 380: 375: 350: 348: 347: 342: 311: 309: 308: 303: 288: 286: 285: 280: 260: 258: 257: 252: 240: 238: 237: 232: 216: 214: 213: 208: 195:greatest element 189:, especially in 176: 174: 173: 168: 102: 100: 99: 94: 82: 80: 79: 74: 58: 56: 55: 50: 21: 7137: 7136: 7132: 7131: 7130: 7128: 7127: 7126: 7107: 7106: 7100: 7081: 7078: 7077: 7068: 7064: 7059: 7054: 7053: 7013: 7012: 6981: 6980: 6978: 6974: 6952: 6951: 6923: 6922: 6894: 6893: 6865: 6864: 6839: 6838: 6813: 6812: 6787: 6786: 6784: 6780: 6758: 6757: 6736: 6731: 6730: 6703: 6684: 6671: 6666: 6665: 6641: 6636: 6635: 6616: 6615: 6588: 6583: 6582: 6563: 6562: 6541: 6530: 6529: 6507: 6506: 6476: 6471: 6470: 6449: 6436: 6431: 6430: 6403: 6398: 6397: 6375: 6374: 6347: 6342: 6341: 6322: 6321: 6299: 6298: 6279: 6278: 6269: 6265: 6243: 6242: 6217: 6216: 6197: 6196: 6171: 6170: 6151: 6150: 6148: 6144: 6116: 6115: 6090: 6089: 6057: 6056: 6028: 6027: 6008: 6007: 5988: 5987: 5985: 5981: 5953: 5940: 5935: 5934: 5910: 5897: 5892: 5891: 5870: 5857: 5852: 5851: 5830: 5825: 5824: 5803: 5798: 5797: 5795: 5791: 5763: 5762: 5743: 5742: 5720: 5719: 5700: 5699: 5697: 5693: 5688: 5670:(infimum limit) 5649: 5609: 5608: 5581: 5576: 5575: 5541: 5540: 5509: 5508: 5481: 5476: 5475: 5448: 5447: 5420: 5419: 5387: 5386: 5367: 5366: 5335: 5334: 5306: 5305: 5278: 5277: 5250: 5249: 5222: 5221: 5178: 5177: 5156: 5155: 5127: 5126: 5107: 5064: 5050: 5023: 5022: 5001: 5000: 4978: 4977: 4958: 4957: 4933: 4932: 4886: 4885: 4862: 4861: 4840: 4839: 4833:if, and only if 4813: 4812: 4793: 4792: 4769: 4768: 4744: 4743: 4719: 4718: 4699: 4698: 4679: 4678: 4659: 4658: 4639: 4638: 4619: 4618: 4594: 4593: 4574: 4573: 4550: 4549: 4523: 4522: 4491: 4490: 4455: 4454: 4451: 4411: 4410: 4391: 4390: 4356: 4355: 4336: 4335: 4312: 4311: 4292: 4291: 4260: 4259: 4258:preordered set 4221: 4220: 4192: 4191: 4172: 4171: 4150: 4149: 4130: 4129: 4094: 4093: 4059: 4058: 4035: 4034: 4003: 4002: 3980: 3979: 3956: 3955: 3924: 3923: 3904: 3903: 3884: 3883: 3852: 3851: 3823: 3822: 3803: 3802: 3777: 3776: 3757: 3756: 3737: 3736: 3705: 3704: 3679: 3678: 3655: 3654: 3635: 3634: 3611: 3610: 3579: 3578: 3555: 3554: 3529: 3528: 3503: 3502: 3483: 3482: 3457: 3456: 3428: 3427: 3426:if and only if 3402: 3401: 3382: 3381: 3360: 3359: 3336: 3335: 3299: 3298: 3279: 3278: 3253: 3252: 3220: 3219: 3184: 3183: 3158: 3157: 3131: 3130: 3095: 3094: 3072: 3071: 3036: 3035: 3010: 3009: 2981: 2980: 2949: 2948: 2923: 2922: 2892: 2891: 2872: 2871: 2846: 2845: 2812: 2811: 2786: 2785: 2780:are said to be 2750: 2749: 2718: 2717: 2698: 2697: 2678: 2677: 2606: 2605: 2573: 2572: 2542: 2541: 2516: 2515: 2490: 2489: 2466: 2465: 2440: 2439: 2404: 2403: 2372: 2371: 2343: 2342: 2317: 2316: 2291: 2290: 2287:maximal element 2259: 2258: 2230: 2229: 2194: 2193: 2187:maximal element 2133: 2132: 2125: 2089: 2088: 2068: 2067: 2040: 2039: 2020: 2019: 1996: 1995: 1972: 1971: 1946: 1945: 1925: 1924: 1904: 1903: 1883: 1882: 1862: 1861: 1842: 1841: 1818: 1817: 1797: 1796: 1777: 1776: 1775:if and only if 1757: 1756: 1737: 1736: 1704: 1703: 1678: 1677: 1652: 1651: 1632: 1631: 1611: 1610: 1590: 1589: 1570: 1569: 1541: 1540: 1518: 1517: 1494: 1493: 1474: 1473: 1454: 1453: 1434: 1433: 1414: 1413: 1394: 1393: 1365: 1364: 1331: 1330: 1311: 1310: 1291: 1290: 1289:if and only if 1271: 1270: 1251: 1250: 1225: 1224: 1200: 1199: 1176: 1175: 1156: 1155: 1127: 1126: 1101: 1100: 1075: 1074: 1055: 1054: 1021: 1020: 1001: 1000: 966: 965: 930: 929: 919: 881: 880: 835: 834: 811: 810: 785: 784: 760: 759: 740: 739: 704: 703: 672: 671: 646: 645: 617: 616: 595: 594: 565: 564: 545: 544: 525: 524: 493: 492: 467: 466: 438: 437: 416: 415: 386: 385: 357: 356: 321: 320: 317: 291: 290: 271: 270: 243: 242: 223: 222: 199: 198: 105: 104: 85: 84: 65: 64: 41: 40: 30: 23: 22: 15: 12: 11: 5: 7135: 7133: 7125: 7124: 7119: 7109: 7108: 7105: 7104: 7098: 7076: 7075: 7061: 7060: 7058: 7055: 7052: 7051: 7038: 7035: 7032: 7029: 7026: 7023: 7020: 7000: 6997: 6994: 6991: 6988: 6972: 6959: 6939: 6936: 6933: 6930: 6910: 6907: 6904: 6901: 6881: 6878: 6875: 6872: 6852: 6849: 6846: 6826: 6823: 6820: 6800: 6797: 6794: 6778: 6765: 6743: 6739: 6718: 6715: 6710: 6706: 6702: 6699: 6696: 6691: 6687: 6683: 6678: 6674: 6653: 6648: 6644: 6623: 6603: 6600: 6595: 6591: 6570: 6548: 6544: 6540: 6537: 6517: 6514: 6494: 6491: 6488: 6483: 6479: 6456: 6452: 6448: 6443: 6439: 6418: 6415: 6410: 6406: 6385: 6382: 6362: 6359: 6354: 6350: 6329: 6309: 6306: 6286: 6263: 6250: 6230: 6227: 6224: 6204: 6184: 6181: 6178: 6158: 6142: 6129: 6126: 6123: 6103: 6100: 6097: 6073: 6070: 6067: 6064: 6044: 6041: 6038: 6035: 6015: 5995: 5979: 5960: 5956: 5952: 5947: 5943: 5922: 5917: 5913: 5909: 5904: 5900: 5877: 5873: 5869: 5864: 5860: 5837: 5833: 5810: 5806: 5789: 5776: 5773: 5770: 5750: 5730: 5727: 5707: 5690: 5689: 5687: 5684: 5683: 5682: 5676: 5671: 5665: 5660: 5655: 5648: 5645: 5644: 5643: 5631: 5628: 5625: 5622: 5619: 5616: 5590: 5585: 5572: 5560: 5557: 5554: 5551: 5548: 5528: 5525: 5522: 5519: 5516: 5490: 5485: 5472: 5460: 5456: 5444: 5432: 5428: 5416: 5409: 5397: 5394: 5374: 5354: 5351: 5348: 5345: 5342: 5322: 5319: 5316: 5313: 5294: 5291: 5288: 5285: 5266: 5263: 5260: 5257: 5238: 5235: 5232: 5229: 5209: 5206: 5203: 5200: 5197: 5194: 5191: 5188: 5185: 5164: 5152: 5135: 5121:The subset of 5106: 5103: 5063: 5062:Top and bottom 5060: 5059: 5058: 5049: 5046: 5045: 5044: 5033: 5030: 5009: 4988: 4985: 4965: 4954: 4953: 4952: 4940: 4917: 4914: 4911: 4908: 4905: 4902: 4899: 4896: 4893: 4869: 4848: 4836: 4820: 4800: 4787:satisfies the 4776: 4765: 4764: 4763: 4751: 4742:Thus if a set 4729: 4726: 4706: 4686: 4666: 4646: 4626: 4615: 4604: 4601: 4581: 4557: 4546: 4544: 4530: 4507: 4504: 4501: 4498: 4474: 4471: 4468: 4465: 4462: 4450: 4447: 4444: 4430: 4427: 4424: 4421: 4418: 4398: 4378: 4375: 4372: 4369: 4366: 4363: 4343: 4333: 4319: 4299: 4279: 4276: 4273: 4270: 4267: 4243: 4240: 4237: 4234: 4231: 4228: 4219:holds for all 4218: 4205: 4202: 4199: 4179: 4158: 4137: 4127: 4113: 4110: 4107: 4104: 4101: 4081: 4078: 4075: 4072: 4069: 4066: 4056: 4042: 4022: 4019: 4016: 4013: 4010: 3990: 3987: 3977: 3963: 3943: 3940: 3937: 3934: 3931: 3911: 3891: 3871: 3868: 3865: 3862: 3859: 3849:preordered set 3833: 3830: 3810: 3790: 3787: 3784: 3764: 3744: 3724: 3721: 3718: 3715: 3712: 3692: 3689: 3686: 3676: 3662: 3642: 3632: 3618: 3598: 3595: 3592: 3589: 3586: 3576: 3562: 3542: 3539: 3536: 3516: 3513: 3510: 3490: 3470: 3467: 3464: 3444: 3441: 3438: 3435: 3415: 3412: 3409: 3389: 3368: 3357: 3343: 3332: 3331: 3327: 3326: 3315: 3312: 3309: 3306: 3286: 3266: 3263: 3260: 3250: 3236: 3233: 3230: 3227: 3203: 3200: 3197: 3194: 3191: 3171: 3168: 3165: 3155: 3141: 3138: 3128: 3114: 3111: 3108: 3105: 3102: 3082: 3079: 3069: 3055: 3052: 3049: 3046: 3043: 3023: 3020: 3017: 2997: 2994: 2991: 2988: 2968: 2965: 2962: 2959: 2956: 2936: 2933: 2930: 2913: 2899: 2879: 2859: 2856: 2853: 2839: 2825: 2822: 2819: 2799: 2796: 2793: 2783: 2769: 2766: 2763: 2760: 2757: 2737: 2734: 2731: 2728: 2725: 2705: 2685: 2674: 2673: 2622: 2619: 2616: 2613: 2603: 2592: 2589: 2586: 2583: 2580: 2558: 2555: 2552: 2549: 2529: 2526: 2523: 2503: 2500: 2497: 2487: 2473: 2453: 2450: 2447: 2423: 2420: 2417: 2414: 2411: 2400: 2399: 2388: 2385: 2382: 2379: 2359: 2356: 2353: 2350: 2330: 2327: 2324: 2309: 2298: 2272: 2269: 2266: 2246: 2243: 2240: 2237: 2226:preordered set 2213: 2210: 2207: 2204: 2201: 2170: 2167: 2164: 2161: 2158: 2155: 2152: 2149: 2146: 2143: 2140: 2124: 2121: 2107: 2096: 2075: 2065: 2061: 2047: 2027: 2017: 2003: 1993: 1979: 1959: 1956: 1953: 1943: 1932: 1911: 1901: 1890: 1869: 1849: 1836: 1825: 1804: 1784: 1764: 1744: 1734: 1720: 1717: 1714: 1711: 1691: 1688: 1685: 1665: 1662: 1659: 1639: 1629: 1618: 1597: 1577: 1557: 1554: 1551: 1548: 1528: 1525: 1515: 1501: 1481: 1461: 1441: 1421: 1401: 1381: 1378: 1375: 1372: 1363: 1350: 1347: 1344: 1341: 1338: 1318: 1298: 1278: 1258: 1238: 1235: 1232: 1210: 1207: 1197: 1183: 1163: 1143: 1140: 1137: 1134: 1114: 1111: 1108: 1088: 1085: 1082: 1062: 1053:is an element 1051: 1040: 1037: 1034: 1031: 1028: 1008: 982: 979: 976: 973: 962:preordered set 949: 946: 943: 940: 937: 918: 915: 903: 900: 897: 894: 891: 888: 878: 871: 854: 851: 848: 845: 842: 818: 808: 792: 782: 767: 747: 723: 720: 717: 714: 711: 700: 699: 688: 685: 682: 679: 659: 656: 653: 630: 627: 624: 614: 602: 589:is said to be 578: 575: 572: 552: 532: 521: 520: 509: 506: 503: 500: 480: 477: 474: 451: 448: 445: 435: 423: 410:is said to be 399: 396: 393: 373: 370: 367: 364: 353:preordered set 340: 337: 334: 331: 328: 316: 313: 301: 298: 278: 250: 230: 206: 166: 163: 160: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 127: 124: 121: 118: 115: 112: 92: 72: 48: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7134: 7123: 7120: 7118: 7115: 7114: 7112: 7101: 7095: 7091: 7087: 7086: 7080: 7079: 7072: 7066: 7063: 7056: 7033: 7030: 7027: 7021: 7018: 6998: 6995: 6992: 6989: 6986: 6976: 6973: 6957: 6937: 6934: 6931: 6928: 6908: 6905: 6902: 6899: 6879: 6876: 6873: 6870: 6850: 6847: 6844: 6824: 6821: 6818: 6798: 6795: 6792: 6782: 6779: 6763: 6741: 6737: 6716: 6713: 6708: 6704: 6700: 6697: 6694: 6689: 6685: 6681: 6676: 6672: 6651: 6646: 6642: 6621: 6601: 6598: 6593: 6589: 6568: 6546: 6542: 6538: 6535: 6515: 6512: 6492: 6489: 6486: 6481: 6477: 6454: 6450: 6446: 6441: 6437: 6416: 6413: 6408: 6404: 6383: 6380: 6360: 6357: 6352: 6348: 6327: 6307: 6304: 6284: 6276: 6272: 6267: 6264: 6248: 6228: 6225: 6222: 6202: 6182: 6179: 6176: 6156: 6146: 6143: 6140:) impossible. 6127: 6124: 6121: 6101: 6098: 6095: 6087: 6071: 6068: 6065: 6062: 6042: 6039: 6036: 6033: 6013: 5993: 5983: 5980: 5976: 5958: 5954: 5950: 5945: 5941: 5920: 5915: 5911: 5907: 5902: 5898: 5875: 5871: 5867: 5862: 5858: 5835: 5831: 5808: 5804: 5793: 5790: 5774: 5771: 5768: 5748: 5728: 5725: 5705: 5695: 5692: 5685: 5680: 5677: 5675: 5672: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5650: 5646: 5629: 5623: 5620: 5617: 5606: 5588: 5573: 5558: 5555: 5552: 5549: 5546: 5523: 5520: 5517: 5506: 5505:product order 5488: 5473: 5458: 5445: 5430: 5417: 5414: 5410: 5395: 5392: 5372: 5349: 5346: 5343: 5320: 5317: 5314: 5311: 5292: 5289: 5286: 5283: 5264: 5261: 5258: 5255: 5236: 5233: 5230: 5227: 5204: 5201: 5198: 5195: 5192: 5189: 5186: 5162: 5153: 5150: 5124: 5120: 5119: 5115: 5114:Hasse diagram 5111: 5104: 5102: 5100: 5095: 5093: 5089: 5085: 5084:bounded poset 5081: 5077: 5073: 5069: 5061: 5056: 5052: 5051: 5047: 5031: 5028: 5007: 4986: 4983: 4963: 4955: 4938: 4930: 4929: 4912: 4909: 4906: 4903: 4900: 4894: 4891: 4883: 4867: 4846: 4837: 4834: 4818: 4798: 4790: 4774: 4766: 4749: 4741: 4740: 4727: 4724: 4704: 4684: 4664: 4644: 4624: 4616: 4602: 4599: 4579: 4571: 4555: 4547: 4542: 4528: 4520: 4519: 4518: 4505: 4502: 4499: 4496: 4488: 4469: 4466: 4463: 4448: 4446: 4442: 4441:has multiple 4425: 4422: 4419: 4396: 4376: 4370: 4367: 4364: 4341: 4331: 4317: 4297: 4274: 4271: 4268: 4257: 4241: 4238: 4235: 4232: 4229: 4226: 4216: 4203: 4200: 4197: 4177: 4156: 4135: 4125: 4108: 4105: 4102: 4079: 4073: 4070: 4067: 4054: 4040: 4017: 4014: 4011: 3988: 3985: 3975: 3961: 3938: 3935: 3932: 3909: 3889: 3866: 3863: 3860: 3850: 3845: 3831: 3828: 3808: 3788: 3785: 3782: 3762: 3742: 3719: 3716: 3713: 3690: 3687: 3684: 3674: 3660: 3640: 3630: 3616: 3593: 3590: 3587: 3574: 3560: 3540: 3537: 3534: 3514: 3511: 3508: 3501:then neither 3488: 3468: 3465: 3462: 3442: 3439: 3436: 3433: 3413: 3410: 3407: 3387: 3366: 3355: 3341: 3334:Suppose that 3329: 3328: 3313: 3310: 3307: 3304: 3284: 3264: 3261: 3258: 3251: 3248: 3234: 3231: 3228: 3225: 3217: 3216: 3215: 3198: 3195: 3192: 3169: 3166: 3163: 3153: 3139: 3136: 3126: 3109: 3106: 3103: 3080: 3077: 3067: 3050: 3047: 3044: 3021: 3018: 3015: 2995: 2992: 2989: 2986: 2963: 2960: 2957: 2934: 2931: 2928: 2919: 2917: 2911: 2897: 2877: 2857: 2854: 2851: 2843: 2837: 2823: 2820: 2817: 2797: 2794: 2791: 2781: 2767: 2764: 2761: 2758: 2755: 2732: 2729: 2726: 2703: 2683: 2671: 2670: 2669: 2667: 2666: 2661: 2657: 2653: 2652:local maximum 2649: 2645: 2641: 2636: 2633: 2620: 2617: 2614: 2611: 2587: 2584: 2581: 2570: 2556: 2553: 2550: 2547: 2527: 2524: 2521: 2501: 2498: 2495: 2485: 2471: 2451: 2448: 2445: 2437: 2418: 2415: 2412: 2386: 2383: 2380: 2377: 2357: 2354: 2351: 2348: 2328: 2325: 2322: 2314: 2313: 2312: 2310: 2296: 2288: 2285: 2270: 2267: 2264: 2244: 2241: 2238: 2235: 2227: 2208: 2205: 2202: 2190: 2188: 2165: 2162: 2159: 2156: 2153: 2150: 2147: 2141: 2138: 2129: 2122: 2120: 2118: 2114: 2109: 2094: 2086: 2073: 2063: 2059: 2045: 2025: 2015: 2001: 1991: 1977: 1957: 1954: 1951: 1930: 1922: 1909: 1888: 1880: 1867: 1847: 1838: 1823: 1815: 1802: 1782: 1762: 1742: 1732: 1718: 1715: 1712: 1709: 1689: 1686: 1683: 1663: 1660: 1657: 1637: 1616: 1608: 1595: 1575: 1555: 1552: 1549: 1546: 1526: 1523: 1513: 1499: 1479: 1459: 1439: 1419: 1399: 1379: 1376: 1373: 1370: 1361: 1345: 1342: 1339: 1316: 1296: 1276: 1256: 1236: 1233: 1230: 1221: 1208: 1205: 1195: 1181: 1161: 1141: 1138: 1135: 1132: 1112: 1109: 1106: 1086: 1083: 1080: 1060: 1052: 1035: 1032: 1029: 1006: 998: 995: 980: 977: 974: 971: 963: 944: 941: 938: 926: 924: 916: 914: 901: 895: 892: 889: 877: 873: 870: 866: 849: 846: 843: 831: 829: 816: 806: 803: 790: 780: 765: 745: 737: 718: 715: 712: 686: 683: 680: 677: 657: 654: 651: 644: 643: 642: 628: 625: 622: 613: 600: 590: 576: 573: 570: 550: 530: 507: 504: 501: 498: 478: 475: 472: 465: 464: 463: 449: 446: 443: 434: 421: 411: 397: 394: 391: 371: 368: 365: 362: 354: 335: 332: 329: 314: 312: 299: 296: 276: 268: 264: 263:least element 248: 228: 220: 204: 196: 192: 188: 180: 161: 158: 155: 152: 149: 146: 143: 140: 137: 134: 131: 128: 125: 122: 119: 113: 110: 90: 70: 62: 46: 38: 37:Hasse diagram 34: 27: 19: 18:Least element 7122:Superlatives 7117:Order theory 7084: 7065: 6975: 6781: 6561:contradicts 6274: 6270: 6266: 6145: 6086:antisymmetry 5982: 5975:antisymmetry 5792: 5694: 5220:be given by 5149:real numbers 5116:of example 2 5099:order theory 5096: 5083: 5079: 5075: 5071: 5067: 5065: 4452: 3846: 3356:at least two 3333: 3247: 2920: 2838:incomparable 2675: 2663: 2659: 2655: 2647: 2643: 2637: 2634: 2401: 2284: 2191: 2184: 2113:real numbers 2110: 1839: 1222: 994: 927: 923:upper bounds 920: 875: 868: 832: 805: 779: 701: 592: 522: 413: 318: 262: 197:of a subset 194: 191:order theory 184: 26: 6528:too, since 6261:is maximal. 4882:total order 4791:, a subset 4570:upper bound 4334:element of 3978:element of 3633:element of 3070:element in 2257:An element 1630:" becomes: 997:upper bound 384:An element 315:Definitions 265:is defined 261:. The term 187:mathematics 39:of the set 7111:Categories 7057:References 5933:and hence 5679:Well-order 4449:Properties 3481:belong to 3008:for every 2782:comparable 2514:such that 2488:exist any 2341:satisfies 1073:such that 734:is also a 6996:∈ 6932:≤ 6874:≤ 6848:≤ 6822:∈ 6796:∈ 6717:⋯ 6698:⋯ 6599:≤ 6487:∈ 6414:∈ 6358:∈ 6180:≤ 6125:≠ 6099:≤ 6066:≤ 6037:∈ 5908:≤ 5868:≤ 5769:≥ 5603:with the 5503:with the 5315:≤ 5287:≤ 5259:≤ 5231:≤ 5163:≤ 5053:A finite 5008:≤ 4847:≤ 4500:⊆ 4470:≤ 4426:≤ 4371:≤ 4275:≤ 4236:∈ 4201:≤ 4157:≤ 4109:≤ 4074:≤ 4018:≤ 3939:≤ 3867:≤ 3829:≤ 3783:≥ 3720:≤ 3688:∈ 3594:≤ 3538:≤ 3512:≤ 3466:≠ 3411:≤ 3367:≤ 3308:≤ 3262:≤ 3229:∈ 3199:≤ 3167:∈ 3110:≤ 3051:≤ 3019:∈ 2990:≤ 2964:≤ 2932:∈ 2855:≤ 2842:reflexive 2821:≤ 2795:≤ 2765:∈ 2733:≤ 2588:≤ 2551:≠ 2525:≤ 2499:∈ 2449:∈ 2419:≤ 2381:≤ 2352:≤ 2326:∈ 2315:whenever 2268:∈ 2239:⊆ 2209:≤ 1731:which is 1713:∈ 1687:≤ 1661:∈ 1374:∈ 1346:≤ 1234:∈ 1136:∈ 1110:≤ 1084:∈ 1036:≤ 975:⊆ 945:≤ 896:≤ 850:≤ 719:≤ 681:∈ 655:≤ 626:∈ 574:∈ 502:∈ 476:≤ 447:∈ 395:∈ 366:⊆ 336:≤ 6271:Only if: 5647:See also 5333:The set 5123:integers 5105:Examples 5078:(0) and 5074:(⊤), or 5070:(⊥) and 4489:and let 4443:distinct 4256:directed 3677:element 3218:For all 2916:directed 2912:distinct 2228:and let 1955:∉ 1702:for all 1125:for all 964:and let 670:for all 491:for all 355:and let 83:divides 61:divisors 6837:either 5411:In the 4053:is the 2656:minimum 2644:maximum 1970:) then 1514:belongs 872:(resp. 7096:  6396:Hence 6241:since 6195:since 5068:bottom 4568:is an 4521:A set 4217:always 876:bottom 267:dually 193:, the 6055:then 5686:Notes 5539:with 5055:chain 4999:then 4880:is a 4657:then 4485:be a 4332:every 3976:every 3902:then 3675:every 3631:every 3068:every 2638:In a 2438:then 2434:is a 2224:be a 1249:then 1099:and 960:be a 879:) of 738:then 351:be a 217:of a 7094:ISBN 6785:Let 6714:< 6701:< 6695:< 6682:< 6634:and 6539:< 6447:< 6114:and 6026:and 5890:and 5823:and 5556:< 5550:< 5385:and 5080:unit 5076:zero 4254:The 4055:only 3775:and 3653:but 3573:are 3527:nor 3125:are 2658:and 2540:and 2192:Let 1990:can 1676:and 1432:(in 928:Let 319:Let 6979:If 6863:or 6275:If: 6149:If 6084:By 5986:If 5973:by 5796:If 5574:In 5474:In 5446:In 5418:In 5176:on 5147:of 5072:top 4976:of 4860:to 4811:of 4767:If 4617:If 4572:of 4543:one 4170:on 4126:not 4124:is 4001:if 3844:). 3455:If 3380:on 3127:not 2979:if 2810:or 2784:if 2486:not 2402:If 2289:of 2108:. 2087:in 2064:and 2060:not 1992:not 1923:in 1881:in 1840:If 1837:. 1816:in 1609:in 1516:to 1472:in 1362:and 1329:in 1223:If 1196:not 1194:is 1174:in 1019:in 999:of 993:An 925:. 869:top 833:If 807:the 781:the 702:If 615:if 436:if 185:In 59:of 7113:: 7092:. 5101:. 3575:in 3249:IF 3154:if 2615::= 2569:A 2016:is 874:a 867:a 591:a 412:a 162:30 156:15 150:10 7102:. 7073:. 7037:} 7034:b 7031:, 7028:a 7025:{ 7022:= 7019:S 6999:P 6993:b 6990:, 6987:a 6958:m 6938:. 6935:m 6929:s 6909:, 6906:s 6903:= 6900:m 6880:. 6877:s 6871:m 6851:m 6845:s 6825:S 6819:s 6799:S 6793:m 6764:m 6742:i 6738:s 6709:n 6705:s 6690:2 6686:s 6677:1 6673:s 6652:. 6647:1 6643:s 6622:m 6602:m 6594:2 6590:s 6569:m 6547:2 6543:s 6536:m 6516:, 6513:m 6493:. 6490:S 6482:2 6478:s 6455:2 6451:s 6442:1 6438:s 6417:S 6409:1 6405:s 6384:. 6381:m 6361:S 6353:1 6349:s 6328:m 6308:, 6305:m 6285:S 6249:M 6229:g 6226:= 6223:M 6203:g 6183:g 6177:M 6157:M 6128:s 6122:g 6102:s 6096:g 6072:. 6069:g 6063:s 6043:, 6040:S 6034:s 6014:S 5994:g 5977:. 5959:2 5955:g 5951:= 5946:1 5942:g 5921:, 5916:1 5912:g 5903:2 5899:g 5876:2 5872:g 5863:1 5859:g 5836:2 5832:g 5809:1 5805:g 5775:, 5772:m 5749:m 5729:, 5726:m 5706:S 5630:. 5627:) 5624:0 5621:, 5618:1 5615:( 5589:2 5584:R 5559:1 5553:x 5547:0 5527:) 5524:y 5521:, 5518:x 5515:( 5489:2 5484:R 5459:, 5455:R 5431:, 5427:R 5396:, 5393:d 5373:c 5353:} 5350:b 5347:, 5344:a 5341:{ 5321:. 5318:d 5312:b 5293:, 5290:c 5284:b 5265:, 5262:d 5256:a 5237:, 5234:c 5228:a 5208:} 5205:d 5202:, 5199:c 5196:, 5193:b 5190:, 5187:a 5184:{ 5151:. 5134:R 5032:. 5029:P 4987:, 4984:P 4964:S 4939:S 4916:} 4913:4 4910:, 4907:2 4904:, 4901:1 4898:{ 4895:= 4892:S 4884:( 4868:S 4819:P 4799:S 4775:P 4750:S 4728:. 4725:g 4705:S 4685:S 4665:g 4645:S 4625:g 4603:. 4600:S 4580:S 4556:S 4529:S 4506:. 4503:P 4497:S 4473:) 4467:, 4464:P 4461:( 4429:) 4423:, 4420:R 4417:( 4397:R 4377:. 4374:) 4368:, 4365:R 4362:( 4342:R 4318:R 4298:R 4278:) 4272:, 4269:R 4266:( 4242:. 4239:R 4233:j 4230:, 4227:i 4204:j 4198:i 4178:R 4136:R 4112:) 4106:, 4103:P 4100:( 4080:. 4077:) 4071:, 4068:P 4065:( 4041:g 4021:) 4015:, 4012:P 4009:( 3989:, 3986:P 3962:g 3942:) 3936:, 3933:P 3930:( 3910:g 3890:g 3870:) 3864:, 3861:P 3858:( 3832:m 3809:m 3789:, 3786:m 3763:m 3743:S 3723:) 3717:, 3714:S 3711:( 3691:S 3685:m 3661:S 3641:S 3617:S 3597:) 3591:, 3588:S 3585:( 3561:S 3541:i 3535:j 3515:j 3509:i 3489:S 3469:j 3463:i 3443:. 3440:j 3437:= 3434:i 3414:j 3408:i 3388:S 3342:S 3314:. 3311:m 3305:s 3285:m 3265:s 3259:m 3235:, 3232:P 3226:s 3202:) 3196:, 3193:P 3190:( 3170:P 3164:m 3140:. 3137:P 3113:) 3107:, 3104:P 3101:( 3081:. 3078:P 3054:) 3048:, 3045:P 3042:( 3022:P 3016:s 2996:, 2993:g 2987:s 2967:) 2961:, 2958:P 2955:( 2935:P 2929:g 2898:x 2878:x 2858:x 2852:x 2824:x 2818:y 2798:y 2792:x 2768:P 2762:y 2759:, 2756:x 2736:) 2730:, 2727:P 2724:( 2704:m 2684:g 2621:. 2618:P 2612:S 2591:) 2585:, 2582:P 2579:( 2557:. 2554:m 2548:s 2528:s 2522:m 2502:S 2496:s 2472:S 2452:S 2446:m 2422:) 2416:, 2413:P 2410:( 2387:. 2384:m 2378:s 2358:, 2355:s 2349:m 2329:S 2323:s 2297:S 2271:S 2265:m 2245:. 2242:P 2236:S 2212:) 2206:, 2203:P 2200:( 2169:} 2166:4 2163:, 2160:3 2157:, 2154:2 2151:, 2148:1 2145:{ 2142:= 2139:S 2095:P 2074:S 2046:S 2026:S 2002:S 1978:u 1958:S 1952:u 1931:S 1910:S 1889:P 1868:S 1848:u 1824:S 1803:S 1783:g 1763:S 1743:g 1719:, 1716:S 1710:s 1690:u 1684:s 1664:S 1658:u 1638:u 1617:S 1596:S 1576:u 1556:, 1553:S 1550:= 1547:P 1527:. 1524:S 1500:S 1480:P 1460:S 1440:P 1420:S 1400:S 1380:. 1377:S 1371:g 1349:) 1343:, 1340:P 1337:( 1317:S 1297:g 1277:S 1257:g 1237:P 1231:g 1209:. 1206:S 1182:P 1162:S 1142:. 1139:S 1133:s 1113:u 1107:s 1087:P 1081:u 1061:u 1039:) 1033:, 1030:P 1027:( 1007:S 981:. 978:P 972:S 948:) 942:, 939:P 936:( 902:. 899:) 893:, 890:P 887:( 853:) 847:, 844:P 841:( 817:S 791:S 766:S 746:S 722:) 716:, 713:P 710:( 687:. 684:S 678:s 658:s 652:l 629:S 623:l 601:S 577:P 571:l 551:S 531:s 508:. 505:S 499:s 479:g 473:s 450:S 444:g 422:S 398:P 392:g 372:. 369:P 363:S 339:) 333:, 330:P 327:( 300:. 297:S 277:S 249:S 229:S 205:S 165:} 159:, 153:, 147:, 144:6 141:, 138:5 135:, 132:3 129:, 126:2 123:, 120:1 117:{ 114:= 111:S 91:y 71:x 47:P 20:)

Index

Least element

Hasse diagram
divisors
maximal and minimal elements
mathematics
order theory
partially ordered set
dually
preordered set
partially ordered set
upper bounds
preordered set
upper bound
real numbers
least upper bound

maximal element
preordered set
maximal element
partially ordered set
totally ordered set
local maximum
absolute extrema
reflexive
directed
preordered set
directed
partially ordered set
upper bound

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.