Knowledge (XXG)

Levi-Civita parallelogramoid

Source đź“ť

472: 17: 550:
Levi-Civita, Tullio (1917), "Nozione di parallelismo in una varietĂ  qualunque e conseguente specificazione geometrica della curvatura riemanniana" [Notion of parallelism in any variety and consequent geometric specification of the Riemannian curvature],
458: 333: 602: 553: 189:), any two points can be joined by a geodesic. The idea of sliding the one straight line along the other gives way to the more general notion of 248: 669: 659: 197:, or that the construction is taking place in a suitable neighborhood, the steps to producing a Levi-Civita parallelogram are: 664: 598:"Nozione di parallelismo in una varietĂ  qualunque e conseguente specificazione geometrica della curvatura riemanniana" 600:[Notion of parallelism in any variety and consequent geometric specification of the Riemannian curvature], 182: 300: 29: 453:{\displaystyle |A'B'|^{2}=|AB|^{2}+{\frac {8}{3}}\langle R(X,Y)X,Y\rangle +{\text{higher order terms}}} 572:
In the article by Levi-Civita (1917, p. 199), the segments AB and A'B ′ are called (respectively) the
170: 463:
where terms of higher order in the length of the sides of the parallelogram have been suppressed.
627: 526: 506: 221: 190: 186: 97: 65: 53: 530: 476: 174: 619: 611: 214: 623: 574: 471: 49: 638: 225: 194: 653: 631: 45: 37: 41: 533:, which approximates Levi-Civita parallelogramoids by approximate parallelograms. 25: 16: 287:
The length of this last geodesic constructed connecting the remaining points
210: 80:′ will not in general be parallel to or the same length as the side 178: 85: 615: 597: 209:′. These geodesics are assumed to be parameterized by their 470: 15: 295:′ may in general be different than the length of the base 213:
in the case of a Riemannian manifold, or to carry a choice of
177:, the notion of "straight line" generalizes to that of a 72:) and the same length as each other, but the fourth side 131:
constant, and remaining in the same plane as the points
336: 452: 173:or more generally any manifold equipped with an 64:′ of a parallelogramoid are parallel (via 307:′ be the exponential of a tangent vector 283:Quantifying the difference from a parallelogram 193:. Thus, assuming either that the manifold is 8: 603:Rendiconti del Circolo Matematico di Palermo 554:Rendiconti del Circolo Matematico di Palermo 439: 409: 303:. To state the relationship precisely, let 217:in the general case of an affine connection. 146:Label the endpoint of the resulting segment 505:are an approximation to first order of the 56:. Like a parallelogram, two opposite sides 251:. Label the endpoint of this geodesic by 445: 399: 390: 385: 373: 364: 359: 337: 335: 44:whose construction generalizes that of a 542: 299:. This difference is measured by the 7: 582:of the parallelogramoid in question. 319:the exponential of a tangent vector 104:Start with a straight line segment 52:. It is named for its discoverer, 529:can be discretely approximated by 108:and another straight line segment 14: 255:′, and the geodesic itself 243:The resulting tangent vector at 84:although it will be straight (a 645:, Math Sci Press, Massachusetts 150:′ so that the segment is 100:can be constructed as follows: 427: 415: 386: 374: 360: 338: 20:Levi-Civita's parallelogramoid 1: 643:Geometry of Riemannian Spaces 247:generates a geodesic via the 169:In a curved space, such as a 596:Levi-Civita, Tullio (1917), 34:Levi-Civita parallelogramoid 686: 127:, keeping the angle with 301:Riemann curvature tensor 270:′ by the geodesic 187:normal coordinate system 670:Types of quadrilaterals 660:Curvature (mathematics) 523: 467:Discrete approximation 454: 201:Start with a geodesic 21: 665:Differential geometry 474: 455: 205:and another geodesic 185:(such as a ball in a 157:Draw a straight line 30:differential geometry 19: 334: 262:Connect the points 171:Riemannian manifold 96:A parallelogram in 616:10.1007/BF03014898 527:Parallel transport 524: 507:parallel transport 450: 447:higher order terms 222:parallel transport 191:parallel transport 115:Slide the segment 98:Euclidean geometry 66:parallel transport 54:Tullio Levi-Civita 22: 448: 407: 181:. In a suitable 175:affine connection 677: 646: 634: 583: 570: 564: 562: 547: 522:along the curve. 479:. The segments 459: 457: 456: 451: 449: 446: 408: 400: 395: 394: 389: 377: 369: 368: 363: 357: 349: 341: 215:affine parameter 123:to the endpoint 685: 684: 680: 679: 678: 676: 675: 674: 650: 649: 637: 595: 592: 587: 586: 571: 567: 549: 548: 544: 539: 531:Schild's ladder 521: 515: 504: 498: 491: 485: 477:Schild's ladder 469: 384: 358: 350: 342: 332: 331: 285: 249:exponential map 94: 50:Euclidean plane 12: 11: 5: 683: 681: 673: 672: 667: 662: 652: 651: 648: 647: 635: 606:(in Italian), 591: 588: 585: 584: 565: 557:(in Italian), 541: 540: 538: 535: 519: 513: 502: 496: 489: 483: 468: 465: 461: 460: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 414: 411: 406: 403: 398: 393: 388: 383: 380: 376: 372: 367: 362: 356: 353: 348: 345: 340: 284: 281: 280: 279: 260: 241: 226:tangent vector 218: 167: 166: 155: 144: 119:′ along 113: 93: 90: 13: 10: 9: 6: 4: 3: 2: 682: 671: 668: 666: 663: 661: 658: 657: 655: 644: 640: 636: 633: 629: 625: 621: 617: 613: 609: 605: 604: 599: 594: 593: 589: 581: 577: 576: 569: 566: 560: 556: 555: 546: 543: 536: 534: 532: 528: 518: 512: 508: 501: 495: 488: 482: 478: 475:Two rungs of 473: 466: 464: 442: 436: 433: 430: 424: 421: 418: 412: 404: 401: 396: 391: 381: 378: 370: 365: 354: 351: 346: 343: 330: 329: 328: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 282: 277: 273: 269: 265: 261: 258: 254: 250: 246: 242: 239: 235: 232:′ from 231: 227: 223: 219: 216: 212: 208: 204: 200: 199: 198: 196: 192: 188: 184: 180: 176: 172: 164: 160: 156: 153: 149: 145: 142: 139:′, and 138: 134: 130: 126: 122: 118: 114: 111: 107: 103: 102: 101: 99: 91: 89: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 46:parallelogram 43: 39: 38:quadrilateral 35: 31: 27: 18: 642: 639:Cartan, Élie 607: 601: 579: 573: 568: 558: 552: 545: 525: 516: 510: 499: 493: 486: 480: 462: 324: 320: 316: 312: 308: 304: 296: 292: 288: 286: 275: 271: 267: 266:′ and 263: 256: 252: 244: 237: 233: 229: 206: 202: 183:neighborhood 168: 162: 158: 151: 147: 140: 136: 132: 128: 124: 120: 116: 109: 105: 95: 92:Construction 81: 77: 73: 69: 61: 60:′ and 57: 42:curved space 33: 26:mathematical 23: 610:: 173–205, 68:along side 654:Categories 624:46.1125.02 590:References 632:122088291 580:suprabase 440:⟩ 410:⟨ 220:"Slide" ( 211:arclength 28:field of 641:(1983), 355:′ 347:′ 278:′. 259:′. 195:complete 179:geodesic 165:′. 154:′. 112:′. 86:geodesic 327:. Then 291:′ 274:′ 161:′ 76:′ 48:in the 24:In the 630:  622:  315:, and 224:) the 32:, the 628:S2CID 561:: 199 537:Notes 40:in a 36:is a 578:and 575:base 492:and 620:JFM 612:doi 509:of 323:at 311:at 236:to 228:of 88:). 82:AB, 656:: 626:, 618:, 608:42 559:42 317:AB 305:AA 297:AB 257:BB 230:AA 207:AA 203:AB 152:BB 135:, 129:AB 121:AB 117:AA 110:AA 106:AB 70:AB 62:BB 58:AA 614:: 563:. 520:0 517:X 514:0 511:A 503:2 500:X 497:2 494:A 490:1 487:X 484:1 481:A 443:+ 437:Y 434:, 431:X 428:) 425:Y 422:, 419:X 416:( 413:R 405:3 402:8 397:+ 392:2 387:| 382:B 379:A 375:| 371:= 366:2 361:| 352:B 344:A 339:| 325:A 321:Y 313:A 309:X 293:B 289:A 276:B 272:A 268:B 264:A 253:B 245:B 240:. 238:B 234:A 163:B 159:A 148:B 143:. 141:B 137:A 133:A 125:B 78:B 74:A

Index


mathematical
differential geometry
quadrilateral
curved space
parallelogram
Euclidean plane
Tullio Levi-Civita
parallel transport
geodesic
Euclidean geometry
Riemannian manifold
affine connection
geodesic
neighborhood
normal coordinate system
parallel transport
complete
arclength
affine parameter
parallel transport
tangent vector
exponential map
Riemann curvature tensor

Schild's ladder
parallel transport
Parallel transport
Schild's ladder
Rendiconti del Circolo Matematico di Palermo

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑