Knowledge (XXG)

List of shapes with known packing constant

Source 📝

363: 101: 145: 470: 216: 477: 75: 334: 401: 321: 660: 583: 202: 24:
copies of the body. For most bodies the value of the packing constant is unknown. The following is a list of bodies in Euclidean spaces whose packing constant is known.
233: 605: 817:
Reinhardt, Karl (1934). "Über die dichteste gitterförmige Lagerung kongruente Bereiche in der Ebene und eine besondere Art konvexer Kurven".
528: 914: 1046: 879:
Bezdek, András; Kuperberg, Włodzimierz (1990). "Maximum density space packing with congruent circular cylinders of infinite length".
162: 325: 965: 40:
packing constant. Therefore, any such body for which the lattice packing constant was previously known, such as any
1041: 25: 1036: 852:
Mount, David M.; Silverman, Ruth (1990). "Packing and covering the plane with translates of a convex polygon".
510: 433: 206: 33: 362: 21: 730:
Cohn, Henry; Kumar, Abhinav (2009). "Optimality and uniqueness of the Leech lattice among lattices".
495: 485: 690:
Bezdek, András; Kuperberg, Włodzimierz (2010). "Dense packing of space with various convex solids".
506: 429: 44:, consequently has a known packing constant. In addition to these bodies, the packing constants of 1012: 994: 943: 923: 834: 797: 776: 757: 739: 691: 775:
Chang, Hai-Chau; Wang, Lih-Chung (2010). "A Simple Proof of Thue's Theorem on Circle Packing".
502: 392: 1004: 982: 933: 890: 861: 826: 749: 223: 152: 100: 63: 29: 17: 469: 316:{\displaystyle \eta _{so}={\frac {8-4{\sqrt {2}}-\ln {2}}{2{\sqrt {2}}-1}}\approx 0.902414} 144: 961: 476: 37: 215: 665: 588: 354: 108: 20:
of a geometric body is the largest average density achieved by packing arrangements of
1030: 1016: 865: 838: 947: 761: 796:
Hales, Thomas; Kusner, Wöden (2016). "Packings of regular pentagons in the plane".
82: 74: 753: 1008: 881: 350: 910:"Upper bounds on packing density for circular cylinders with high aspect ratio" 938: 909: 894: 333: 655:{\displaystyle {\frac {({\frac {\pi }{2}})^{12}}{12!}}\approx 0.000000471087} 136: 400: 45: 830: 112: 41: 578:{\displaystyle {\frac {({\frac {\pi }{2}})^{4}}{4!}}\approx 0.2536695} 744: 781: 696: 999: 802: 928: 711:
Fejes Tóth, László (1950). "Some packing and covering theorems".
94:
Shapes such that congruent copies can form a tiling of space
475: 468: 399: 361: 332: 214: 143: 99: 73: 197:{\displaystyle {\frac {5-{\sqrt {5}}}{3}}\approx 0.92131} 349:
Linear-time (in number of vertices) algorithm given by
985:(2016). "The sphere packing problem in dimension 8". 608: 531: 236: 165: 654: 577: 315: 196: 48:in 8 and 24 dimensions are almost exactly known. 32:body has a packing constant that is equal to its 488:whose inscribed sphere is contained in the shape 8: 966:"Sphere Packing Solved in Higher Dimensions" 998: 937: 927: 801: 780: 743: 695: 629: 615: 609: 607: 552: 538: 532: 530: 291: 281: 265: 253: 241: 235: 175: 166: 164: 50: 679: 685: 683: 915:Discrete & Computational Geometry 7: 341:All 2-fold symmetric convex polygons 14: 626: 612: 549: 535: 494:Fraction of the volume of the 1: 819:Abh. Math. Sem. Univ. Hamburg 866:10.1016/0196-6774(90)90010-C 754:10.4007/annals.2009.170.1003 28:proved that in the plane, a 1009:10.4007/annals.2017.185.3.7 1063: 484:All shapes contained in a 1047:Mathematics-related lists 939:10.1007/s00454-014-9593-6 895:10.1112/s0025579300012808 36:packing constant and its 511:rhombic enneacontahedron 908:Kusner, Wöden (2014). 713:Acta Sci. Math. Szeged 656: 579: 480: 473: 442:Half-infinite cylinder 404: 366: 337: 317: 219: 198: 148: 104: 78: 987:Annals of Mathematics 854:Journal of Algorithms 732:Annals of Mathematics 657: 580: 505:. Examples pictured: 479: 472: 403: 365: 336: 318: 218: 199: 147: 103: 77: 606: 529: 496:rhombic dodecahedron 486:rhombic dodecahedron 408:Bi-infinite cylinder 234: 163: 135:Proof attributed to 666:Hypersphere packing 589:Hypersphere packing 507:rhombicuboctahedron 498:filled by the shape 964:(March 30, 2016), 831:10.1007/bf02940676 652: 575: 481: 474: 405: 367: 338: 313: 220: 194: 149: 105: 79: 1042:Discrete geometry 983:Viazovska, Maryna 671: 670: 644: 623: 567: 546: 503:Kepler conjecture 393:Kepler conjecture 305: 296: 270: 209:and Wöden Kusner 186: 180: 1054: 1037:Packing problems 1021: 1020: 1002: 979: 973: 972: 962:Klarreich, Erica 958: 952: 951: 941: 931: 905: 899: 898: 876: 870: 869: 849: 843: 842: 814: 808: 807: 805: 793: 787: 786: 784: 772: 766: 765: 747: 738:(3): 1003–1050. 727: 721: 720: 708: 702: 701: 699: 687: 661: 659: 658: 653: 645: 643: 635: 634: 633: 624: 616: 610: 584: 582: 581: 576: 568: 566: 558: 557: 556: 547: 539: 533: 460: 458: 457: 426: 424: 423: 388: 386: 385: 322: 320: 319: 314: 306: 304: 297: 292: 286: 285: 271: 266: 254: 249: 248: 224:Smoothed octagon 203: 201: 200: 195: 187: 182: 181: 176: 167: 153:Regular pentagon 132: 130: 129: 64:Packing constant 51: 18:packing constant 1062: 1061: 1057: 1056: 1055: 1053: 1052: 1051: 1027: 1026: 1025: 1024: 993:(3): 991–1015. 981: 980: 976: 970:Quanta Magazine 960: 959: 955: 907: 906: 902: 878: 877: 873: 851: 850: 846: 816: 815: 811: 795: 794: 790: 774: 773: 769: 729: 728: 724: 710: 709: 705: 689: 688: 681: 676: 636: 625: 611: 604: 603: 559: 548: 534: 527: 526: 455: 453: 448: 421: 419: 414: 383: 381: 376: 287: 255: 237: 232: 231: 168: 161: 160: 127: 125: 120: 30:point symmetric 12: 11: 5: 1060: 1058: 1050: 1049: 1044: 1039: 1029: 1028: 1023: 1022: 974: 953: 922:(4): 964–978. 900: 871: 860:(4): 564–580. 844: 809: 788: 767: 722: 703: 678: 677: 675: 672: 669: 668: 662: 651: 650:0.000000471087 648: 642: 639: 632: 628: 622: 619: 614: 601: 598: 595: 592: 591: 585: 574: 571: 565: 562: 555: 551: 545: 542: 537: 524: 521: 518: 515: 514: 499: 492: 489: 482: 465: 464: 461: 446: 443: 440: 437: 436: 427: 412: 409: 406: 396: 395: 389: 374: 371: 368: 358: 357: 355:Ruth Silverman 347: 345: 342: 339: 329: 328: 323: 312: 309: 303: 300: 295: 290: 284: 280: 277: 274: 269: 264: 261: 258: 252: 247: 244: 240: 229: 226: 221: 211: 210: 204: 193: 190: 185: 179: 174: 171: 158: 155: 150: 140: 139: 133: 118: 115: 106: 96: 95: 92: 89: 86: 80: 70: 69: 66: 61: 58: 55: 13: 10: 9: 6: 4: 3: 2: 1059: 1048: 1045: 1043: 1040: 1038: 1035: 1034: 1032: 1018: 1014: 1010: 1006: 1001: 996: 992: 988: 984: 978: 975: 971: 967: 963: 957: 954: 949: 945: 940: 935: 930: 925: 921: 917: 916: 911: 904: 901: 896: 892: 888: 884: 883: 875: 872: 867: 863: 859: 855: 848: 845: 840: 836: 832: 828: 824: 820: 813: 810: 804: 799: 792: 789: 783: 778: 771: 768: 763: 759: 755: 751: 746: 741: 737: 733: 726: 723: 718: 714: 707: 704: 698: 693: 686: 684: 680: 673: 667: 663: 649: 646: 640: 637: 630: 620: 617: 602: 599: 596: 594: 593: 590: 586: 572: 569: 563: 560: 553: 543: 540: 525: 522: 519: 517: 516: 512: 508: 504: 501:Corollary of 500: 497: 493: 490: 487: 483: 478: 471: 467: 466: 463:Wöden Kusner 462: 451: 447: 444: 441: 439: 438: 435: 431: 428: 417: 413: 410: 407: 402: 398: 397: 394: 390: 379: 375: 372: 369: 364: 360: 359: 356: 352: 348: 346: 343: 340: 335: 331: 330: 327: 324: 310: 307: 301: 298: 293: 288: 282: 278: 275: 272: 267: 262: 259: 256: 250: 245: 242: 238: 230: 227: 225: 222: 217: 213: 212: 208: 205: 191: 188: 183: 177: 172: 169: 159: 156: 154: 151: 146: 142: 141: 138: 134: 123: 119: 116: 114: 110: 107: 102: 98: 97: 93: 90: 87: 84: 81: 76: 72: 71: 67: 65: 62: 59: 56: 53: 52: 49: 47: 43: 39: 35: 31: 27: 23: 19: 990: 986: 977: 969: 956: 919: 913: 903: 886: 880: 874: 857: 853: 847: 822: 818: 812: 791: 770: 745:math/0403263 735: 731: 725: 716: 712: 706: 449: 415: 377: 207:Thomas Hales 121: 46:hyperspheres 15: 882:Mathematika 825:: 216–230. 782:1009.4322v1 697:1008.2398v1 597:Hypersphere 520:Hypersphere 387:≈ 0.7404805 57:Description 34:translative 1031:Categories 1000:1603.04246 803:1602.07220 674:References 459:≈ 0.906900 425:≈ 0.906900 131:≈ 0.906900 85:prototiles 83:Monohedral 26:Fejes Tóth 1017:119286185 929:1309.6996 889:: 74–80. 839:120336230 647:≈ 618:π 573:0.2536695 570:≈ 541:π 434:Kuperberg 326:Reinhardt 308:≈ 299:− 279:⁡ 273:− 260:− 239:η 189:≈ 173:− 68:Comments 60:Dimension 22:congruent 948:38234737 762:10696627 311:0.902414 454:√ 420:√ 382:√ 192:0.92131 126:√ 113:Ellipse 42:ellipse 38:lattice 1015:  946:  837:  760:  450:π 430:Bezdek 416:π 378:π 370:Sphere 122:π 109:Circle 1013:S2CID 995:arXiv 944:S2CID 924:arXiv 835:S2CID 798:arXiv 777:arXiv 758:S2CID 740:arXiv 692:arXiv 351:Mount 54:Image 664:See 587:See 509:and 432:and 391:See 353:and 137:Thue 16:The 1005:doi 991:185 934:doi 891:doi 862:doi 827:doi 750:doi 736:170 88:all 1033:: 1011:. 1003:. 989:. 968:, 942:. 932:. 920:51 918:. 912:. 887:37 885:. 858:11 856:. 833:. 823:10 821:. 756:. 748:. 734:. 717:12 715:. 682:^ 638:12 631:12 600:24 513:. 456:12 422:12 384:18 276:ln 128:12 111:, 1019:. 1007:: 997:: 950:. 936:: 926:: 897:. 893:: 868:. 864:: 841:. 829:: 806:. 800:: 785:. 779:: 764:. 752:: 742:: 719:. 700:. 694:: 641:! 627:) 621:2 613:( 564:! 561:4 554:4 550:) 544:2 536:( 523:8 491:3 452:/ 445:3 418:/ 411:3 380:/ 373:3 344:2 302:1 294:2 289:2 283:2 268:2 263:4 257:8 251:= 246:o 243:s 228:2 184:3 178:5 170:5 157:2 124:/ 117:2 91:1

Index

packing constant
congruent
Fejes Tóth
point symmetric
translative
lattice
ellipse
hyperspheres
Packing constant

Monohedral

Circle
Ellipse
Thue

Regular pentagon
Thomas Hales

Smoothed octagon
Reinhardt

Mount
Ruth Silverman

Kepler conjecture

Bezdek
Kuperberg

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.