Knowledge (XXG)

Linear system of divisors

Source đź“ť

5146: 24: 4902: 4436: 5542: 4606: 3422:. The conclusion is that to check nefness of a divisor class, it suffices to compute the intersection number with curves contained in the base locus of the class. So, roughly speaking, the 'smaller' the base locus, the 'more likely' it is that the class is nef. 3070: 2891:
refers to the subvariety of points 'common' to all divisors in the linear system. Geometrically, this corresponds to the common intersection of the varieties. Linear systems may or may not have a base locus – for example, the pencil of affine lines
2828:. The technical demands became quite stringent; later developments clarified a number of issues. The computation of the relevant dimensions — the Riemann–Roch problem as it can be called — can be better phrased in terms of 5176:
Each morphism from an algebraic variety to a projective space determines a base-point-free linear system on the variety; because of this, a base-point-free linear system and a map to a projective space are often used interchangeably.
4183: 4193:
Each linear system on an algebraic variety determines a morphism from the complement of the base locus to a projective space of dimension of the system, as follows. (In a sense, the converse is also true; see the section below)
4773: 4307: 5001: 3888: 2918:
has no common intersection, but given two (nondegenerate) conics in the complex projective plane, they intersect in four points (counting with multiplicity) and thus the pencil they define has these points as base locus.
5366: 726: 1548: 2054: 3739: 1278: 1169: 5428: 2796:. Note a characteristic system need not to be complete; in fact, the question of completeness is something studied extensively by the Italian school without a satisfactory conclusion; nowadays, the 3610:
The notion of the base locus still makes sense for a non-complete linear system as well: the base locus of it is still the intersection of the supports of all the effective divisors in the system.
1695: 3670: 4491: 4298: 2710: 5124: 992: 2541: 4693: 920: 3568: 1818: 1402: 2978: 224: 129: 4244: 3093: 2663: 2274: 5635: 5210: 3998: 527: 3182: 4731: 2794: 3601: 3506: 2464: 1077: 5423: 5062: 4764: 4027: 3420: 2601: 2493: 1316: 1106: 5234: 4475: 3763: 2812:
is a property of a pencil of cubics, which states that the base locus satisfies an "8 implies 9" property: any cubic containing 8 of the points necessarily contains the 9th.
2572: 2121: 944: 874: 4926: 3120: 2423: 1959: 581: 3937: 3358: 1722: 5033: 1215: 2374: 2338: 2306: 2213: 2097: 272: 816:(this is well defined since two non-zero rational functions have the same divisor if and only if they are non-zero multiples of each other). A complete linear system 4629: 764: 5568: 1910: 1875: 370: 5702:
Hartshorne, R. 'Algebraic Geometry', proposition II.7.2, page 151, proposition II.7.7, page 157, page 158, exercise IV.1.7, page 298, proposition IV.5.3, page 342
4053: 3453: 3329: 3219: 3154: 2950: 2916: 2239: 1844: 844: 794: 651: 557: 396: 1445: 5394: 5274: 5254: 3526: 3473: 3378: 3299: 3279: 3259: 3239: 2970: 2730: 2181: 2161: 2141: 1979: 1776: 1754: 1619: 1599: 1576: 1422: 1336: 1023: 814: 621: 601: 490: 439: 416: 338: 318: 298: 181: 4061: 1697:. This definition follows from proposition II.7.7 of Hartshorne since every effective divisor in the linear system comes from the zeros of some section of 4897:{\displaystyle \operatorname {Sym} ((V\otimes _{k}{\mathcal {O}}_{X})\otimes _{{\mathcal {O}}_{X}}L^{-1})\to \bigoplus _{n=0}^{\infty }{\mathcal {I}}^{n}} 4431:{\displaystyle \operatorname {Sym} ((V\otimes _{k}{\mathcal {O}}_{X})\otimes _{{\mathcal {O}}_{X}}L^{-1})\to \bigoplus _{n=0}^{\infty }{\mathcal {O}}_{X}} 4938: 3771: 5279: 656: 341: 5777: 5764:. Grundlehren der Mathematischen Wissenschaften. Vol. II, with a contribution by Joseph Daniel Harris. Heidelberg: Springer. p. 3. 1453: 2825: 1984: 5537:{\displaystyle {\mathcal {O}}_{X}(1)={\mathcal {O}}_{X}\otimes _{{\mathcal {O}}_{\mathbb {P} ^{r}}}{\mathcal {O}}_{\mathbb {P} ^{r}}(1)} 3675: 2871:. There was a controversy, one of the final issues in the conflict between 'old' and 'new' points of view in algebraic geometry, over 1220: 1111: 5883: 5865: 5840: 4601:{\displaystyle i:X\hookrightarrow \mathbb {P} (V_{X}^{*}\otimes L)\simeq \mathbb {P} (V_{X}^{*})=\mathbb {P} (V^{*})\times X} 1624: 5133:
is chosen, the above discussion becomes more down-to-earth (and that is the style used in Hartshorne, Algebraic Geometry).
3630: 5900: 4253: 2671: 2809: 454: 75: 1757: 2797: 5828: 5070: 949: 2498: 5656: 4645: 5646: 1847: 883: 3065:{\displaystyle \operatorname {Bl} (|D|):=\bigcap _{D_{\text{eff}}\in |D|}\operatorname {Supp} D_{\text{eff}}\ } 2833: 442: 3531: 17: 1782: 1341: 2741: 462: 186: 91: 4208: 3078: 2609: 2244: 5675: 5573: 5183: 3942: 495: 3167: 4705: 3188: 2773: 3573: 3478: 2436: 1049: 5399: 5038: 4740: 4003: 3383: 2577: 2469: 1283: 1082: 5215: 4441: 3744: 3380:, and so intersects it properly. Basic facts from intersection theory then tell us that we must have 3157: 2546: 2102: 925: 855: 136: 82: 4907: 3098: 2379: 1915: 562: 3896: 2829: 2821: 1733: 1579: 3334: 876:
is then a projective subspace of a complete linear system, so it corresponds to a vector subspace
3614: 2849: 2841: 1700: 458: 44: 36: 5009: 4029:. Then, the base locus of this system of divisors is the scheme given by the vanishing locus of 1178: 4246:
a finite-dimensional vector subspace. For the sake of clarity, we first consider the case when
2347: 2311: 2279: 2186: 2070: 236: 5879: 5871: 5861: 5836: 5824: 5773: 5757: 5735: 4632: 3604: 2888: 2872: 2856: 2759:
in the family is a linear system formed by the curves in the family that are infinitely near
278: 4614: 731: 70:. It assumed a more general form, through gradual generalisation, so that one could speak of 5849: 5806: 5765: 5753: 5725: 5651: 5547: 4482: 3625: 3095:
denotes the support of a divisor, and the intersection is taken over all effective divisors
1880: 1002: 67: 55:; the dimension of the linear system corresponds to the number of parameters of the family. 52: 32: 5787: 1853: 5857: 5783: 2875:'s characteristic linear system of an algebraic family of curves on an algebraic surface. 2845: 1172: 1026: 492:
is defined as the set of all effective divisors linearly equivalent to some given divisor
446: 346: 63: 4178:{\displaystyle {\text{Bl}}({\mathfrak {X}})={\text{Proj}}\left({\frac {k}{(f,g)}}\right)} 4032: 3428: 3304: 3194: 3129: 2925: 2895: 2218: 1823: 819: 769: 626: 532: 375: 1427: 1217:, it is linearly equivalent to any other divisor defined by the vanishing locus of some 5379: 5259: 5239: 3511: 3458: 3363: 3284: 3264: 3244: 3224: 2955: 2715: 2341: 2166: 2146: 2126: 1964: 1761: 1739: 1732:
One application of linear systems is used in the classification of algebraic curves. A
1604: 1584: 1561: 1407: 1321: 1008: 799: 606: 586: 475: 424: 401: 323: 303: 283: 166: 5145: 5894: 4478: 2767: 5713: 3161: 2837: 450: 86: 23: 5810: 998: 2751:
The characteristic linear system of a family of curves on an algebraic surface
5769: 4996:{\displaystyle i:{\widetilde {X}}\hookrightarrow \mathbb {P} (V^{*})\times X.} 3883:{\displaystyle {\mathfrak {X}}={\text{Proj}}\left({\frac {k}{(sf+tg)}}\right)} 5739: 1601:
is given by the complete linear system associated with the canonical divisor
5361:{\displaystyle f^{-1}({\mathfrak {d}})=\{f^{-1}(D)|D\in {\mathfrak {d}}\}} 3425:
In the modern formulation of algebraic geometry, a complete linear system
2766:
In modern terms, it is a subsystem of the linear system associated to the
1033:
of two divisors means that the corresponding line bundles are isomorphic.
721:{\displaystyle (\Gamma (X,{\mathcal {L}})\smallsetminus \{0\})/k^{\ast },} 4733:
in the direct sum replaced by an ideal sheaf defining the base locus and
3893:
This has an associated linear system of divisors since each polynomial,
457:). The definition in that case is usually said with greater care (using 5730: 5425:
has a natural linear system determining a map to projective space from
2860: 2308:
from proposition 5.3. Another close set of examples are curves with a
1543:{\displaystyle D=E+\left({\frac {x^{2}+y^{2}+z^{2}+w^{2}}{xy}}\right)} 2049:{\displaystyle \mathbb {P} ^{1}=\mathbb {P} (H^{0}(C,\omega _{C}))} 1558:
One of the important complete linear systems on an algebraic curve
3734:{\displaystyle f,g\in \Gamma (\mathbb {P} ^{n},{\mathcal {O}}(d))} 3191:
of a Cartier divisor class (i.e. complete linear system). Suppose
22: 4477:
for the trivial vector bundle and passing the surjection to the
1273:{\displaystyle t\in \Gamma (\mathbb {P} ^{3},{\mathcal {O}}(2))} 1164:{\displaystyle s\in \Gamma (\mathbb {P} ^{3},{\mathcal {O}}(2))} 5212:
of algebraic varieties there is a pullback of a linear system
5140: 2859:
to that of linear systems cut out by surfaces in three-space;
5505: 5480: 5461: 5435: 4913: 4883: 4827: 4805: 4712: 4417: 4361: 4339: 4273: 3714: 3579: 3484: 2516: 2442: 1253: 1144: 1055: 901: 677: 568: 151:
A map determined by a linear system is sometimes called the
107: 51:
is an algebraic generalization of the geometric notion of a
5835:. Wiley Classics Library. Wiley Interscience. p. 137. 4702:
is not empty, the above discussion still goes through with
2952:
is a complete linear system of divisors on some variety
2800:
can be used to answer the question of the completeness.
398:
denotes the divisor of zeroes and poles of the function
5157: 5137:
Linear system determined by a map to a projective space
2855:
The Italian school liked to reduce the geometry on an
1690:{\displaystyle |K|=\mathbb {P} (H^{0}(C,\omega _{C}))} 997:
Linear systems can also be introduced by means of the
16:"Kodaira map" redirects here. Not to be confused with 5576: 5550: 5431: 5402: 5382: 5282: 5262: 5242: 5218: 5186: 5073: 5041: 5012: 4941: 4910: 4776: 4743: 4708: 4648: 4617: 4494: 4444: 4310: 4256: 4211: 4064: 4035: 4006: 3945: 3899: 3774: 3747: 3678: 3665:{\displaystyle p:{\mathfrak {X}}\to \mathbb {P} ^{1}} 3633: 3576: 3534: 3514: 3481: 3461: 3431: 3386: 3366: 3337: 3307: 3287: 3267: 3247: 3227: 3197: 3170: 3132: 3101: 3081: 2981: 2958: 2928: 2898: 2776: 2718: 2674: 2612: 2580: 2549: 2501: 2472: 2439: 2429:
Linear systems of hypersurfaces in a projective space
2382: 2350: 2314: 2282: 2247: 2221: 2189: 2169: 2149: 2129: 2105: 2073: 1987: 1967: 1918: 1883: 1856: 1826: 1785: 1764: 1742: 1703: 1627: 1607: 1587: 1564: 1456: 1430: 1410: 1344: 1324: 1286: 1223: 1181: 1114: 1085: 1052: 1011: 952: 928: 886: 858: 822: 802: 772: 734: 659: 629: 609: 589: 565: 535: 498: 478: 427: 404: 378: 349: 326: 306: 286: 239: 189: 169: 94: 5714:"Another proof of the existence of special divisors" 4293:{\displaystyle V\otimes _{k}{\mathcal {O}}_{X}\to L} 4250:
is base-point-free; in other words, the natural map
2705:{\displaystyle \mathbb {P} ^{k}\to \mathbb {P} ^{N}} 134:
Linear systems of dimension 1, 2, or 3 are called a
445:, the notion of 'divisor' is inherently ambiguous ( 5629: 5562: 5536: 5417: 5388: 5360: 5268: 5248: 5228: 5204: 5118: 5056: 5027: 4995: 4920: 4896: 4758: 4725: 4687: 4623: 4600: 4469: 4430: 4292: 4238: 4177: 4047: 4021: 3992: 3931: 3882: 3757: 3733: 3664: 3595: 3562: 3520: 3500: 3467: 3447: 3414: 3372: 3352: 3323: 3293: 3273: 3253: 3233: 3213: 3187:One application of the notion of base locus is to 3176: 3148: 3114: 3087: 3064: 2964: 2944: 2910: 2788: 2747:Characteristic linear system of a family of curves 2724: 2704: 2657: 2595: 2566: 2535: 2487: 2458: 2417: 2368: 2332: 2300: 2268: 2233: 2207: 2175: 2155: 2135: 2115: 2091: 2048: 1973: 1953: 1904: 1869: 1838: 1812: 1770: 1748: 1716: 1689: 1613: 1593: 1570: 1542: 1439: 1416: 1396: 1330: 1310: 1272: 1209: 1163: 1100: 1071: 1017: 986: 938: 914: 868: 838: 808: 788: 758: 720: 645: 615: 595: 575: 551: 521: 484: 433: 410: 390: 364: 332: 312: 292: 266: 218: 175: 123: 5801:Fulton, William (1998). "§ 4.4. Linear Systems". 2820:In general linear systems became a basic tool of 2643: 2622: 1029:, to be precise) correspond to line bundles, and 2844:generated by codimension-one subvarieties), and 31:algebraicizes the classic geometric notion of a 3570:is the set of common zeroes of all sections of 2867:to try to pull together the methods, involving 4766:of it along the (scheme-theoretic) base locus 3156:(as a set, at least: there may be more subtle 2712:we can construct a linear system of dimension 2276:. In fact, hyperelliptic curves have a unique 946:is its dimension as a projective space. Hence 5119:{\displaystyle f:X-B\to \mathbb {P} (V^{*}).} 4770:. Precisely, as above, there is a surjection 3603:. A simple consequence is that the bundle is 987:{\displaystyle \dim {\mathfrak {d}}=\dim W-1} 623:is a nonsingular projective variety, the set 8: 5355: 5312: 2536:{\displaystyle V=\Gamma ({\mathcal {O}}(d))} 1447:. Then, there is the equivalence of divisors 1318:(Proposition 7.2). For example, the divisor 694: 688: 4688:{\displaystyle f:X\to \mathbb {P} (V^{*}).} 4639:by a projection, there results in the map: 2183:. For example, hyperelliptic curves have a 4635:under a twist by a line bundle. Following 2832:. The effect of working on varieties with 915:{\displaystyle \Gamma (X,{\mathcal {L}}).} 5729: 5621: 5617: 5616: 5603: 5584: 5575: 5549: 5517: 5513: 5512: 5510: 5504: 5503: 5492: 5488: 5487: 5485: 5479: 5478: 5476: 5466: 5460: 5459: 5440: 5434: 5433: 5430: 5409: 5405: 5404: 5401: 5381: 5349: 5348: 5337: 5319: 5300: 5299: 5287: 5281: 5261: 5241: 5220: 5219: 5217: 5185: 5104: 5093: 5092: 5072: 5043: 5042: 5040: 5011: 4975: 4964: 4963: 4949: 4948: 4940: 4912: 4911: 4909: 4888: 4882: 4881: 4874: 4863: 4844: 4832: 4826: 4825: 4823: 4810: 4804: 4803: 4796: 4775: 4745: 4744: 4742: 4717: 4711: 4710: 4707: 4673: 4662: 4661: 4647: 4616: 4583: 4572: 4571: 4559: 4554: 4543: 4542: 4524: 4519: 4508: 4507: 4493: 4449: 4443: 4422: 4416: 4415: 4408: 4397: 4378: 4366: 4360: 4359: 4357: 4344: 4338: 4337: 4330: 4309: 4278: 4272: 4271: 4264: 4255: 4210: 4201:be a line bundle on an algebraic variety 4142: 4123: 4095: 4086: 4074: 4073: 4065: 4063: 4034: 4013: 4009: 4008: 4005: 3984: 3980: 3979: 3966: 3953: 3944: 3920: 3904: 3898: 3841: 3822: 3794: 3785: 3776: 3775: 3773: 3749: 3748: 3746: 3713: 3712: 3703: 3699: 3698: 3677: 3656: 3652: 3651: 3641: 3640: 3632: 3578: 3577: 3575: 3552: 3544: 3533: 3513: 3483: 3482: 3480: 3460: 3440: 3432: 3430: 3395: 3387: 3385: 3365: 3339: 3338: 3336: 3316: 3308: 3306: 3286: 3266: 3246: 3226: 3206: 3198: 3196: 3169: 3141: 3133: 3131: 3106: 3100: 3080: 3053: 3036: 3028: 3019: 3014: 2999: 2991: 2980: 2957: 2937: 2929: 2927: 2897: 2775: 2717: 2696: 2692: 2691: 2681: 2677: 2676: 2673: 2642: 2621: 2619: 2611: 2587: 2583: 2582: 2579: 2551: 2550: 2548: 2515: 2514: 2500: 2479: 2475: 2474: 2471: 2441: 2440: 2438: 2395: 2381: 2360: 2355: 2349: 2324: 2319: 2313: 2292: 2287: 2281: 2260: 2256: 2255: 2246: 2220: 2199: 2194: 2188: 2168: 2148: 2128: 2107: 2106: 2104: 2083: 2078: 2072: 2034: 2015: 2004: 2003: 1994: 1990: 1989: 1986: 1966: 1936: 1923: 1917: 1882: 1861: 1855: 1825: 1804: 1800: 1799: 1784: 1763: 1741: 1708: 1702: 1675: 1656: 1645: 1644: 1636: 1628: 1626: 1606: 1586: 1563: 1519: 1506: 1493: 1480: 1473: 1455: 1429: 1409: 1388: 1375: 1362: 1349: 1343: 1323: 1295: 1285: 1252: 1251: 1242: 1238: 1237: 1222: 1186: 1180: 1143: 1142: 1133: 1129: 1128: 1113: 1092: 1088: 1087: 1084: 1054: 1053: 1051: 1010: 960: 959: 951: 930: 929: 927: 900: 899: 885: 860: 859: 857: 831: 823: 821: 801: 781: 773: 771: 733: 709: 700: 676: 675: 658: 638: 630: 628: 608: 588: 567: 566: 564: 544: 536: 534: 505: 497: 477: 426: 403: 377: 348: 325: 305: 285: 238: 202: 188: 168: 112: 106: 105: 93: 5712:Kleiman, Steven L.; Laksov, Dan (1974). 3607:if and only if the base locus is empty. 3563:{\displaystyle \operatorname {Bl} (|D|)} 2543:, then we can take its projectivization 5668: 1813:{\displaystyle f:C\to \mathbb {P} ^{1}} 1397:{\displaystyle x^{2}+y^{2}+z^{2}+w^{2}} 320:, or in other words a non-zero element 5860:, 1977; corrected 6th printing, 1993. 4631:on the right is the invariance of the 3528:. From this viewpoint, the base locus 3301:is not contained in the base locus of 1404:is linearly equivalent to the divisor 219:{\displaystyle D,E\in {\text{Div}}(X)} 124:{\displaystyle (X,{\mathcal {O}}_{X})} 4239:{\displaystyle V\subset \Gamma (X,L)} 3088:{\displaystyle \operatorname {Supp} } 2869:linear systems with fixed base points 2816:Linear systems in birational geometry 2658:{\displaystyle N={\binom {n+d}{n}}-1} 2269:{\displaystyle C\to \mathbb {P} ^{1}} 1424:associated to the vanishing locus of 1338:associated to the vanishing locus of 7: 5698: 5696: 5694: 5692: 5690: 5688: 5630:{\displaystyle \in \mathbb {P} ^{r}} 5205:{\displaystyle f:Y\hookrightarrow X} 4304:= the base field). Or equivalently, 3993:{\displaystyle \in \mathbb {P} ^{1}} 3360:in the class which does not contain 2887:of a linear system of divisors on a 2826:Italian school of algebraic geometry 796:to the set of non-zero multiples of 522:{\displaystyle D\in {\text{Div}}(X)} 5350: 5301: 5221: 4189:A map determined by a linear system 4075: 3777: 3750: 3642: 3455:of (Cartier) divisors on a variety 3177:{\displaystyle \operatorname {Bl} } 2836:is to show up a difference between 2108: 1005:language. In those terms, divisors 961: 931: 922:The dimension of the linear system 861: 58:These arose first in the form of a 5876:Positivity in Algebraic Geometry I 4875: 4726:{\displaystyle {\mathcal {O}}_{X}} 4409: 4218: 3691: 3122:in the linear system. This is the 2789:{\displaystyle C\hookrightarrow Y} 2626: 2508: 1846:all curves are hyperelliptic: the 1230: 1121: 887: 663: 14: 3596:{\displaystyle {\mathcal {O}}(D)} 3501:{\displaystyle {\mathcal {O}}(D)} 3331:, then there exists some divisor 2459:{\displaystyle {\mathcal {O}}(d)} 1072:{\displaystyle {\mathcal {O}}(2)} 846:is therefore a projective space. 583:be the line bundle associated to 5833:Principles of Algebraic Geometry 5418:{\displaystyle \mathbb {P} ^{r}} 5144: 5057:{\displaystyle {\widetilde {X}}} 4759:{\displaystyle {\widetilde {X}}} 4022:{\displaystyle \mathbb {P} ^{n}} 3415:{\displaystyle |D|\cdot C\geq 0} 2596:{\displaystyle \mathbb {P} ^{N}} 2488:{\displaystyle \mathbb {P} ^{n}} 1311:{\displaystyle \left(t/s\right)} 1101:{\displaystyle \mathbb {P} ^{3}} 5229:{\displaystyle {\mathfrak {d}}} 4470:{\displaystyle V_{X}=V\times X} 3758:{\displaystyle {\mathfrak {X}}} 2567:{\displaystyle \mathbb {P} (V)} 2116:{\displaystyle {\mathfrak {d}}} 939:{\displaystyle {\mathfrak {d}}} 869:{\displaystyle {\mathfrak {d}}} 5609: 5577: 5531: 5525: 5452: 5446: 5338: 5334: 5328: 5306: 5296: 5196: 5110: 5097: 5089: 4981: 4968: 4960: 4921:{\displaystyle {\mathcal {I}}} 4856: 4853: 4816: 4786: 4783: 4679: 4666: 4658: 4589: 4576: 4565: 4547: 4536: 4512: 4504: 4438:is surjective. Hence, writing 4390: 4387: 4350: 4320: 4317: 4284: 4233: 4221: 4165: 4153: 4148: 4116: 4113: 4101: 4080: 4070: 3972: 3946: 3870: 3852: 3847: 3815: 3812: 3800: 3728: 3725: 3719: 3694: 3672:given by two generic sections 3647: 3590: 3584: 3557: 3553: 3545: 3541: 3495: 3489: 3441: 3433: 3396: 3388: 3344: 3317: 3309: 3207: 3199: 3160:considerations as to what the 3142: 3134: 3115:{\displaystyle D_{\text{eff}}} 3037: 3029: 3004: 3000: 2992: 2988: 2938: 2930: 2780: 2687: 2561: 2555: 2530: 2527: 2521: 2511: 2453: 2447: 2418:{\displaystyle d\geq (1/2)g+1} 2403: 2389: 2251: 2043: 2040: 2021: 2008: 1954:{\displaystyle h^{0}(K_{C})=2} 1942: 1929: 1795: 1684: 1681: 1662: 1649: 1637: 1629: 1267: 1264: 1258: 1233: 1204: 1198: 1158: 1155: 1149: 1124: 1066: 1060: 906: 890: 832: 824: 782: 774: 753: 747: 697: 682: 666: 660: 639: 631: 576:{\displaystyle {\mathcal {L}}} 545: 537: 516: 510: 385: 379: 359: 353: 258: 252: 213: 207: 118: 95: 1: 3932:{\displaystyle s_{0}f+t_{0}g} 3221:is such a class on a variety 2922:More precisely, suppose that 2495:. If we take global sections 1175:. For the associated divisor 653:is in natural bijection with 5762:Geometry of algebraic curves 5372:O(1) on a projective variety 5064:, there results in the map: 3353:{\displaystyle {\tilde {D}}} 2972:. Consider the intersection 1280:using the rational function 455:divisor (algebraic geometry) 5811:10.1007/978-1-4612-1700-8_5 5570:to its corresponding point 3475:is viewed as a line bundle 2344:. In fact, any curve has a 1717:{\displaystyle \omega _{C}} 728:by associating the element 5917: 5028:{\displaystyle X-B\simeq } 3612: 2863:wrote his celebrated book 2739: 2668:Then, using any embedding 1961:, hence there is a degree 1210:{\displaystyle D_{s}=Z(s)} 15: 5878:, Springer-Verlag, 2004. 5770:10.1007/978-1-4757-5323-3 5657:bundle of principal parts 5129:Finally, when a basis of 2433:Consider the line bundle 2369:{\displaystyle g_{1}^{d}} 2333:{\displaystyle g_{1}^{3}} 2301:{\displaystyle g_{2}^{1}} 2208:{\displaystyle g_{2}^{1}} 2092:{\displaystyle g_{d}^{r}} 1850:then gives the degree of 1046:Consider the line bundle 267:{\displaystyle E=D+(f)\ } 49:linear system of divisors 29:linear system of divisors 4932:and that gives rise to 4737:replaced by the blow-up 3261:an irreducible curve on 2848:coming from sections of 2810:Cayley–Bacharach theorem 2574:. This is isomorphic to 2215:which is induced by the 1554:Linear systems on curves 463:holomorphic line bundles 163:Given a general variety 5676:Grothendieck, Alexandre 5180:For a closed immersion 4698:When the base locus of 4624:{\displaystyle \simeq } 2742:Linear system of conics 2736:Linear system of conics 759:{\displaystyle E=D+(f)} 20:from cohomology theory. 5756:; Cornalba, Maurizio; 5631: 5564: 5563:{\displaystyle x\in X} 5538: 5419: 5390: 5362: 5270: 5250: 5230: 5206: 5120: 5058: 5029: 4997: 4928:is the ideal sheaf of 4922: 4898: 4879: 4760: 4727: 4689: 4625: 4602: 4471: 4432: 4413: 4294: 4240: 4186: 4179: 4049: 4023: 3994: 3933: 3891: 3884: 3759: 3735: 3666: 3597: 3564: 3522: 3502: 3469: 3449: 3416: 3374: 3354: 3325: 3295: 3275: 3255: 3235: 3215: 3178: 3150: 3116: 3089: 3066: 2966: 2946: 2912: 2798:Kodaira–Spencer theory 2790: 2726: 2706: 2659: 2597: 2568: 2537: 2489: 2460: 2419: 2370: 2334: 2302: 2270: 2235: 2209: 2177: 2157: 2137: 2117: 2093: 2050: 1975: 1955: 1906: 1905:{\displaystyle 2g-2=2} 1871: 1840: 1814: 1772: 1750: 1718: 1691: 1615: 1595: 1572: 1551: 1544: 1441: 1418: 1398: 1332: 1312: 1274: 1211: 1165: 1102: 1073: 1019: 988: 940: 916: 870: 840: 810: 790: 760: 722: 647: 617: 597: 577: 553: 523: 486: 470:complete linear system 435: 412: 392: 366: 334: 314: 294: 268: 220: 177: 125: 40: 5632: 5565: 5544:. This sends a point 5539: 5420: 5391: 5376:A projective variety 5363: 5271: 5251: 5231: 5207: 5121: 5059: 5030: 4998: 4923: 4899: 4859: 4761: 4728: 4690: 4626: 4603: 4472: 4433: 4393: 4300:is surjective (here, 4295: 4241: 4180: 4057: 4050: 4024: 3995: 3934: 3885: 3767: 3760: 3736: 3667: 3598: 3565: 3523: 3503: 3470: 3450: 3417: 3375: 3355: 3326: 3296: 3276: 3256: 3236: 3216: 3179: 3151: 3117: 3090: 3067: 2967: 2947: 2913: 2791: 2727: 2707: 2660: 2598: 2569: 2538: 2490: 2461: 2420: 2371: 2335: 2303: 2271: 2236: 2210: 2178: 2158: 2138: 2118: 2094: 2051: 1976: 1956: 1907: 1872: 1870:{\displaystyle K_{C}} 1841: 1815: 1773: 1751: 1719: 1692: 1616: 1596: 1573: 1545: 1449: 1442: 1419: 1399: 1333: 1313: 1275: 1212: 1166: 1103: 1074: 1020: 989: 941: 917: 871: 841: 811: 791: 761: 723: 648: 618: 598: 578: 554: 524: 487: 436: 413: 393: 367: 335: 315: 295: 269: 221: 178: 126: 26: 5901:Geometry of divisors 5647:Brill–Noether theory 5574: 5548: 5429: 5400: 5380: 5280: 5260: 5240: 5216: 5184: 5071: 5039: 5010: 4939: 4908: 4774: 4741: 4706: 4646: 4615: 4492: 4442: 4308: 4254: 4209: 4062: 4033: 4004: 3943: 3897: 3772: 3745: 3676: 3631: 3574: 3532: 3512: 3479: 3459: 3429: 3384: 3364: 3335: 3305: 3285: 3265: 3245: 3225: 3195: 3168: 3130: 3099: 3079: 2979: 2956: 2926: 2896: 2824:as practised by the 2774: 2716: 2672: 2610: 2578: 2547: 2499: 2470: 2437: 2380: 2348: 2312: 2280: 2245: 2219: 2187: 2167: 2147: 2127: 2103: 2071: 1985: 1965: 1916: 1881: 1854: 1848:Riemann–Roch theorem 1824: 1783: 1762: 1740: 1728:Hyperelliptic curves 1701: 1625: 1605: 1585: 1562: 1454: 1428: 1408: 1342: 1322: 1284: 1221: 1179: 1112: 1083: 1050: 1009: 950: 926: 884: 856: 820: 800: 770: 732: 657: 627: 607: 587: 563: 533: 496: 476: 425: 402: 376: 365:{\displaystyle k(X)} 347: 324: 304: 284: 237: 187: 167: 92: 5803:Intersection Theory 5678:; DieudonnĂ©, Jean. 4564: 4529: 4048:{\displaystyle f,g} 3765:given by the scheme 3448:{\displaystyle |D|} 3324:{\displaystyle |D|} 3214:{\displaystyle |D|} 3149:{\displaystyle |D|} 2945:{\displaystyle |D|} 2911:{\displaystyle x=a} 2830:homological algebra 2822:birational geometry 2365: 2329: 2297: 2234:{\displaystyle 2:1} 2204: 2143:which is of degree 2099:is a linear system 2088: 1839:{\displaystyle g=2} 1734:hyperelliptic curve 839:{\displaystyle |D|} 789:{\displaystyle |D|} 646:{\displaystyle |D|} 603:. In the case that 552:{\displaystyle |D|} 391:{\displaystyle (f)} 228:linearly equivalent 18:Kodaira–Spencer map 5854:Algebraic Geometry 5758:Griffiths, Phillip 5731:10.1007/BF02392112 5627: 5560: 5534: 5415: 5386: 5358: 5266: 5246: 5226: 5202: 5156:. You can help by 5116: 5054: 5035:an open subset of 5025: 4993: 4918: 4894: 4756: 4723: 4685: 4621: 4598: 4550: 4515: 4467: 4428: 4290: 4236: 4175: 4045: 4019: 3990: 3929: 3880: 3755: 3731: 3662: 3615:Theorem of Bertini 3605:globally generated 3593: 3560: 3518: 3498: 3465: 3445: 3412: 3370: 3350: 3321: 3291: 3271: 3251: 3231: 3211: 3174: 3146: 3112: 3085: 3062: 3042: 2962: 2942: 2908: 2865:Algebraic Surfaces 2850:invertible sheaves 2842:free abelian group 2786: 2722: 2702: 2655: 2593: 2564: 2533: 2485: 2456: 2415: 2366: 2351: 2330: 2315: 2298: 2283: 2266: 2231: 2205: 2190: 2173: 2153: 2133: 2113: 2089: 2074: 2046: 1971: 1951: 1902: 1867: 1836: 1810: 1768: 1746: 1714: 1687: 1611: 1591: 1568: 1540: 1440:{\displaystyle xy} 1437: 1414: 1394: 1328: 1308: 1270: 1207: 1161: 1098: 1069: 1042:Linear equivalence 1031:linear equivalence 1015: 984: 936: 912: 866: 836: 806: 786: 756: 718: 643: 613: 593: 573: 549: 519: 482: 459:invertible sheaves 431: 408: 388: 362: 330: 310: 290: 277:for some non-zero 264: 216: 173: 121: 72:linear equivalence 45:algebraic geometry 41: 37:Apollonian circles 5779:978-1-4419-2825-2 5754:Arbarello, Enrico 5389:{\displaystyle X} 5269:{\displaystyle Y} 5249:{\displaystyle X} 5174: 5173: 5051: 4957: 4753: 4633:projective bundle 4169: 4089: 4068: 3874: 3788: 3521:{\displaystyle X} 3468:{\displaystyle X} 3373:{\displaystyle C} 3347: 3294:{\displaystyle C} 3274:{\displaystyle X} 3254:{\displaystyle C} 3234:{\displaystyle X} 3109: 3061: 3056: 3022: 3010: 2965:{\displaystyle X} 2857:algebraic surface 2725:{\displaystyle k} 2641: 2340:which are called 2176:{\displaystyle r} 2156:{\displaystyle d} 2136:{\displaystyle C} 1974:{\displaystyle 2} 1771:{\displaystyle 2} 1749:{\displaystyle C} 1614:{\displaystyle K} 1594:{\displaystyle g} 1571:{\displaystyle C} 1534: 1417:{\displaystyle E} 1331:{\displaystyle D} 1018:{\displaystyle D} 809:{\displaystyle f} 616:{\displaystyle X} 596:{\displaystyle D} 508: 485:{\displaystyle X} 434:{\displaystyle X} 411:{\displaystyle f} 333:{\displaystyle f} 313:{\displaystyle X} 293:{\displaystyle f} 279:rational function 263: 205: 176:{\displaystyle X} 5908: 5846: 5815: 5814: 5798: 5792: 5791: 5750: 5744: 5743: 5733: 5718:Acta Mathematica 5709: 5703: 5700: 5683: 5673: 5652:Lefschetz pencil 5636: 5634: 5633: 5628: 5626: 5625: 5620: 5608: 5607: 5589: 5588: 5569: 5567: 5566: 5561: 5543: 5541: 5540: 5535: 5524: 5523: 5522: 5521: 5516: 5509: 5508: 5501: 5500: 5499: 5498: 5497: 5496: 5491: 5484: 5483: 5471: 5470: 5465: 5464: 5445: 5444: 5439: 5438: 5424: 5422: 5421: 5416: 5414: 5413: 5408: 5395: 5393: 5392: 5387: 5367: 5365: 5364: 5359: 5354: 5353: 5341: 5327: 5326: 5305: 5304: 5295: 5294: 5275: 5273: 5272: 5267: 5255: 5253: 5252: 5247: 5235: 5233: 5232: 5227: 5225: 5224: 5211: 5209: 5208: 5203: 5169: 5166: 5148: 5141: 5125: 5123: 5122: 5117: 5109: 5108: 5096: 5063: 5061: 5060: 5055: 5053: 5052: 5044: 5034: 5032: 5031: 5026: 5002: 5000: 4999: 4994: 4980: 4979: 4967: 4959: 4958: 4950: 4927: 4925: 4924: 4919: 4917: 4916: 4903: 4901: 4900: 4895: 4893: 4892: 4887: 4886: 4878: 4873: 4852: 4851: 4839: 4838: 4837: 4836: 4831: 4830: 4815: 4814: 4809: 4808: 4801: 4800: 4765: 4763: 4762: 4757: 4755: 4754: 4746: 4732: 4730: 4729: 4724: 4722: 4721: 4716: 4715: 4694: 4692: 4691: 4686: 4678: 4677: 4665: 4630: 4628: 4627: 4622: 4607: 4605: 4604: 4599: 4588: 4587: 4575: 4563: 4558: 4546: 4528: 4523: 4511: 4483:closed immersion 4476: 4474: 4473: 4468: 4454: 4453: 4437: 4435: 4434: 4429: 4427: 4426: 4421: 4420: 4412: 4407: 4386: 4385: 4373: 4372: 4371: 4370: 4365: 4364: 4349: 4348: 4343: 4342: 4335: 4334: 4299: 4297: 4296: 4291: 4283: 4282: 4277: 4276: 4269: 4268: 4245: 4243: 4242: 4237: 4184: 4182: 4181: 4176: 4174: 4170: 4168: 4151: 4147: 4146: 4128: 4127: 4096: 4090: 4087: 4079: 4078: 4069: 4066: 4054: 4052: 4051: 4046: 4028: 4026: 4025: 4020: 4018: 4017: 4012: 4000:is a divisor in 3999: 3997: 3996: 3991: 3989: 3988: 3983: 3971: 3970: 3958: 3957: 3938: 3936: 3935: 3930: 3925: 3924: 3909: 3908: 3889: 3887: 3886: 3881: 3879: 3875: 3873: 3850: 3846: 3845: 3827: 3826: 3795: 3789: 3786: 3781: 3780: 3764: 3762: 3761: 3756: 3754: 3753: 3740: 3738: 3737: 3732: 3718: 3717: 3708: 3707: 3702: 3671: 3669: 3668: 3663: 3661: 3660: 3655: 3646: 3645: 3626:Lefschetz pencil 3602: 3600: 3599: 3594: 3583: 3582: 3569: 3567: 3566: 3561: 3556: 3548: 3527: 3525: 3524: 3519: 3507: 3505: 3504: 3499: 3488: 3487: 3474: 3472: 3471: 3466: 3454: 3452: 3451: 3446: 3444: 3436: 3421: 3419: 3418: 3413: 3399: 3391: 3379: 3377: 3376: 3371: 3359: 3357: 3356: 3351: 3349: 3348: 3340: 3330: 3328: 3327: 3322: 3320: 3312: 3300: 3298: 3297: 3292: 3280: 3278: 3277: 3272: 3260: 3258: 3257: 3252: 3240: 3238: 3237: 3232: 3220: 3218: 3217: 3212: 3210: 3202: 3183: 3181: 3180: 3175: 3158:scheme-theoretic 3155: 3153: 3152: 3147: 3145: 3137: 3121: 3119: 3118: 3113: 3111: 3110: 3107: 3094: 3092: 3091: 3086: 3071: 3069: 3068: 3063: 3059: 3058: 3057: 3054: 3041: 3040: 3032: 3024: 3023: 3020: 3003: 2995: 2971: 2969: 2968: 2963: 2951: 2949: 2948: 2943: 2941: 2933: 2917: 2915: 2914: 2909: 2846:Cartier divisors 2795: 2793: 2792: 2787: 2731: 2729: 2728: 2723: 2711: 2709: 2708: 2703: 2701: 2700: 2695: 2686: 2685: 2680: 2664: 2662: 2661: 2656: 2648: 2647: 2646: 2637: 2625: 2602: 2600: 2599: 2594: 2592: 2591: 2586: 2573: 2571: 2570: 2565: 2554: 2542: 2540: 2539: 2534: 2520: 2519: 2494: 2492: 2491: 2486: 2484: 2483: 2478: 2465: 2463: 2462: 2457: 2446: 2445: 2424: 2422: 2421: 2416: 2399: 2375: 2373: 2372: 2367: 2364: 2359: 2339: 2337: 2336: 2331: 2328: 2323: 2307: 2305: 2304: 2299: 2296: 2291: 2275: 2273: 2272: 2267: 2265: 2264: 2259: 2240: 2238: 2237: 2232: 2214: 2212: 2211: 2206: 2203: 2198: 2182: 2180: 2179: 2174: 2162: 2160: 2159: 2154: 2142: 2140: 2139: 2134: 2122: 2120: 2119: 2114: 2112: 2111: 2098: 2096: 2095: 2090: 2087: 2082: 2055: 2053: 2052: 2047: 2039: 2038: 2020: 2019: 2007: 1999: 1998: 1993: 1980: 1978: 1977: 1972: 1960: 1958: 1957: 1952: 1941: 1940: 1928: 1927: 1911: 1909: 1908: 1903: 1876: 1874: 1873: 1868: 1866: 1865: 1845: 1843: 1842: 1837: 1819: 1817: 1816: 1811: 1809: 1808: 1803: 1777: 1775: 1774: 1769: 1755: 1753: 1752: 1747: 1723: 1721: 1720: 1715: 1713: 1712: 1696: 1694: 1693: 1688: 1680: 1679: 1661: 1660: 1648: 1640: 1632: 1620: 1618: 1617: 1612: 1600: 1598: 1597: 1592: 1577: 1575: 1574: 1569: 1549: 1547: 1546: 1541: 1539: 1535: 1533: 1525: 1524: 1523: 1511: 1510: 1498: 1497: 1485: 1484: 1474: 1446: 1444: 1443: 1438: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1393: 1392: 1380: 1379: 1367: 1366: 1354: 1353: 1337: 1335: 1334: 1329: 1317: 1315: 1314: 1309: 1307: 1303: 1299: 1279: 1277: 1276: 1271: 1257: 1256: 1247: 1246: 1241: 1216: 1214: 1213: 1208: 1191: 1190: 1173:quadric surfaces 1170: 1168: 1167: 1162: 1148: 1147: 1138: 1137: 1132: 1107: 1105: 1104: 1099: 1097: 1096: 1091: 1078: 1076: 1075: 1070: 1059: 1058: 1027:Cartier divisors 1024: 1022: 1021: 1016: 1003:invertible sheaf 993: 991: 990: 985: 965: 964: 945: 943: 942: 937: 935: 934: 921: 919: 918: 913: 905: 904: 875: 873: 872: 867: 865: 864: 845: 843: 842: 837: 835: 827: 815: 813: 812: 807: 795: 793: 792: 787: 785: 777: 765: 763: 762: 757: 727: 725: 724: 719: 714: 713: 704: 681: 680: 652: 650: 649: 644: 642: 634: 622: 620: 619: 614: 602: 600: 599: 594: 582: 580: 579: 574: 572: 571: 558: 556: 555: 550: 548: 540: 529:. It is denoted 528: 526: 525: 520: 509: 506: 491: 489: 488: 483: 447:Cartier divisors 440: 438: 437: 432: 417: 415: 414: 409: 397: 395: 394: 389: 371: 369: 368: 363: 339: 337: 336: 331: 319: 317: 316: 311: 299: 297: 296: 291: 273: 271: 270: 265: 261: 225: 223: 222: 217: 206: 203: 182: 180: 179: 174: 148:, respectively. 130: 128: 127: 122: 117: 116: 111: 110: 68:projective plane 64:algebraic curves 53:family of curves 33:family of curves 5916: 5915: 5911: 5910: 5909: 5907: 5906: 5905: 5891: 5890: 5889: 5858:Springer-Verlag 5843: 5823: 5819: 5818: 5800: 5799: 5795: 5780: 5752: 5751: 5747: 5711: 5710: 5706: 5701: 5686: 5674: 5670: 5665: 5643: 5615: 5599: 5580: 5572: 5571: 5546: 5545: 5511: 5502: 5486: 5477: 5472: 5458: 5432: 5427: 5426: 5403: 5398: 5397: 5378: 5377: 5374: 5315: 5283: 5278: 5277: 5258: 5257: 5238: 5237: 5214: 5213: 5182: 5181: 5170: 5164: 5161: 5154:needs expansion 5139: 5100: 5069: 5068: 5037: 5036: 5008: 5007: 4971: 4937: 4936: 4906: 4905: 4880: 4840: 4824: 4819: 4802: 4792: 4772: 4771: 4739: 4738: 4709: 4704: 4703: 4669: 4644: 4643: 4613: 4612: 4579: 4490: 4489: 4445: 4440: 4439: 4414: 4374: 4358: 4353: 4336: 4326: 4306: 4305: 4270: 4260: 4252: 4251: 4207: 4206: 4191: 4152: 4138: 4119: 4097: 4091: 4060: 4059: 4031: 4030: 4007: 4002: 4001: 3978: 3962: 3949: 3941: 3940: 3916: 3900: 3895: 3894: 3851: 3837: 3818: 3796: 3790: 3770: 3769: 3743: 3742: 3697: 3674: 3673: 3650: 3629: 3628: 3622: 3617: 3572: 3571: 3530: 3529: 3510: 3509: 3477: 3476: 3457: 3456: 3427: 3426: 3382: 3381: 3362: 3361: 3333: 3332: 3303: 3302: 3283: 3282: 3263: 3262: 3243: 3242: 3223: 3222: 3193: 3192: 3166: 3165: 3162:structure sheaf 3128: 3127: 3102: 3097: 3096: 3077: 3076: 3049: 3015: 2977: 2976: 2954: 2953: 2924: 2923: 2894: 2893: 2881: 2834:singular points 2818: 2806: 2772: 2771: 2749: 2744: 2738: 2714: 2713: 2690: 2675: 2670: 2669: 2627: 2620: 2608: 2607: 2581: 2576: 2575: 2545: 2544: 2497: 2496: 2473: 2468: 2467: 2435: 2434: 2431: 2378: 2377: 2346: 2345: 2342:trigonal curves 2310: 2309: 2278: 2277: 2254: 2243: 2242: 2217: 2216: 2185: 2184: 2165: 2164: 2145: 2144: 2125: 2124: 2101: 2100: 2069: 2068: 2065: 2063: 2030: 2011: 1988: 1983: 1982: 1963: 1962: 1932: 1919: 1914: 1913: 1879: 1878: 1857: 1852: 1851: 1822: 1821: 1820:. For the case 1798: 1781: 1780: 1760: 1759: 1738: 1737: 1730: 1704: 1699: 1698: 1671: 1652: 1623: 1622: 1603: 1602: 1583: 1582: 1560: 1559: 1556: 1526: 1515: 1502: 1489: 1476: 1475: 1469: 1452: 1451: 1426: 1425: 1406: 1405: 1384: 1371: 1358: 1345: 1340: 1339: 1320: 1319: 1291: 1287: 1282: 1281: 1236: 1219: 1218: 1182: 1177: 1176: 1127: 1110: 1109: 1108:whose sections 1086: 1081: 1080: 1048: 1047: 1044: 1039: 1007: 1006: 948: 947: 924: 923: 882: 881: 854: 853: 818: 817: 798: 797: 768: 767: 730: 729: 705: 655: 654: 625: 624: 605: 604: 585: 584: 561: 560: 531: 530: 494: 493: 474: 473: 443:singular points 423: 422: 400: 399: 374: 373: 345: 344: 322: 321: 302: 301: 282: 281: 235: 234: 185: 184: 183:, two divisors 165: 164: 161: 104: 90: 89: 21: 12: 11: 5: 5914: 5912: 5904: 5903: 5893: 5892: 5888: 5887: 5872:Lazarsfeld, R. 5869: 5850:Hartshorne, R. 5847: 5841: 5820: 5817: 5816: 5793: 5778: 5745: 5704: 5684: 5667: 5666: 5664: 5661: 5660: 5659: 5654: 5649: 5642: 5639: 5624: 5619: 5614: 5611: 5606: 5602: 5598: 5595: 5592: 5587: 5583: 5579: 5559: 5556: 5553: 5533: 5530: 5527: 5520: 5515: 5507: 5495: 5490: 5482: 5475: 5469: 5463: 5457: 5454: 5451: 5448: 5443: 5437: 5412: 5407: 5385: 5373: 5370: 5357: 5352: 5347: 5344: 5340: 5336: 5333: 5330: 5325: 5322: 5318: 5314: 5311: 5308: 5303: 5298: 5293: 5290: 5286: 5265: 5245: 5223: 5201: 5198: 5195: 5192: 5189: 5172: 5171: 5151: 5149: 5138: 5135: 5127: 5126: 5115: 5112: 5107: 5103: 5099: 5095: 5091: 5088: 5085: 5082: 5079: 5076: 5050: 5047: 5024: 5021: 5018: 5015: 5004: 5003: 4992: 4989: 4986: 4983: 4978: 4974: 4970: 4966: 4962: 4956: 4953: 4947: 4944: 4915: 4891: 4885: 4877: 4872: 4869: 4866: 4862: 4858: 4855: 4850: 4847: 4843: 4835: 4829: 4822: 4818: 4813: 4807: 4799: 4795: 4791: 4788: 4785: 4782: 4779: 4752: 4749: 4720: 4714: 4696: 4695: 4684: 4681: 4676: 4672: 4668: 4664: 4660: 4657: 4654: 4651: 4620: 4609: 4608: 4597: 4594: 4591: 4586: 4582: 4578: 4574: 4570: 4567: 4562: 4557: 4553: 4549: 4545: 4541: 4538: 4535: 4532: 4527: 4522: 4518: 4514: 4510: 4506: 4503: 4500: 4497: 4466: 4463: 4460: 4457: 4452: 4448: 4425: 4419: 4411: 4406: 4403: 4400: 4396: 4392: 4389: 4384: 4381: 4377: 4369: 4363: 4356: 4352: 4347: 4341: 4333: 4329: 4325: 4322: 4319: 4316: 4313: 4289: 4286: 4281: 4275: 4267: 4263: 4259: 4235: 4232: 4229: 4226: 4223: 4220: 4217: 4214: 4190: 4187: 4173: 4167: 4164: 4161: 4158: 4155: 4150: 4145: 4141: 4137: 4134: 4131: 4126: 4122: 4118: 4115: 4112: 4109: 4106: 4103: 4100: 4094: 4085: 4082: 4077: 4072: 4044: 4041: 4038: 4016: 4011: 3987: 3982: 3977: 3974: 3969: 3965: 3961: 3956: 3952: 3948: 3928: 3923: 3919: 3915: 3912: 3907: 3903: 3878: 3872: 3869: 3866: 3863: 3860: 3857: 3854: 3849: 3844: 3840: 3836: 3833: 3830: 3825: 3821: 3817: 3814: 3811: 3808: 3805: 3802: 3799: 3793: 3784: 3779: 3752: 3730: 3727: 3724: 3721: 3716: 3711: 3706: 3701: 3696: 3693: 3690: 3687: 3684: 3681: 3659: 3654: 3649: 3644: 3639: 3636: 3621: 3618: 3592: 3589: 3586: 3581: 3559: 3555: 3551: 3547: 3543: 3540: 3537: 3517: 3497: 3494: 3491: 3486: 3464: 3443: 3439: 3435: 3411: 3408: 3405: 3402: 3398: 3394: 3390: 3369: 3346: 3343: 3319: 3315: 3311: 3290: 3270: 3250: 3230: 3209: 3205: 3201: 3173: 3144: 3140: 3136: 3105: 3084: 3073: 3072: 3052: 3048: 3045: 3039: 3035: 3031: 3027: 3018: 3013: 3009: 3006: 3002: 2998: 2994: 2990: 2987: 2984: 2961: 2940: 2936: 2932: 2907: 2904: 2901: 2880: 2877: 2873:Henri PoincarĂ© 2817: 2814: 2805: 2804:Other examples 2802: 2785: 2782: 2779: 2748: 2745: 2740:Main article: 2737: 2734: 2721: 2699: 2694: 2689: 2684: 2679: 2666: 2665: 2654: 2651: 2645: 2640: 2636: 2633: 2630: 2624: 2618: 2615: 2590: 2585: 2563: 2560: 2557: 2553: 2532: 2529: 2526: 2523: 2518: 2513: 2510: 2507: 2504: 2482: 2477: 2455: 2452: 2449: 2444: 2430: 2427: 2414: 2411: 2408: 2405: 2402: 2398: 2394: 2391: 2388: 2385: 2363: 2358: 2354: 2327: 2322: 2318: 2295: 2290: 2286: 2263: 2258: 2253: 2250: 2230: 2227: 2224: 2202: 2197: 2193: 2172: 2163:and dimension 2152: 2132: 2110: 2086: 2081: 2077: 2064: 2061: 2058: 2045: 2042: 2037: 2033: 2029: 2026: 2023: 2018: 2014: 2010: 2006: 2002: 1997: 1992: 1970: 1950: 1947: 1944: 1939: 1935: 1931: 1926: 1922: 1901: 1898: 1895: 1892: 1889: 1886: 1864: 1860: 1835: 1832: 1829: 1807: 1802: 1797: 1794: 1791: 1788: 1767: 1745: 1729: 1726: 1711: 1707: 1686: 1683: 1678: 1674: 1670: 1667: 1664: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1610: 1590: 1567: 1555: 1552: 1538: 1532: 1529: 1522: 1518: 1514: 1509: 1505: 1501: 1496: 1492: 1488: 1483: 1479: 1472: 1468: 1465: 1462: 1459: 1436: 1433: 1413: 1391: 1387: 1383: 1378: 1374: 1370: 1365: 1361: 1357: 1352: 1348: 1327: 1306: 1302: 1298: 1294: 1290: 1269: 1266: 1263: 1260: 1255: 1250: 1245: 1240: 1235: 1232: 1229: 1226: 1206: 1203: 1200: 1197: 1194: 1189: 1185: 1160: 1157: 1154: 1151: 1146: 1141: 1136: 1131: 1126: 1123: 1120: 1117: 1095: 1090: 1068: 1065: 1062: 1057: 1043: 1040: 1038: 1035: 1014: 983: 980: 977: 974: 971: 968: 963: 958: 955: 933: 911: 908: 903: 898: 895: 892: 889: 863: 834: 830: 826: 805: 784: 780: 776: 755: 752: 749: 746: 743: 740: 737: 717: 712: 708: 703: 699: 696: 693: 690: 687: 684: 679: 674: 671: 668: 665: 662: 641: 637: 633: 612: 592: 570: 547: 543: 539: 518: 515: 512: 504: 501: 481: 465:); see below. 430: 407: 387: 384: 381: 361: 358: 355: 352: 342:function field 329: 309: 289: 275: 274: 260: 257: 254: 251: 248: 245: 242: 215: 212: 209: 201: 198: 195: 192: 172: 160: 157: 120: 115: 109: 103: 100: 97: 13: 10: 9: 6: 4: 3: 2: 5913: 5902: 5899: 5898: 5896: 5885: 5884:3-540-22533-1 5881: 5877: 5873: 5870: 5867: 5866:0-387-90244-9 5863: 5859: 5855: 5851: 5848: 5844: 5842:0-471-05059-8 5838: 5834: 5830: 5826: 5822: 5821: 5812: 5808: 5804: 5797: 5794: 5789: 5785: 5781: 5775: 5771: 5767: 5763: 5759: 5755: 5749: 5746: 5741: 5737: 5732: 5727: 5723: 5719: 5715: 5708: 5705: 5699: 5697: 5695: 5693: 5691: 5689: 5685: 5681: 5677: 5672: 5669: 5662: 5658: 5655: 5653: 5650: 5648: 5645: 5644: 5640: 5638: 5622: 5612: 5604: 5600: 5596: 5593: 5590: 5585: 5581: 5557: 5554: 5551: 5528: 5518: 5493: 5473: 5467: 5455: 5449: 5441: 5410: 5383: 5371: 5369: 5345: 5342: 5331: 5323: 5320: 5316: 5309: 5291: 5288: 5284: 5276:, defined as 5263: 5243: 5199: 5193: 5190: 5187: 5178: 5168: 5159: 5155: 5152:This section 5150: 5147: 5143: 5142: 5136: 5134: 5132: 5113: 5105: 5101: 5086: 5083: 5080: 5077: 5074: 5067: 5066: 5065: 5048: 5045: 5022: 5019: 5016: 5013: 4990: 4987: 4984: 4976: 4972: 4954: 4951: 4945: 4942: 4935: 4934: 4933: 4931: 4889: 4870: 4867: 4864: 4860: 4848: 4845: 4841: 4833: 4820: 4811: 4797: 4793: 4789: 4780: 4777: 4769: 4750: 4747: 4736: 4718: 4701: 4682: 4674: 4670: 4655: 4652: 4649: 4642: 4641: 4640: 4638: 4634: 4618: 4595: 4592: 4584: 4580: 4568: 4560: 4555: 4551: 4539: 4533: 4530: 4525: 4520: 4516: 4501: 4498: 4495: 4488: 4487: 4486: 4484: 4481:, there is a 4480: 4479:relative Proj 4464: 4461: 4458: 4455: 4450: 4446: 4423: 4404: 4401: 4398: 4394: 4382: 4379: 4375: 4367: 4354: 4345: 4331: 4327: 4323: 4314: 4311: 4303: 4287: 4279: 4265: 4261: 4257: 4249: 4230: 4227: 4224: 4215: 4212: 4204: 4200: 4195: 4188: 4185: 4171: 4162: 4159: 4156: 4143: 4139: 4135: 4132: 4129: 4124: 4120: 4110: 4107: 4104: 4098: 4092: 4083: 4056: 4042: 4039: 4036: 4014: 3985: 3975: 3967: 3963: 3959: 3954: 3950: 3926: 3921: 3917: 3913: 3910: 3905: 3901: 3890: 3876: 3867: 3864: 3861: 3858: 3855: 3842: 3838: 3834: 3831: 3828: 3823: 3819: 3809: 3806: 3803: 3797: 3791: 3782: 3766: 3722: 3709: 3704: 3688: 3685: 3682: 3679: 3657: 3637: 3634: 3627: 3624:Consider the 3619: 3616: 3611: 3608: 3606: 3587: 3549: 3538: 3535: 3515: 3492: 3462: 3437: 3423: 3409: 3406: 3403: 3400: 3392: 3367: 3341: 3313: 3288: 3268: 3248: 3228: 3203: 3190: 3185: 3171: 3163: 3159: 3138: 3125: 3103: 3082: 3050: 3046: 3043: 3033: 3025: 3016: 3011: 3007: 2996: 2985: 2982: 2975: 2974: 2973: 2959: 2934: 2920: 2905: 2902: 2899: 2890: 2886: 2878: 2876: 2874: 2870: 2866: 2862: 2858: 2853: 2851: 2847: 2843: 2839: 2838:Weil divisors 2835: 2831: 2827: 2823: 2815: 2813: 2811: 2803: 2801: 2799: 2783: 2777: 2769: 2768:normal bundle 2764: 2762: 2758: 2754: 2746: 2743: 2735: 2733: 2719: 2697: 2682: 2652: 2649: 2638: 2634: 2631: 2628: 2616: 2613: 2606: 2605: 2604: 2588: 2558: 2524: 2505: 2502: 2480: 2450: 2428: 2426: 2412: 2409: 2406: 2400: 2396: 2392: 2386: 2383: 2361: 2356: 2352: 2343: 2325: 2320: 2316: 2293: 2288: 2284: 2261: 2248: 2228: 2225: 2222: 2200: 2195: 2191: 2170: 2150: 2130: 2084: 2079: 2075: 2059: 2057: 2035: 2031: 2027: 2024: 2016: 2012: 2000: 1995: 1968: 1948: 1945: 1937: 1933: 1924: 1920: 1899: 1896: 1893: 1890: 1887: 1884: 1862: 1858: 1849: 1833: 1830: 1827: 1805: 1792: 1789: 1786: 1779: 1765: 1743: 1735: 1727: 1725: 1709: 1705: 1676: 1672: 1668: 1665: 1657: 1653: 1641: 1633: 1608: 1588: 1581: 1565: 1553: 1550: 1536: 1530: 1527: 1520: 1516: 1512: 1507: 1503: 1499: 1494: 1490: 1486: 1481: 1477: 1470: 1466: 1463: 1460: 1457: 1448: 1434: 1431: 1411: 1389: 1385: 1381: 1376: 1372: 1368: 1363: 1359: 1355: 1350: 1346: 1325: 1304: 1300: 1296: 1292: 1288: 1261: 1248: 1243: 1227: 1224: 1201: 1195: 1192: 1187: 1183: 1174: 1152: 1139: 1134: 1118: 1115: 1093: 1063: 1041: 1036: 1034: 1032: 1028: 1012: 1004: 1000: 995: 981: 978: 975: 972: 969: 966: 956: 953: 909: 896: 893: 879: 852: 851:linear system 847: 828: 803: 778: 750: 744: 741: 738: 735: 715: 710: 706: 701: 691: 685: 672: 669: 635: 610: 590: 541: 513: 502: 499: 479: 471: 466: 464: 460: 456: 452: 451:Weil divisors 448: 444: 428: 421:Note that if 419: 405: 382: 356: 350: 343: 327: 307: 287: 280: 255: 249: 246: 243: 240: 233: 232: 231: 229: 210: 199: 196: 193: 190: 170: 158: 156: 154: 149: 147: 143: 139: 138: 132: 113: 101: 98: 88: 84: 81:on a general 80: 77: 73: 69: 65: 61: 60:linear system 56: 54: 50: 46: 38: 34: 30: 25: 19: 5875: 5853: 5832: 5825:P. Griffiths 5805:. Springer. 5802: 5796: 5761: 5748: 5721: 5717: 5707: 5679: 5671: 5396:embedded in 5375: 5368:(page 158). 5179: 5175: 5162: 5158:adding to it 5153: 5130: 5128: 5005: 4929: 4767: 4734: 4699: 4697: 4636: 4610: 4301: 4247: 4202: 4198: 4196: 4192: 4058: 3939:for a fixed 3892: 3768: 3623: 3609: 3424: 3186: 3184:should be). 3123: 3074: 2921: 2884: 2882: 2868: 2864: 2854: 2819: 2807: 2765: 2760: 2756: 2755:for a curve 2752: 2750: 2667: 2432: 2066: 1731: 1557: 1450: 1045: 1030: 996: 877: 850: 848: 469: 467: 420: 276: 227: 162: 152: 150: 145: 141: 135: 133: 87:ringed space 78: 71: 59: 57: 48: 42: 35:, as in the 28: 5724:: 163–176. 5165:August 2019 2123:on a curve 1736:is a curve 999:line bundle 159:Definitions 153:Kodaira map 5663:References 3613:See also: 3124:base locus 2885:base locus 2879:Base locus 1621:, denoted 85:or even a 5829:J. Harris 5740:0001-5962 5613:∈ 5594:⋯ 5555:∈ 5474:⊗ 5346:∈ 5321:− 5289:− 5197:↪ 5106:∗ 5090:→ 5084:− 5049:~ 5023:≃ 5017:− 4985:× 4977:∗ 4961:↪ 4955:~ 4876:∞ 4861:⨁ 4857:→ 4846:− 4821:⊗ 4794:⊗ 4781:⁡ 4751:~ 4675:∗ 4659:→ 4619:≃ 4593:× 4585:∗ 4561:∗ 4540:≃ 4531:⊗ 4526:∗ 4505:↪ 4462:× 4410:∞ 4395:⨁ 4391:→ 4380:− 4355:⊗ 4328:⊗ 4315:⁡ 4285:→ 4262:⊗ 4219:Γ 4216:⊂ 4133:… 3976:∈ 3832:… 3692:Γ 3689:∈ 3648:→ 3539:⁡ 3407:≥ 3401:⋅ 3345:~ 3047:⁡ 3026:∈ 3012:⋂ 2986:⁡ 2781:↪ 2688:→ 2650:− 2509:Γ 2387:≥ 2252:→ 2032:ω 1891:− 1796:→ 1706:ω 1673:ω 1231:Γ 1228:∈ 1122:Γ 1119:∈ 979:− 973:⁡ 957:⁡ 888:Γ 711:∗ 686:∖ 664:Γ 503:∈ 200:∈ 5895:Category 5831:(1994). 5760:(2011). 5641:See also 2840:(in the 1778:morphism 1037:Examples 76:divisors 5788:2807457 5682:, 21.3. 3620:Example 3189:nefness 2889:variety 2861:Zariski 1981:map to 1756:with a 1171:define 372:. Here 340:of the 144:, or a 66:in the 5882:  5864:  5839:  5786:  5776:  5738:  5680:EGA IV 5006:Since 4904:where 4611:where 3241:, and 3075:where 3060:  2603:where 1758:degre 559:. Let 453:: see 262:  137:pencil 83:scheme 3741:, so 3281:. If 2466:over 2241:-map 1580:genus 5880:ISBN 5862:ISBN 5837:ISBN 5774:ISBN 5736:ISSN 4205:and 4197:Let 4088:Proj 4055:, so 3787:Proj 3083:Supp 3044:Supp 2883:The 2808:The 2376:for 1912:and 441:has 226:are 140:, a 47:, a 5807:doi 5766:doi 5726:doi 5722:132 5256:to 5236:on 5160:. 4778:Sym 4312:Sym 3508:on 3164:of 3126:of 3108:eff 3055:eff 3021:eff 2770:to 1877:is 1578:of 1079:on 1001:or 970:dim 954:dim 880:of 766:of 507:Div 472:on 461:or 300:on 230:if 204:Div 146:web 142:net 74:of 62:of 43:In 5897:: 5874:, 5856:, 5852:, 5827:; 5784:MR 5782:. 5772:. 5734:. 5720:. 5716:. 5687:^ 5637:. 4485:: 4067:Bl 3536:Bl 3172:Bl 3008::= 2983:Bl 2852:. 2763:. 2732:. 2425:. 2067:A 2056:. 1724:. 994:. 849:A 468:A 449:, 418:. 155:. 131:. 27:A 5886:. 5868:. 5845:. 5813:. 5809:: 5790:. 5768:: 5742:. 5728:: 5623:r 5618:P 5610:] 5605:r 5601:x 5597:: 5591:: 5586:0 5582:x 5578:[ 5558:X 5552:x 5532:) 5529:1 5526:( 5519:r 5514:P 5506:O 5494:r 5489:P 5481:O 5468:X 5462:O 5456:= 5453:) 5450:1 5447:( 5442:X 5436:O 5411:r 5406:P 5384:X 5356:} 5351:d 5343:D 5339:| 5335:) 5332:D 5329:( 5324:1 5317:f 5313:{ 5310:= 5307:) 5302:d 5297:( 5292:1 5285:f 5264:Y 5244:X 5222:d 5200:X 5194:Y 5191:: 5188:f 5167:) 5163:( 5131:V 5114:. 5111:) 5102:V 5098:( 5094:P 5087:B 5081:X 5078:: 5075:f 5046:X 5020:B 5014:X 4991:. 4988:X 4982:) 4973:V 4969:( 4965:P 4952:X 4946:: 4943:i 4930:B 4914:I 4890:n 4884:I 4871:0 4868:= 4865:n 4854:) 4849:1 4842:L 4834:X 4828:O 4817:) 4812:X 4806:O 4798:k 4790:V 4787:( 4784:( 4768:B 4748:X 4735:X 4719:X 4713:O 4700:V 4683:. 4680:) 4671:V 4667:( 4663:P 4656:X 4653:: 4650:f 4637:i 4596:X 4590:) 4581:V 4577:( 4573:P 4569:= 4566:) 4556:X 4552:V 4548:( 4544:P 4537:) 4534:L 4521:X 4517:V 4513:( 4509:P 4502:X 4499:: 4496:i 4465:X 4459:V 4456:= 4451:X 4447:V 4424:X 4418:O 4405:0 4402:= 4399:n 4388:) 4383:1 4376:L 4368:X 4362:O 4351:) 4346:X 4340:O 4332:k 4324:V 4321:( 4318:( 4302:k 4288:L 4280:X 4274:O 4266:k 4258:V 4248:V 4234:) 4231:L 4228:, 4225:X 4222:( 4213:V 4203:X 4199:L 4172:) 4166:) 4163:g 4160:, 4157:f 4154:( 4149:] 4144:n 4140:x 4136:, 4130:, 4125:0 4121:x 4117:[ 4114:] 4111:t 4108:, 4105:s 4102:[ 4099:k 4093:( 4084:= 4081:) 4076:X 4071:( 4043:g 4040:, 4037:f 4015:n 4010:P 3986:1 3981:P 3973:] 3968:0 3964:t 3960:: 3955:0 3951:s 3947:[ 3927:g 3922:0 3918:t 3914:+ 3911:f 3906:0 3902:s 3877:) 3871:) 3868:g 3865:t 3862:+ 3859:f 3856:s 3853:( 3848:] 3843:n 3839:x 3835:, 3829:, 3824:0 3820:x 3816:[ 3813:] 3810:t 3807:, 3804:s 3801:[ 3798:k 3792:( 3783:= 3778:X 3751:X 3729:) 3726:) 3723:d 3720:( 3715:O 3710:, 3705:n 3700:P 3695:( 3686:g 3683:, 3680:f 3658:1 3653:P 3643:X 3638:: 3635:p 3591:) 3588:D 3585:( 3580:O 3558:) 3554:| 3550:D 3546:| 3542:( 3516:X 3496:) 3493:D 3490:( 3485:O 3463:X 3442:| 3438:D 3434:| 3410:0 3404:C 3397:| 3393:D 3389:| 3368:C 3342:D 3318:| 3314:D 3310:| 3289:C 3269:X 3249:C 3229:X 3208:| 3204:D 3200:| 3143:| 3139:D 3135:| 3104:D 3051:D 3038:| 3034:D 3030:| 3017:D 3005:) 3001:| 2997:D 2993:| 2989:( 2960:X 2939:| 2935:D 2931:| 2906:a 2903:= 2900:x 2784:Y 2778:C 2761:C 2757:C 2753:Y 2720:k 2698:N 2693:P 2683:k 2678:P 2653:1 2644:) 2639:n 2635:d 2632:+ 2629:n 2623:( 2617:= 2614:N 2589:N 2584:P 2562:) 2559:V 2556:( 2552:P 2531:) 2528:) 2525:d 2522:( 2517:O 2512:( 2506:= 2503:V 2481:n 2476:P 2454:) 2451:d 2448:( 2443:O 2413:1 2410:+ 2407:g 2404:) 2401:2 2397:/ 2393:1 2390:( 2384:d 2362:d 2357:1 2353:g 2326:3 2321:1 2317:g 2294:1 2289:2 2285:g 2262:1 2257:P 2249:C 2229:1 2226:: 2223:2 2201:1 2196:2 2192:g 2171:r 2151:d 2131:C 2109:d 2085:r 2080:d 2076:g 2062:d 2060:g 2044:) 2041:) 2036:C 2028:, 2025:C 2022:( 2017:0 2013:H 2009:( 2005:P 2001:= 1996:1 1991:P 1969:2 1949:2 1946:= 1943:) 1938:C 1934:K 1930:( 1925:0 1921:h 1900:2 1897:= 1894:2 1888:g 1885:2 1863:C 1859:K 1834:2 1831:= 1828:g 1806:1 1801:P 1793:C 1790:: 1787:f 1766:2 1744:C 1710:C 1685:) 1682:) 1677:C 1669:, 1666:C 1663:( 1658:0 1654:H 1650:( 1646:P 1642:= 1638:| 1634:K 1630:| 1609:K 1589:g 1566:C 1537:) 1531:y 1528:x 1521:2 1517:w 1513:+ 1508:2 1504:z 1500:+ 1495:2 1491:y 1487:+ 1482:2 1478:x 1471:( 1467:+ 1464:E 1461:= 1458:D 1435:y 1432:x 1412:E 1390:2 1386:w 1382:+ 1377:2 1373:z 1369:+ 1364:2 1360:y 1356:+ 1351:2 1347:x 1326:D 1305:) 1301:s 1297:/ 1293:t 1289:( 1268:) 1265:) 1262:2 1259:( 1254:O 1249:, 1244:3 1239:P 1234:( 1225:t 1205:) 1202:s 1199:( 1196:Z 1193:= 1188:s 1184:D 1159:) 1156:) 1153:2 1150:( 1145:O 1140:, 1135:3 1130:P 1125:( 1116:s 1094:3 1089:P 1067:) 1064:2 1061:( 1056:O 1025:( 1013:D 982:1 976:W 967:= 962:d 932:d 910:. 907:) 902:L 897:, 894:X 891:( 878:W 862:d 833:| 829:D 825:| 804:f 783:| 779:D 775:| 754:) 751:f 748:( 745:+ 742:D 739:= 736:E 716:, 707:k 702:/ 698:) 695:} 692:0 689:{ 683:) 678:L 673:, 670:X 667:( 661:( 640:| 636:D 632:| 611:X 591:D 569:L 546:| 542:D 538:| 517:) 514:X 511:( 500:D 480:X 429:X 406:f 386:) 383:f 380:( 360:) 357:X 354:( 351:k 328:f 308:X 288:f 259:) 256:f 253:( 250:+ 247:D 244:= 241:E 214:) 211:X 208:( 197:E 194:, 191:D 171:X 119:) 114:X 108:O 102:, 99:X 96:( 79:D 39:.

Index

Kodaira–Spencer map

family of curves
Apollonian circles
algebraic geometry
family of curves
algebraic curves
projective plane
divisors
scheme
ringed space
pencil
rational function
function field
singular points
Cartier divisors
Weil divisors
divisor (algebraic geometry)
invertible sheaves
holomorphic line bundles
line bundle
invertible sheaf
Cartier divisors
quadric surfaces
genus
hyperelliptic curve
degre 2 {\displaystyle 2} morphism
Riemann–Roch theorem
trigonal curves
Linear system of conics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑