Knowledge

Lie–Kolchin theorem

Source 📝

652: 515: 115: 253: 187: 797: 552: 368: 335: 587: 802: 773: 683:
Kolchin, E. R. (1948), "Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations",
598: 445: 403: 676: 671: 414: 259: 289: 522: 76: 518: 417: 60: 32: 666: 215: 792: 757: 685: 28: 121: 64: 145: 67: 204:
therefore acts through a one-dimensional representation. This is equivalent to the statement that
710: 42: 769: 702: 590: 528: 344: 311: 761: 726: 694: 557: 387: 37: 722: 730: 718: 53: 741: 440: 410: 391: 57: 786: 278: 262:
finite-dimensional representation of a connected and solvable linear algebraic group
762:"10. Nilpotent and Solvable Groups §10.2 The Lie-Kolchin Triangularization Theorem" 125: 266:
has dimension one. In fact, this is another way to state the Lie–Kolchin theorem.
517:
of absolute value one is a one-dimensional commutative (and therefore solvable)
436: 20: 737: 270: 706: 521:
over the real numbers which has a two-dimensional representation into the
768:, Graduate texts in mathematics, vol. 66, Springer, pp. 74–75, 304:
because by induction it implies that with respect to a suitable basis of
714: 698: 647:{\displaystyle {\begin{pmatrix}x&y\\-y&x\end{pmatrix}}.} 435:
is not algebraically closed, the theorem can fail. The standard
16:
Theorem in the representation theory of linear algebraic groups
510:{\displaystyle \{x+iy\in \mathbb {C} \mid x^{2}+y^{2}=1\}} 525:
SO(2) without an invariant (real) line. Here the image
607: 601: 560: 531: 448: 347: 314: 218: 148: 79: 212:
that is a common (simultaneous) eigenvector for all
742:"Theorie der Transformationsgruppen. Abhandlung II" 646: 581: 546: 509: 362: 329: 247: 181: 131:, then there is a one-dimensional linear subspace 109: 300:Sometimes the theorem is also referred to as the 8: 504: 449: 269:The result for Lie algebras was proved by 798:Representation theory of algebraic groups 602: 600: 559: 530: 492: 479: 468: 467: 447: 346: 313: 277:) and for algebraic groups was proved by 235: 234: 217: 147: 78: 746:Archiv for Mathematik og Naturvidenskab 409:The theorem applies in particular to a 282: 110:{\displaystyle \rho \colon G\to GL(V)} 302:Lie–Kolchin triangularization theorem 292:generalizes the Lie–Kolchin theorem. 7: 766:Introduction to Affine Group Schemes 274: 248:{\displaystyle \rho (g),\,\,g\in G} 386:) to a subgroup of the group T of 341:; in other words, the image group 14: 803:Theorems in representation theory 124:on a nonzero finite-dimensional 404:simultaneously triangularizable 258:It follows directly that every 541: 535: 357: 351: 324: 318: 228: 222: 182:{\displaystyle \rho (G)(L)=L.} 167: 161: 158: 152: 104: 98: 89: 1: 665:Gorbatsevich, V.V. (2001) , 672:Encyclopedia of Mathematics 819: 208:contains a nonzero vector 290:Borel fixed point theorem 547:{\displaystyle \rho (z)} 523:special orthogonal group 363:{\displaystyle \rho (G)} 330:{\displaystyle \rho (G)} 196:) has an invariant line 439:, viewed as the set of 390:matrices, the standard 33:linear algebraic groups 758:Waterhouse, William C. 648: 583: 582:{\displaystyle z=x+iy} 548: 519:linear algebraic group 511: 418:linear algebraic group 364: 331: 249: 183: 111: 61:linear algebraic group 686:Annals of Mathematics 667:"Lie-Kolchin theorem" 649: 584: 549: 512: 365: 332: 250: 184: 112: 29:representation theory 599: 558: 529: 446: 345: 312: 216: 146: 77: 65:algebraically closed 27:is a theorem in the 370:is conjugate in GL( 43:linear Lie algebras 25:Lie–Kolchin theorem 644: 635: 579: 544: 507: 360: 327: 245: 179: 107: 48:It states that if 41:is the analog for 775:978-1-4612-6217-6 689:, Second Series, 591:orthogonal matrix 296:Triangularization 279:Ellis Kolchin 810: 778: 753: 733: 679: 653: 651: 650: 645: 640: 639: 588: 586: 585: 580: 553: 551: 550: 545: 516: 514: 513: 508: 497: 496: 484: 483: 471: 402:): the image is 388:upper triangular 369: 367: 366: 361: 339:triangular shape 336: 334: 333: 328: 254: 252: 251: 246: 188: 186: 185: 180: 116: 114: 113: 108: 63:defined over an 818: 817: 813: 812: 811: 809: 808: 807: 783: 782: 781: 776: 756: 736: 699:10.2307/1969111 682: 664: 660: 634: 633: 628: 619: 618: 613: 603: 597: 596: 556: 555: 527: 526: 488: 475: 444: 443: 441:complex numbers 429: 427:Counter-example 343: 342: 310: 309: 298: 285:, p.19). 214: 213: 144: 143: 75: 74: 17: 12: 11: 5: 816: 814: 806: 805: 800: 795: 785: 784: 780: 779: 774: 754: 734: 680: 661: 659: 656: 655: 654: 643: 638: 632: 629: 627: 624: 621: 620: 617: 614: 612: 609: 608: 606: 578: 575: 572: 569: 566: 563: 543: 540: 537: 534: 506: 503: 500: 495: 491: 487: 482: 478: 474: 470: 466: 463: 460: 457: 454: 451: 428: 425: 411:Borel subgroup 392:Borel subgroup 359: 356: 353: 350: 326: 323: 320: 317: 297: 294: 271:Sophus Lie 244: 241: 238: 233: 230: 227: 224: 221: 190: 189: 178: 175: 172: 169: 166: 163: 160: 157: 154: 151: 122:representation 118: 117: 106: 103: 100: 97: 94: 91: 88: 85: 82: 15: 13: 10: 9: 6: 4: 3: 2: 815: 804: 801: 799: 796: 794: 791: 790: 788: 777: 771: 767: 763: 759: 755: 751: 747: 743: 739: 735: 732: 728: 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 687: 681: 678: 674: 673: 668: 663: 662: 657: 641: 636: 630: 625: 622: 615: 610: 604: 595: 594: 593: 592: 576: 573: 570: 567: 564: 561: 538: 532: 524: 520: 501: 498: 493: 489: 485: 480: 476: 472: 464: 461: 458: 455: 452: 442: 438: 434: 431:If the field 426: 424: 422: 419: 416: 412: 407: 405: 401: 397: 393: 389: 385: 381: 377: 373: 354: 348: 340: 321: 315: 307: 303: 295: 293: 291: 286: 284: 280: 276: 272: 267: 265: 261: 256: 242: 239: 236: 231: 225: 219: 211: 207: 203: 199: 195: 176: 173: 170: 164: 155: 149: 142: 141: 140: 138: 134: 130: 127: 123: 101: 95: 92: 86: 83: 80: 73: 72: 71: 69: 66: 62: 59: 55: 51: 46: 44: 40: 39: 38:Lie's theorem 34: 30: 26: 22: 793:Lie algebras 765: 749: 745: 690: 684: 670: 432: 430: 420: 408: 399: 395: 383: 379: 375: 371: 338: 305: 301: 299: 287: 268: 263: 257: 209: 205: 201: 197: 193: 191: 136: 132: 128: 126:vector space 119: 49: 47: 36: 24: 18: 738:Lie, Sophus 693:(1): 1–42, 437:unit circle 260:irreducible 200:, on which 192:That is, ρ( 21:mathematics 787:Categories 731:0037.18701 658:References 415:semisimple 308:the image 139:such that 760:(2012) , 752:: 152–193 707:0003-486X 677:EMS Press 623:− 533:ρ 473:∣ 465:∈ 378:) (where 349:ρ 316:ρ 240:∈ 220:ρ 150:ρ 90:→ 84:: 81:ρ 54:connected 740:(1876), 58:solvable 723:0024884 715:1969111 589:is the 281: ( 273: ( 772:  729:  721:  713:  705:  394:of GL( 382:= dim 337:has a 23:, the 711:JSTOR 413:of a 68:field 52:is a 770:ISBN 703:ISSN 288:The 283:1948 275:1876 70:and 56:and 727:Zbl 695:doi 554:of 135:of 31:of 19:In 789:: 764:, 748:, 744:, 725:, 719:MR 717:, 709:, 701:, 691:49 675:, 669:, 423:. 406:. 255:. 120:a 45:. 35:; 750:1 697:: 642:. 637:) 631:x 626:y 616:y 611:x 605:( 577:y 574:i 571:+ 568:x 565:= 562:z 542:) 539:z 536:( 505:} 502:1 499:= 494:2 490:y 486:+ 481:2 477:x 469:C 462:y 459:i 456:+ 453:x 450:{ 433:K 421:G 400:K 398:, 396:n 384:V 380:n 376:K 374:, 372:n 358:) 355:G 352:( 325:) 322:G 319:( 306:V 264:G 243:G 237:g 232:, 229:) 226:g 223:( 210:v 206:V 202:G 198:L 194:G 177:. 174:L 171:= 168:) 165:L 162:( 159:) 156:G 153:( 137:V 133:L 129:V 105:) 102:V 99:( 96:L 93:G 87:G 50:G

Index

mathematics
representation theory
linear algebraic groups
Lie's theorem
linear Lie algebras
connected
solvable
linear algebraic group
algebraically closed
field
representation
vector space
irreducible
Sophus Lie
1876
Ellis Kolchin
1948
Borel fixed point theorem
upper triangular
Borel subgroup
simultaneously triangularizable
Borel subgroup
semisimple
linear algebraic group
unit circle
complex numbers
linear algebraic group
special orthogonal group
orthogonal matrix
"Lie-Kolchin theorem"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.