Knowledge

Levitated optomechanics

Source đź“ť

1009: 970: 75: 722: 25: 503: 1209:
Belenchia, Alessio; Carlesso, Matteo; Bayraktar, Ă–mer; Dequal, Daniele; Derkach, Ivan; Gasbarri, Giulio; Herr, Waldemar; Li, Ying Lia; Rademacher, Markus; Sidhu, Jasminder; Oi, Daniel K. L.; Seidel, Stephan T.; Kaltenbaek, Rainer; Marquardt, Christoph; Ulbricht, Hendrik (2022-03-11).
717:{\displaystyle {\ddot {q}}(t)=-\underbrace {\Gamma _{CM}{\dot {q}}(t)} _{\text{damping}}-\underbrace {\omega _{q}^{2}q(t)} _{\text{restoring force}}+\underbrace {\frac {\sqrt {2\pi S_{ff}}}{M}} _{\text{coupling}}+\underbrace {u_{fb}(t)} _{\text{feedback}}} 137:, the Q-factor of a system is often limited by its suspension, which usually demands filigree structures. Nevertheless, the maximally achievable Q-factor usually correlates with the system's size, requiring large systems for achieving high Q-factors. 140:
Particle levitation in external fields can alleviate this constraint. This is one of the reasons why the field of levitated optomechanics has become attractive for research on the foundations in physics and for high-precision applications.
876:). Since that mechanism provides damping, which cools down the mechanical motion, without the introduction of fluctuations, it is referred to as “cold damping”. The first experiment employing this type of cooling was done in 1977 by 299: 792:
Such quantum states are interesting starting conditions for preparing non-Gaussian quantum states, quantum enhanced sensing, matter-wave interferometry or the realization of entanglement in many-particle systems.
957: to get a signal with twice the frequency of the particle's oscillation. This way the stiffness of the trap increases when the particle moves out of the trap and decreases when the particle is moving back. 955: 874: 468: 105:. Through the use of levitation, it is possible to decouple the particle's mechanical motion exceptionally well from the environment. This in turn enables the study of high-mass 368: 412: 754: 206: 43: 174: 488: 756: is the total damping rate, which has usually two dominant contributions: collisions with atoms or molecules of the background gas and photon 211: 61: 786: 806:
The idea of feedback cooling is to apply a position and/or velocity dependent force on the particle in a way which produces a
110: 1326: 778: 894: 816: 1331: 421: 129:
in the regime of quantum physics or for sensing applications, low damping of the oscillator's motion and thus high
1052:
Rademacher, Markus; Konopik, Michael; Debiossac, Maxime; Grass, David; Lutz, Eric; Kiesel, Nikolai (2022-02-15).
98: 1303: 881: 813:
One way to achieve that is by adding a feedback term, which is proportional to the particle's position (
781:
is the superior approximation and the quantization of the energy levels becomes apparent. The QHO has a
312: 1211: 1267:
Ashkin, A.; Dziedzic, J. M. (1977-02-15). "Feedback stabilization of optically levitated particles".
1120: 373: 774: 415: 102: 729: 1249: 1179: 1160: 1132: 1101: 1065: 302: 94: 90: 182: 1284: 1241: 1152: 1093: 1085: 807: 764: 495: 891:
Instead of applying a linear feedback signal, one can also combine position and velocity via
785:
of lowest energy where both position and velocity have a minimal variance, determined by the
159: 1276: 1231: 1223: 1191: 1142: 1075: 885: 79: 1053: 106: 473: 177: 154: 134: 114: 74: 1008: 969: 1320: 1253: 1164: 1105: 877: 491: 306: 1080: 782: 1227: 1195: 1054:"Nonequilibrium Control of Thermal and Mechanical Changes in a Levitated System" 770:
The external feedback is usually used to cool and control the particle motion.
757: 150: 126: 1288: 1245: 1156: 1089: 1097: 1147: 1121:"Quantum sensing with nanoparticles for gravimetry: when bigger is better" 294:{\displaystyle {\vec {F}}_{grad}=-\alpha {\vec {\nabla }}{\vec {E}}^{2}/2} 1236: 130: 93:
which deals with the mechanical motion of mesoscopic particles which are
777:
holds true until one reaches the regime of quantum mechanics, where the
1280: 1137: 1070: 760:, which becomes dominant below pressures on the order of 10 mbar. 73: 1304:"Dynamics of optically levitated nanoparticles in high vacuum" 1119:
Rademacher, Markus; Millen, James; Li, Ying Lia (2020-11-26).
1003: 964: 763:
The coupling term allows to model any coupling to an external
18: 16:
Field of physics relating to optics and quantum mechanics)
117:
and provides the basis for precise sensing applications.
1019: 980: 494:, active external feedback and coupling results in the 39: 897: 819: 732: 506: 476: 424: 376: 315: 214: 185: 162: 1178:Imboden, Matthias; Mohanty, Pritiraj (2014-01-20). 34:
may be too technical for most readers to understand
949: 868: 748: 716: 482: 462: 406: 362: 309:, the force can be approximated to first order by 293: 200: 168: 490: is the particle's mass. Including passive 950:{\displaystyle u_{fb}\propto q(t){\dot {q}}(t)} 1180:"Dissipation in nanoelectromechanical systems" 869:{\displaystyle u_{fb}(t)\propto {\dot {q}}(t)} 463:{\displaystyle \omega _{q}={\sqrt {k_{q}/M}}} 8: 802:Parametric feedback cooling and cold damping 401: 383: 1235: 1146: 1136: 1079: 1069: 927: 926: 902: 896: 884:for his pioneering work on trapping with 846: 845: 824: 818: 737: 731: 708: 684: 677: 667: 648: 634: 624: 600: 595: 588: 578: 552: 551: 542: 535: 508: 507: 505: 475: 450: 444: 438: 429: 423: 375: 351: 320: 314: 283: 277: 266: 265: 253: 252: 228: 217: 216: 213: 187: 186: 184: 161: 62:Learn how and when to remove this message 46:, without removing the technical details. 1044: 44:make it understandable to non-experts 7: 82:, illuminated by a green laser beam 1000:Coherent scattering cavity cooling 734: 539: 363:{\displaystyle F_{grad,q}=-k_{q}q} 255: 14: 301:. When a particle is trapped and 78:A silica nanoparticle trapped in 1007: 968: 961:Cavity-enhanced Sisyphus cooling 787:Heisenberg uncertainty principle 23: 208:is given by the gradient force 1081:10.1103/PhysRevLett.128.070601 944: 938: 923: 917: 863: 857: 839: 833: 699: 693: 615: 609: 569: 563: 525: 519: 407:{\displaystyle q\in \{x,y,z\}} 271: 258: 222: 192: 1: 1228:10.1016/j.physrep.2021.11.004 1196:10.1016/j.physrep.2013.09.003 1125:Advanced Optical Technologies 775:classical harmonic oscillator 749:{\displaystyle \Gamma _{CM}} 779:quantum harmonic oscillator 133:are desirable. In nano and 125:In order to use mechanical 1348: 1212:"Quantum physics in space" 201:{\displaystyle {\vec {E}}} 149:The interaction between a 880:, who received the 2018 1269:Applied Physics Letters 1058:Physical Review Letters 773:The approximation of a 169:{\displaystyle \alpha } 87:Levitated optomechanics 1016:This section is empty. 977:This section is empty. 951: 882:Nobel Prize in Physics 870: 808:negative feedback loop 750: 718: 484: 464: 408: 364: 295: 202: 170: 103:magnetically levitated 83: 1148:10.1515/aot-2020-0019 952: 871: 751: 719: 485: 465: 409: 365: 296: 203: 171: 77: 895: 817: 730: 504: 474: 422: 374: 313: 212: 183: 160: 605: 416:harmonic oscillator 307:Gaussian laser beam 303:optically levitated 111:out-of-equilibrium- 1327:Mesoscopic physics 947: 866: 797:Methods of cooling 746: 714: 713: 706: 672: 665: 629: 622: 591: 583: 576: 496:Langevin equations 480: 460: 404: 360: 305:in the focus of a 291: 198: 166: 91:mesoscopic physics 84: 1332:Quantum mechanics 1036: 1035: 997: 996: 935: 854: 711: 678: 676: 670: 661: 657: 635: 633: 627: 589: 587: 581: 560: 536: 534: 516: 483:{\displaystyle M} 458: 274: 261: 225: 195: 72: 71: 64: 1339: 1311: 1310: 1308: 1299: 1293: 1292: 1264: 1258: 1257: 1239: 1206: 1200: 1199: 1175: 1169: 1168: 1150: 1140: 1116: 1110: 1109: 1083: 1073: 1049: 1031: 1028: 1018:You can help by 1011: 1004: 992: 989: 979:You can help by 972: 965: 956: 954: 953: 948: 937: 936: 928: 910: 909: 886:optical tweezers 875: 873: 872: 867: 856: 855: 847: 832: 831: 755: 753: 752: 747: 745: 744: 723: 721: 720: 715: 712: 709: 707: 702: 692: 691: 671: 668: 666: 656: 655: 637: 636: 628: 625: 623: 618: 604: 599: 582: 579: 577: 572: 562: 561: 553: 550: 549: 518: 517: 509: 489: 487: 486: 481: 469: 467: 466: 461: 459: 454: 449: 448: 439: 434: 433: 413: 411: 410: 405: 369: 367: 366: 361: 356: 355: 340: 339: 300: 298: 297: 292: 287: 282: 281: 276: 275: 267: 263: 262: 254: 242: 241: 227: 226: 218: 207: 205: 204: 199: 197: 196: 188: 175: 173: 172: 167: 80:optical tweezers 67: 60: 56: 53: 47: 27: 26: 19: 1347: 1346: 1342: 1341: 1340: 1338: 1337: 1336: 1317: 1316: 1315: 1314: 1306: 1302:Gieseler, Jan. 1301: 1300: 1296: 1281:10.1063/1.89335 1266: 1265: 1261: 1216:Physics Reports 1208: 1207: 1203: 1184:Physics Reports 1177: 1176: 1172: 1118: 1117: 1113: 1051: 1050: 1046: 1041: 1032: 1026: 1023: 1002: 993: 987: 984: 963: 898: 893: 892: 820: 815: 814: 804: 799: 733: 728: 727: 680: 679: 644: 626:restoring force 590: 538: 537: 502: 501: 472: 471: 440: 425: 420: 419: 418:with frequency 372: 371: 347: 316: 311: 310: 264: 215: 210: 209: 181: 180: 158: 157: 147: 145:Physical basics 131:quality factors 123: 107:quantum physics 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 1345: 1343: 1335: 1334: 1329: 1319: 1318: 1313: 1312: 1294: 1275:(4): 202–204. 1259: 1201: 1170: 1131:(5): 227–239. 1111: 1043: 1042: 1040: 1037: 1034: 1033: 1014: 1012: 1001: 998: 995: 994: 975: 973: 962: 959: 946: 943: 940: 934: 931: 925: 922: 919: 916: 913: 908: 905: 901: 865: 862: 859: 853: 850: 844: 841: 838: 835: 830: 827: 823: 803: 800: 798: 795: 743: 740: 736: 705: 701: 698: 695: 690: 687: 683: 675: 664: 660: 654: 651: 647: 643: 640: 632: 621: 617: 614: 611: 608: 603: 598: 594: 586: 575: 571: 568: 565: 559: 556: 548: 545: 541: 533: 530: 527: 524: 521: 515: 512: 479: 457: 453: 447: 443: 437: 432: 428: 403: 400: 397: 394: 391: 388: 385: 382: 379: 359: 354: 350: 346: 343: 338: 335: 332: 329: 326: 323: 319: 290: 286: 280: 273: 270: 260: 257: 251: 248: 245: 240: 237: 234: 231: 224: 221: 194: 191: 178:electric field 165: 155:polarizability 153:particle with 146: 143: 135:micromechanics 122: 119: 115:thermodynamics 89:is a field of 70: 69: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1344: 1333: 1330: 1328: 1325: 1324: 1322: 1305: 1298: 1295: 1290: 1286: 1282: 1278: 1274: 1270: 1263: 1260: 1255: 1251: 1247: 1243: 1238: 1237:11368/3013388 1233: 1229: 1225: 1221: 1217: 1213: 1205: 1202: 1197: 1193: 1190:(3): 89–146. 1189: 1185: 1181: 1174: 1171: 1166: 1162: 1158: 1154: 1149: 1144: 1139: 1134: 1130: 1126: 1122: 1115: 1112: 1107: 1103: 1099: 1095: 1091: 1087: 1082: 1077: 1072: 1067: 1064:(7): 070601. 1063: 1059: 1055: 1048: 1045: 1038: 1030: 1021: 1017: 1013: 1010: 1006: 1005: 999: 991: 982: 978: 974: 971: 967: 966: 960: 958: 941: 932: 929: 920: 914: 911: 906: 903: 899: 889: 887: 883: 879: 878:Arthur Ashkin 860: 851: 848: 842: 836: 828: 825: 821: 811: 809: 801: 796: 794: 790: 788: 784: 780: 776: 771: 768: 766: 761: 759: 741: 738: 724: 703: 696: 688: 685: 681: 673: 662: 658: 652: 649: 645: 641: 638: 630: 619: 612: 606: 601: 596: 592: 584: 573: 566: 557: 554: 546: 543: 531: 528: 522: 513: 510: 499: 497: 493: 477: 455: 451: 445: 441: 435: 430: 426: 417: 398: 395: 392: 389: 386: 380: 377: 357: 352: 348: 344: 341: 336: 333: 330: 327: 324: 321: 317: 308: 304: 288: 284: 278: 268: 249: 246: 243: 238: 235: 232: 229: 219: 189: 179: 163: 156: 152: 144: 142: 138: 136: 132: 128: 120: 118: 116: 112: 108: 104: 100: 96: 92: 88: 81: 76: 66: 63: 55: 45: 41: 35: 32:This article 30: 21: 20: 1297: 1272: 1268: 1262: 1219: 1215: 1204: 1187: 1183: 1173: 1128: 1124: 1114: 1061: 1057: 1047: 1027:January 2023 1024: 1020:adding to it 1015: 988:January 2023 985: 981:adding to it 976: 890: 812: 805: 791: 783:ground state 772: 769: 762: 725: 500: 148: 139: 124: 99:electrically 86: 85: 58: 52:January 2023 49: 33: 498:of motion: 127:oscillators 1321:Categories 1138:2005.14642 1071:2103.10898 1039:References 758:shot noise 151:dielectric 121:Motivation 1289:0003-6951 1254:236881667 1246:0370-1573 1165:219124060 1157:2192-8584 1106:232290453 1090:0031-9007 933:˙ 912:∝ 852:˙ 843:∝ 765:heat bath 735:Γ 704:⏟ 663:⏟ 642:π 620:⏟ 593:ω 585:− 574:⏟ 558:˙ 540:Γ 532:− 514:¨ 427:ω 414:, i.e. a 381:∈ 345:− 272:→ 259:→ 256:∇ 250:α 247:− 223:→ 193:→ 164:α 113:and nano- 95:optically 1222:: 1–70. 1098:35244419 710:feedback 669:coupling 470:, where 580:damping 492:damping 176:and an 38:Please 1287:  1252:  1244:  1163:  1155:  1104:  1096:  1088:  1307:(PDF) 1250:S2CID 1161:S2CID 1133:arXiv 1102:S2CID 1066:arXiv 726:Here 370:with 1285:ISSN 1242:ISSN 1153:ISSN 1094:PMID 1086:ISSN 1277:doi 1232:hdl 1224:doi 1220:951 1192:doi 1188:534 1143:doi 1076:doi 1062:128 1022:. 983:. 101:or 97:or 42:to 1323:: 1283:. 1273:30 1271:. 1248:. 1240:. 1230:. 1218:. 1214:. 1186:. 1182:. 1159:. 1151:. 1141:. 1127:. 1123:. 1100:. 1092:. 1084:. 1074:. 1060:. 1056:. 888:. 810:. 789:. 767:. 109:, 1309:. 1291:. 1279:: 1256:. 1234:: 1226:: 1198:. 1194:: 1167:. 1145:: 1135:: 1129:9 1108:. 1078:: 1068:: 1029:) 1025:( 990:) 986:( 945:) 942:t 939:( 930:q 924:) 921:t 918:( 915:q 907:b 904:f 900:u 864:) 861:t 858:( 849:q 840:) 837:t 834:( 829:b 826:f 822:u 742:M 739:C 700:) 697:t 694:( 689:b 686:f 682:u 674:+ 659:M 653:f 650:f 646:S 639:2 631:+ 616:) 613:t 610:( 607:q 602:2 597:q 570:) 567:t 564:( 555:q 547:M 544:C 529:= 526:) 523:t 520:( 511:q 478:M 456:M 452:/ 446:q 442:k 436:= 431:q 402:} 399:z 396:, 393:y 390:, 387:x 384:{ 378:q 358:q 353:q 349:k 342:= 337:q 334:, 331:d 328:a 325:r 322:g 318:F 289:2 285:/ 279:2 269:E 244:= 239:d 236:a 233:r 230:g 220:F 190:E 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message

optical tweezers
mesoscopic physics
optically
electrically
magnetically levitated
quantum physics
out-of-equilibrium-
thermodynamics
oscillators
quality factors
micromechanics
dielectric
polarizability
electric field
optically levitated
Gaussian laser beam
harmonic oscillator
damping
Langevin equations
shot noise
heat bath
classical harmonic oscillator
quantum harmonic oscillator
ground state
Heisenberg uncertainty principle
negative feedback loop

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑