Knowledge (XXG)

Linear fractional transformation

Source 📝

1470: 1361: 1016:. Then the distance between two points is computed using the generalized circle through the points and perpendicular to the boundary of the subset used for the model. This generalized circle intersects the boundary at two other points. All four points are used in the 1444:
approach in quantum mechanics and quantum field theory, the scattering of acoustic waves in media (e.g. thermoclines and submarines in oceans, etc.) and the general analysis of scattering and bound states in differential equations. Here, the
1125: 829: 1682: 1986: 997:, an expression of the complex projective line. Linear fractional transformations permute these circles on the sphere, and the corresponding finite points of the generalized circles in the complex plane. 1020:
which defines the Cayley–Klein metric. Linear fractional transformations leave cross ratio invariant, so any linear fractional transformation that leaves the unit disk or upper half-planes stable is an
1608: 1768: 957: 443: 103: 914: 605: 1449:
matrix components refer to the incoming, bound and outgoing states. Perhaps the simplest example application of linear fractional transformations occurs in the analysis of the
1356:{\displaystyle (i\exp(t),\ 1){\begin{pmatrix}a&c\\b&d\end{pmatrix}}\ =\ (ai\exp(t)+b,\ ci\exp(t)+d)\thicksim ({\frac {ai\exp(t)+b}{ci\exp(t)+d}},\ 1)} 968: 334: 993:
is either a line or a circle. When completed with the point at infinity, the generalized circles in the plane correspond to circles on the surface of the
2160: 639: 2167: 2108: 2006: 1614: 325:
Linear fractional transformations are widely used in various areas of mathematics and its applications to engineering, such as classical
2030: 2054: 2175:
Gemeinsame Behandlungsweise der elliptischen konformen, hyperbolischen konformen und parabolischen konformen Differentialgeometrie, 2
2142: 1897: 2080: 1525: 2153: 1688: 921: 2001: 2227: 1489: 1038: 2222: 2217: 2134:, volume 1, chapter 2, §15 Conformal transformations of Euclidean and Pseudo-Euclidean spaces of several dimensions, 1055:
where the linear fractional transformations are "special unitary", and for the upper half-plane the isometry group is
366: 1412:, the unstable manifold by the hyperbolic transformations, and the stable manifold by the elliptic transformations. 390: 50: 1450: 1119:
for a worked example of the fibration: in this example, the geodesics are given by the fractional linear transform
2159:
P.G. Gormley (1947) "Stereographic projection and the linear fractional group of transformations of quaternions",
877: 199: 195: 132: 1996: 1409: 1013: 176: 1799: 1064: 871: 1803: 1433: 1429: 1425: 1084: 1034: 622: 503: 2150:
Elementary Theory of a hypercomplex variable and the theory of conformal mapping in the hyperbolic plane
1816: 1454: 551: 1477: 1009: 546: 2026: 1857: 1497: 1042: 980: 867: 180: 1080: 990: 483: 303: 264: 250: 17: 2138: 2104: 2050: 1493: 1437: 1030: 608: 142: 1832:. Conformality can be confirmed by showing the generators are all conformal. The translation 2096: 2069: 1780: 1458: 1005: 381: 311: 41: 2118: 857:
does not depend on which element is selected from its equivalence class for the operation.
851:
recovers the usual expression. This linear fractional transformation is well-defined since
2186: 2135: 2114: 1405: 1108: 307: 246: 236: 207: 2189: 2093:
Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of SL(2,R)
2079:
Juan C. Cockburn, "Multidimensional Realizations of Systems with Parametric Uncertainty"
1107:
induced by the linear fractional transformation decomposes complex projective space into
2202: 2182: 1509: 1485: 1421: 1100: 1088: 994: 342: 172: 2211: 2178: 1795: 1104: 1096: 986: 964: 960: 330: 1008:
are used to represent the points. These subsets of the complex plane are provided a
2194: 2042: 1092: 1046: 1026: 338: 2174: 1095:, as they describe automorphisms of the upper half-plane under the action of the 1481: 1432:. The general procedure of combining linear fractional transformations with the 1390: 1116: 1068: 1017: 319: 33: 1469: 354: 203: 2065:
John Doyle, Andy Packard, Kemin Zhou, "Review of LFTs, LMIs, and mu", (1991)
1112: 1001: 625:. Then linear fractional transformations act on the right of an element of 253:
of the integral domain. In this case, the invertibility condition is that
1441: 1051: 1022: 326: 29:
Möbius transformation generalized to rings other than the complex numbers
824:{\displaystyle U{\begin{pmatrix}a&c\\b&d\end{pmatrix}}=U\sim U.} 232: 963:. It has been widely studied because of its numerous applications to 1884:
resulting in a conformal map. Finally, inversion is conformal since
1846:
is a change of origin and makes no difference to angle. To see that
1677:{\displaystyle \exp(y\epsilon )=1+y\epsilon ,\quad \epsilon ^{2}=0,} 1788: 1784: 2100: 384:, then a linear fractional transformation has the familiar form 1981:{\displaystyle \exp(yb)\mapsto \exp(-yb),\quad b^{2}=1,0,-1.} 1488:
as rings that express angle and "rotation". In each case the
310:. An example of such linear fractional transformation is the 2166:
A.E. Motter & M.A.F. Rosa (1998) "Hyperbolic calculus",
1468: 1033:
explicated these models they have been named after him: the
1067:
of linear fractional transformations with real entries and
2067:
Proceedings of the 30th Conference on Decision and Control
194:. Over a field, a linear fractional transformation is the 130:. In other words, a linear fractional transformation is a 1603:{\displaystyle \exp(yj)=\cosh y+j\sinh y,\quad j^{2}=+1,} 2027:"Linear fractional transformations in rings and modules" 1079:
Möbius transformations commonly appear in the theory of
2170:
8(1):109 to 28, §4 Conformal transformations, page 119.
1763:{\displaystyle \exp(yi)=\cos y+i\sin y,\quad i^{2}=-1.} 959:
of the linear fractional transformations is called the
1167: 952:{\displaystyle \operatorname {PGL} _{2}(\mathbb {Z} )} 666: 2045:(A. Shenitzer & M. Tretkoff, translators) (1971) 1900: 1691: 1617: 1528: 1420:
Linear fractional transformations are widely used in
1128: 924: 880: 642: 554: 393: 53: 353:
In general, a linear fractional transformation is a
2095:. London: Imperial College Press. p. xiv+192. 1424:to solve plant-controller relationship problems in 175:(in which case the transformation is also called a 1980: 1794:Linear fractional transformations are shown to be 1762: 1676: 1602: 1453:. Another elementary application is obtaining the 1355: 951: 908: 823: 599: 437: 97: 2130:B.A. Dubrovin, A.T. Fomenko, S.P. Novikov (1984) 1440:of general differential equations, including the 1000:To construct models of the hyperbolic plane the 108:The precise definition depends on the nature of 834:The ring is embedded in its projective line by 1115:appearing perpendicular to the geodesics. See 438:{\displaystyle z\mapsto {\frac {az+b}{cz+d}},} 98:{\displaystyle z\mapsto {\frac {az+b}{cz+d}}.} 8: 909:{\displaystyle \operatorname {PGL} _{2}(A).} 1099:. They also provide a canonical example of 1049:: the isometry group for the disk model is 860:The linear fractional transformations over 2132:Modern Geometry — Methods and Applications 1492:applied to the imaginary axis produces an 1951: 1899: 1745: 1690: 1659: 1616: 1582: 1527: 1279: 1162: 1127: 942: 941: 929: 923: 885: 879: 776: 661: 641: 553: 400: 392: 60: 52: 1045:of isometries that is a subgroup of the 2018: 1273: 2161:Proceedings of the Royal Irish Academy 969:Wiles's proof of Fermat's Last Theorem 335:Wiles's proof of Fermat's Last Theorem 314:, which was originally defined on the 183:. The invertibility condition is then 2168:Advances in Applied Clifford Algebras 7: 2007:H-infinity methods in control theory 140:whose numerator and denominator are 2179:Proceedings of the Imperial Academy 2031:Linear Algebra and its Applications 179:), or more generally elements of a 600:{\displaystyle (z,t)\sim (uz,ut).} 235:(or, more generally, belong to an 25: 2047:Topics in Complex Function Theory 1436:allows them to be applied to the 278:In the most general setting, the 18:Linear fractional transformations 967:, which include, in particular, 333:(they are used, for example, in 38:linear fractional transformation 2049:, volume 2, Wiley-Interscience 1946: 1740: 1654: 1577: 2154:University of British Columbia 1940: 1928: 1919: 1916: 1907: 1707: 1698: 1633: 1624: 1544: 1535: 1350: 1329: 1323: 1300: 1294: 1276: 1270: 1261: 1255: 1228: 1222: 1207: 1159: 1147: 1141: 1129: 946: 938: 900: 894: 815: 803: 785: 773: 754: 751: 742: 703: 658: 646: 591: 573: 567: 555: 397: 57: 1: 2002:Linear-fractional programming 1109:stable and unstable manifolds 1872:. In each case the angle of 1791:according to the host ring. 621:, where the brackets denote 611:in the projective line over 2199:Complex Numbers in Geometry 2091:Kisil, Vladimir V. (2012). 1856:is conformal, consider the 367:projective line over a ring 149:In the most basic setting, 44:transformation of the form 2244: 2173:Tsurusaburo Takasu (1941) 1798:by consideration of their 1451:damped harmonic oscillator 978: 975:Use in hyperbolic geometry 515:In a non-commutative ring 275:in the case of integers). 1476:The commutative rings of 1410:parabolic transformations 1404:. Roughly speaking, the 1075:Use in higher mathematics 1039:Poincaré half-plane model 200:projective transformation 136:that is represented by a 40:is, roughly speaking, an 2181:17(8): 330–8, link from 1997:Laguerre transformations 1804:multiplicative inversion 1025:of the hyperbolic plane 1065:projective linear group 872:projective linear group 267:of the domain (that is 2201:, page 130 & 157, 1982: 1817:affine transformations 1764: 1678: 1604: 1473: 1434:Redheffer star product 1430:electrical engineering 1357: 1085:analytic number theory 953: 910: 825: 623:projective coordinates 601: 504:multiplicative inverse 439: 99: 2163:, Section A 51:67–85. 1983: 1765: 1679: 1605: 1478:split-complex numbers 1472: 1455:Frobenius normal form 1416:Use in control theory 1358: 954: 911: 826: 602: 440: 249:(or to belong to the 177:Möbius transformation 100: 1898: 1878:is added to that of 1689: 1615: 1526: 1498:one-parameter groups 1408:is generated by the 1126: 922: 878: 640: 552: 547:equivalence relation 391: 245:is supposed to be a 51: 2228:Projective geometry 2152:, Master's thesis, 2148:Geoffry Fox (1949) 2025:N. J. Young (1984) 1858:polar decomposition 1081:continued fractions 1041:. Each model has a 1035:Poincaré disk model 1014:Cayley–Klein metric 981:Hyperbolic geometry 2223:Conformal mappings 2218:Rational functions 1978: 1760: 1674: 1600: 1484:join the ordinary 1474: 1465:Conformal property 1353: 1192: 991:generalized circle 949: 906: 821: 691: 597: 435: 349:General definition 302:are elements of a 251:field of fractions 198:to the field of a 95: 2110:978-1-84816-858-9 1461:of a polynomial. 1438:scattering theory 1346: 1339: 1242: 1206: 1200: 1155: 811: 726: 609:equivalence class 430: 90: 16:(Redirected from 2235: 2123: 2122: 2088: 2082: 2077: 2071: 2063: 2057: 2040: 2034: 2023: 1987: 1985: 1984: 1979: 1956: 1955: 1893: 1883: 1877: 1871: 1865: 1855: 1845: 1831: 1814: 1781:hyperbolic angle 1778: 1769: 1767: 1766: 1761: 1750: 1749: 1683: 1681: 1680: 1675: 1664: 1663: 1609: 1607: 1606: 1601: 1587: 1586: 1518: 1507: 1459:companion matrix 1448: 1403: 1389: 1383: 1377: 1371: 1362: 1360: 1359: 1354: 1344: 1340: 1338: 1309: 1280: 1240: 1204: 1198: 1197: 1196: 1153: 1062: 1054: 1006:upper half-plane 958: 956: 955: 950: 945: 934: 933: 915: 913: 912: 907: 890: 889: 865: 856: 850: 843: 830: 828: 827: 822: 809: 784: 783: 724: 696: 695: 632: 620: 606: 604: 603: 598: 544: 538: 532: 520: 511: 501: 491: 481: 471: 466:are elements of 465: 444: 442: 441: 436: 431: 429: 415: 401: 382:commutative ring 379: 373: 364: 317: 312:Cayley transform 301: 295: 274: 270: 262: 244: 230: 193: 170: 166: 129: 125: 104: 102: 101: 96: 91: 89: 75: 61: 21: 2243: 2242: 2238: 2237: 2236: 2234: 2233: 2232: 2208: 2207: 2136:Springer-Verlag 2127: 2126: 2111: 2090: 2089: 2085: 2078: 2074: 2064: 2060: 2041: 2037: 2024: 2020: 2015: 1993: 1947: 1896: 1895: 1885: 1879: 1873: 1867: 1861: 1847: 1833: 1819: 1806: 1774: 1741: 1687: 1686: 1655: 1613: 1612: 1578: 1524: 1523: 1512: 1501: 1490:exponential map 1486:complex numbers 1467: 1446: 1418: 1406:center manifold 1394: 1385: 1379: 1373: 1367: 1310: 1281: 1191: 1190: 1185: 1179: 1178: 1173: 1163: 1124: 1123: 1089:elliptic curves 1077: 1056: 1050: 983: 977: 925: 920: 919: 881: 876: 875: 861: 852: 845: 835: 772: 690: 689: 684: 678: 677: 672: 662: 638: 637: 626: 616: 550: 549: 540: 534: 522: 516: 507: 493: 487: 473: 467: 449: 416: 402: 389: 388: 375: 369: 358: 351: 315: 308:square matrices 297: 279: 272: 268: 254: 247:rational number 240: 237:integral domain 214: 208:projective line 184: 173:complex numbers 168: 150: 127: 109: 76: 62: 49: 48: 30: 23: 22: 15: 12: 11: 5: 2241: 2239: 2231: 2230: 2225: 2220: 2210: 2209: 2206: 2205: 2203:Academic Press 2192: 2183:Project Euclid 2171: 2164: 2157: 2146: 2125: 2124: 2109: 2083: 2072: 2058: 2035: 2017: 2016: 2014: 2011: 2010: 2009: 2004: 1999: 1992: 1989: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1954: 1950: 1945: 1942: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1918: 1915: 1912: 1909: 1906: 1903: 1796:conformal maps 1789:circular angle 1771: 1770: 1759: 1756: 1753: 1748: 1744: 1739: 1736: 1733: 1730: 1727: 1724: 1721: 1718: 1715: 1712: 1709: 1706: 1703: 1700: 1697: 1694: 1684: 1673: 1670: 1667: 1662: 1658: 1653: 1650: 1647: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1620: 1610: 1599: 1596: 1593: 1590: 1585: 1581: 1576: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1537: 1534: 1531: 1510:group of units 1466: 1463: 1422:control theory 1417: 1414: 1364: 1363: 1352: 1349: 1343: 1337: 1334: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1248: 1245: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1203: 1195: 1189: 1186: 1184: 1181: 1180: 1177: 1174: 1172: 1169: 1168: 1166: 1161: 1158: 1152: 1149: 1146: 1143: 1140: 1137: 1134: 1131: 1101:Hopf fibration 1076: 1073: 1071:equal to one. 1031:Henri Poincaré 995:Riemann sphere 979:Main article: 976: 973: 948: 944: 940: 937: 932: 928: 905: 902: 899: 896: 893: 888: 884: 832: 831: 820: 817: 814: 808: 805: 802: 799: 796: 793: 790: 787: 782: 779: 775: 771: 768: 765: 762: 759: 756: 753: 750: 747: 744: 741: 738: 735: 732: 729: 723: 720: 717: 714: 711: 708: 705: 702: 699: 694: 688: 685: 683: 680: 679: 676: 673: 671: 668: 667: 665: 660: 657: 654: 651: 648: 645: 596: 593: 590: 587: 584: 581: 578: 575: 572: 569: 566: 563: 560: 557: 446: 445: 434: 428: 425: 422: 419: 414: 411: 408: 405: 399: 396: 350: 347: 343:control theory 133:transformation 106: 105: 94: 88: 85: 82: 79: 74: 71: 68: 65: 59: 56: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2240: 2229: 2226: 2224: 2221: 2219: 2216: 2215: 2213: 2204: 2200: 2196: 2193: 2191: 2188: 2184: 2180: 2176: 2172: 2169: 2165: 2162: 2158: 2155: 2151: 2147: 2144: 2143:0-387-90872-2 2140: 2137: 2133: 2129: 2128: 2120: 2116: 2112: 2106: 2102: 2098: 2094: 2087: 2084: 2081: 2076: 2073: 2070: 2068: 2062: 2059: 2056: 2055:0-471-79080 X 2052: 2048: 2044: 2039: 2036: 2032: 2028: 2022: 2019: 2012: 2008: 2005: 2003: 2000: 1998: 1995: 1994: 1990: 1988: 1975: 1972: 1969: 1966: 1963: 1960: 1957: 1952: 1948: 1943: 1937: 1934: 1931: 1925: 1922: 1913: 1910: 1904: 1901: 1892: 1888: 1882: 1876: 1870: 1864: 1859: 1854: 1850: 1844: 1840: 1836: 1830: 1826: 1822: 1818: 1813: 1809: 1805: 1801: 1797: 1792: 1790: 1786: 1782: 1777: 1757: 1754: 1751: 1746: 1742: 1737: 1734: 1731: 1728: 1725: 1722: 1719: 1716: 1713: 1710: 1704: 1701: 1695: 1692: 1685: 1671: 1668: 1665: 1660: 1656: 1651: 1648: 1645: 1642: 1639: 1636: 1630: 1627: 1621: 1618: 1611: 1597: 1594: 1591: 1588: 1583: 1579: 1574: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1541: 1538: 1532: 1529: 1522: 1521: 1520: 1516: 1511: 1505: 1499: 1495: 1491: 1487: 1483: 1479: 1471: 1464: 1462: 1460: 1456: 1452: 1443: 1439: 1435: 1431: 1427: 1423: 1415: 1413: 1411: 1407: 1401: 1397: 1392: 1388: 1382: 1376: 1370: 1347: 1341: 1335: 1332: 1326: 1320: 1317: 1314: 1311: 1306: 1303: 1297: 1291: 1288: 1285: 1282: 1267: 1264: 1258: 1252: 1249: 1246: 1243: 1237: 1234: 1231: 1225: 1219: 1216: 1213: 1210: 1201: 1193: 1187: 1182: 1175: 1170: 1164: 1156: 1150: 1144: 1138: 1135: 1132: 1122: 1121: 1120: 1118: 1114: 1110: 1106: 1105:geodesic flow 1102: 1098: 1097:modular group 1094: 1093:modular forms 1090: 1086: 1082: 1074: 1072: 1070: 1066: 1060: 1053: 1052:SU(1, 1) 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1019: 1015: 1011: 1007: 1003: 998: 996: 992: 988: 987:complex plane 982: 974: 972: 970: 966: 965:number theory 962: 961:modular group 935: 930: 926: 916: 903: 897: 891: 886: 882: 873: 869: 864: 858: 855: 848: 842: 838: 818: 812: 806: 800: 797: 794: 791: 788: 780: 777: 769: 766: 763: 760: 757: 748: 745: 739: 736: 733: 730: 727: 721: 718: 715: 712: 709: 706: 700: 697: 692: 686: 681: 674: 669: 663: 655: 652: 649: 643: 636: 635: 634: 630: 624: 619: 614: 610: 594: 588: 585: 582: 579: 576: 570: 564: 561: 558: 548: 545:determine an 543: 537: 530: 526: 519: 513: 510: 505: 500: 496: 490: 485: 480: 476: 470: 464: 460: 456: 452: 432: 426: 423: 420: 417: 412: 409: 406: 403: 394: 387: 386: 385: 383: 378: 372: 368: 362: 356: 348: 346: 344: 340: 336: 332: 331:number theory 328: 323: 321: 313: 309: 305: 300: 294: 290: 286: 282: 276: 266: 261: 257: 252: 248: 243: 238: 234: 229: 225: 221: 217: 211: 209: 205: 201: 197: 191: 187: 182: 178: 174: 165: 161: 157: 153: 147: 145: 144: 139: 135: 134: 124: 120: 116: 112: 92: 86: 83: 80: 77: 72: 69: 66: 63: 54: 47: 46: 45: 43: 39: 35: 27: 19: 2198: 2195:Isaak Yaglom 2149: 2131: 2101:10.1142/p835 2092: 2086: 2075: 2066: 2061: 2046: 2043:C. L. Siegel 2038: 2021: 1890: 1886: 1880: 1874: 1868: 1862: 1852: 1848: 1842: 1838: 1834: 1828: 1824: 1820: 1811: 1807: 1793: 1775: 1773:The "angle" 1772: 1514: 1503: 1482:dual numbers 1475: 1419: 1399: 1395: 1391:real numbers 1386: 1380: 1374: 1368: 1365: 1103:, where the 1078: 1058: 1047:Mobius group 1027:metric space 999: 984: 917: 862: 859: 853: 846: 840: 836: 833: 628: 617: 612: 541: 539:, the units 535: 528: 524: 517: 514: 508: 498: 494: 488: 478: 474: 468: 462: 458: 454: 450: 447: 376: 370: 360: 352: 339:group theory 324: 298: 292: 288: 284: 280: 277: 259: 255: 241: 227: 223: 219: 215: 212: 189: 185: 163: 159: 155: 151: 148: 141: 137: 131: 122: 118: 114: 110: 107: 37: 31: 26: 1508:and in the 1494:isomorphism 1457:, i.e. the 1117:Anosov flow 1111:, with the 1069:determinant 1018:cross ratio 615:is written 320:matrix ring 196:restriction 34:mathematics 2212:Categories 2013:References 1800:generators 1426:mechanical 1113:horocycles 918:The group 472:such that 355:homography 306:, such as 263:must be a 204:homography 42:invertible 2033:56:251–90 1973:− 1932:− 1926:⁡ 1920:↦ 1905:⁡ 1755:− 1732:⁡ 1717:⁡ 1696:⁡ 1657:ϵ 1649:ϵ 1631:ϵ 1622:⁡ 1569:⁡ 1554:⁡ 1533:⁡ 1321:⁡ 1292:⁡ 1274:∼ 1253:⁡ 1220:⁡ 1139:⁡ 1083:, and in 1012:with the 1002:unit disk 936:⁡ 892:⁡ 778:− 746:∼ 571:∼ 492:(that is 398:↦ 58:↦ 1991:See also 1496:between 1442:S-matrix 1037:and the 1029:. Since 1023:isometry 1004:and the 874:denoted 327:geometry 138:fraction 2197:(1968) 2119:2977041 1393:, with 1057:PSL(2, 985:In the 866:form a 521:, with 374:. When 233:integer 206:of the 2141:  2117:  2107:  2053:  1894:sends 1345:  1241:  1205:  1199:  1154:  1010:metric 870:, the 810:  725:  502:has a 448:where 365:, the 167:, and 143:linear 126:, and 2190:14282 1787:, or 1785:slope 1517:, × ) 1506:, + ) 1447:3 × 3 1366:with 1043:group 868:group 844:, so 482:is a 380:is a 318:real 316:3 × 3 213:When 181:field 2139:ISBN 2105:ISBN 2051:ISBN 1889:→ 1/ 1866:and 1815:and 1810:→ 1/ 1566:sinh 1551:cosh 1480:and 1428:and 1384:and 1091:and 1063:, a 484:unit 304:ring 296:and 265:unit 231:are 171:are 36:, a 2097:doi 1923:exp 1902:exp 1860:of 1779:is 1729:sin 1714:cos 1693:exp 1619:exp 1530:exp 1500:in 1402:= 1 1318:exp 1289:exp 1250:exp 1217:exp 1136:exp 1087:of 927:PGL 883:PGL 849:= 1 607:An 533:in 506:in 486:of 357:of 337:), 271:or 239:), 202:or 192:≠ 0 32:In 2214:: 2187:MR 2185:, 2177:, 2115:MR 2113:. 2103:. 2029:, 1976:1. 1853:az 1851:→ 1841:+ 1837:→ 1827:+ 1825:az 1823:→ 1802:: 1783:, 1758:1. 1519:: 1400:bc 1398:− 1396:ad 1378:, 1372:, 989:a 971:. 839:→ 633:: 627:P( 527:, 512:) 499:bc 497:– 495:ad 479:bc 477:– 475:ad 461:, 457:, 453:, 359:P( 345:. 341:, 329:, 322:. 291:, 287:, 283:, 273:−1 260:bc 258:– 256:ad 226:, 222:, 218:, 210:. 190:bc 188:– 186:ad 162:, 158:, 154:, 146:. 121:, 117:, 113:, 2156:. 2145:. 2121:. 2099:: 1970:, 1967:0 1964:, 1961:1 1958:= 1953:2 1949:b 1944:, 1941:) 1938:b 1935:y 1929:( 1917:) 1914:b 1911:y 1908:( 1891:z 1887:z 1881:z 1875:a 1869:z 1863:a 1849:z 1843:b 1839:z 1835:z 1829:b 1821:z 1812:z 1808:z 1776:y 1752:= 1747:2 1743:i 1738:, 1735:y 1726:i 1723:+ 1720:y 1711:= 1708:) 1705:i 1702:y 1699:( 1672:, 1669:0 1666:= 1661:2 1652:, 1646:y 1643:+ 1640:1 1637:= 1634:) 1628:y 1625:( 1598:, 1595:1 1592:+ 1589:= 1584:2 1580:j 1575:, 1572:y 1563:j 1560:+ 1557:y 1548:= 1545:) 1542:j 1539:y 1536:( 1515:U 1513:( 1504:A 1502:( 1387:d 1381:c 1375:b 1369:a 1351:) 1348:1 1342:, 1336:d 1333:+ 1330:) 1327:t 1324:( 1315:i 1312:c 1307:b 1304:+ 1301:) 1298:t 1295:( 1286:i 1283:a 1277:( 1271:) 1268:d 1265:+ 1262:) 1259:t 1256:( 1247:i 1244:c 1238:, 1235:b 1232:+ 1229:) 1226:t 1223:( 1214:i 1211:a 1208:( 1202:= 1194:) 1188:d 1183:b 1176:c 1171:a 1165:( 1160:) 1157:1 1151:, 1148:) 1145:t 1142:( 1133:i 1130:( 1061:) 1059:R 947:) 943:Z 939:( 931:2 904:. 901:) 898:A 895:( 887:2 863:A 854:U 847:t 841:U 837:z 819:. 816:] 813:1 807:: 804:) 801:b 798:t 795:+ 792:a 789:z 786:( 781:1 774:) 770:d 767:t 764:+ 761:c 758:z 755:( 752:[ 749:U 743:] 740:d 737:t 734:+ 731:c 728:z 722:: 719:b 716:t 713:+ 710:a 707:z 704:[ 701:U 698:= 693:) 687:d 682:b 675:c 670:a 664:( 659:] 656:t 653:: 650:z 647:[ 644:U 631:) 629:A 618:U 613:A 595:. 592:) 589:t 586:u 583:, 580:z 577:u 574:( 568:) 565:t 562:, 559:z 556:( 542:u 536:A 531:) 529:t 525:z 523:( 518:A 509:A 489:A 469:A 463:d 459:c 455:b 451:a 433:, 427:d 424:+ 421:z 418:c 413:b 410:+ 407:z 404:a 395:z 377:A 371:A 363:) 361:A 299:z 293:d 289:c 285:b 281:a 269:1 242:z 228:d 224:c 220:b 216:a 169:z 164:d 160:c 156:b 152:a 128:z 123:d 119:c 115:b 111:a 93:. 87:d 84:+ 81:z 78:c 73:b 70:+ 67:z 64:a 55:z 20:)

Index

Linear fractional transformations
mathematics
invertible
transformation
linear
complex numbers
Möbius transformation
field
restriction
projective transformation
homography
projective line
integer
integral domain
rational number
field of fractions
unit
ring
square matrices
Cayley transform
matrix ring
geometry
number theory
Wiles's proof of Fermat's Last Theorem
group theory
control theory
homography
projective line over a ring
commutative ring
unit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.