Knowledge (XXG)

Sodium–sulfur battery

Source 📝

240:
getters to the sodium, but even so wetting will fail below 200 °C. Before the cell can begin operation, it must be heated, which creates extra costs. To tackle this challenge, case studies to couple sodium–sulfur batteries to thermal solar energy systems. The heat energy collected from the sun would be used to pre-heat the cells and maintain the high temperatures for short periods between use. Once running, the heat produced by charging and discharging cycles is sufficient to maintain operating temperatures and usually no external source is required.
678:
energy, room temperature operation mitigates safety issues such as explosions which can occur due to failure of the solid electrolyte during operation at high temperatures. Research and development of sodium–sulfur batteries that can operate at room temperature is ongoing. Despite the higher theoretical energy density of sodium–sulfur cells at room temperature compared to high temperature, operation at room temperature introduces challenges like:
2000: 31: 99:. Poor market adoption of molten sodium-sulfur batteries is due to their safety and durability issues, such as a short cycle life of fewer than 1000 cycles on average (although there are reports of 15 year operation with 300 cycles per year). In 2023, only one company (NGK Insulators of Japan) produces molten NaS batteries on a commercial scale. 458:) are abundant in Japan. The first large-scale field testing took place at TEPCO's Tsunashima substation between 1993 and 1996, using 3 x 2 MW, 6.6 kV battery banks. Based on the findings from this trial, improved battery modules were developed and were made commercially available in 2000. The commercial NaS battery bank offers: 1143: 602:
periods. In addition to this power shifting, sodium-sulfur batteries could be used to assist in stabilizing the power output of the wind farm during wind fluctuations. These types of batteries present an option for energy storage in locations where other storage options are not feasible. For example,
677:
One of the main shortcomings of traditional sodium–sulfur batteries is that they require high temperatures to operate. This means that they must be preheated before use, and that they will consume some of their stored energy (up to 14%) to maintain this temperature when not in use. Aside from saving
501:
announced that they had developed a low temperature molten sodium ion battery that can output power at under 100 °C. The batteries have double the energy density of Li-ion and considerably lower cost. Sumitomo Electric Industry CEO Masayoshi Matsumoto indicated that the company planned to begin
1413:
Y. Dong, I. W. Chen and J. Li, "Transverse and longitudinal degradations in ceramic solid electrolytes." Chemistry of Materials, 34, 5749 (2022) 10.1021/acs.chemmater.2c00329; L. C. De Jonghe, "Impurities and solid electrolyte failure." Solid State Ionics, 7, 61 (1982) 10.1016/0167-2738(82)90070-4;
239:
above 250 °C, but a poor conductor of electrons, and thus avoids self-discharge. Sodium metal does not fully wet the BASE below 400 °C due to a layer of oxide(s) separating them; this temperature can be lowered to 300 °C by coating the BASE with certain metals and/or by adding oxygen
519:
During charge, sodium metal dendrites tend to form (slowly after several cycles) and propagate (rather quickly once they nucleate) into the intergrain boundaries in the solid beta-alumina electrolyte, eventually leading to internal short-circuiting and immediate failure. In general, a significant
485:
announced that it would test a wind farm energy storage battery based on twenty 50 kW sodium–sulfur batteries. The 80 tonne, 2 semi-trailer sized battery is expected to have 7.2 MW·h of capacity at a charge and discharge rate of 1 MW. Since then, NGK announced several large-scale deployments
188:
For operation, the entire battery must be heated to, or above, the melting point of sulfur at 119 °C. Sodium has a lower melting point, around 98 °C, so a battery that holds molten sulfur holds molten sodium by default. This presents a serious safety concern; sodium can be spontaneously
527:
Beta-alumina surface layer on the Na side turns grey after > 100 cycles. This is caused by a slower growth of micron-size sodium metal globules in the triple-junctions between the grains of the solid electrolyte. This process is possible, because the electronic conductivity of beta-alumina is
783:
The problem occurs when the soluble polysulfide forms migrate to the anode, where they form the insoluble polysulfides. These insoluble polysulfides form as dendrites on the anode which can damage the battery and interfere with the movement of sodium ions into the electrolyte. Furthermore, the
1144:
https://www.amazon.com/Long-Hard-Road-Lithium-Ion-Electric/dp/1612497624/ref=sr_1_1?crid=176CB5599LUX6&keywords=long+hard+road+the+lithium-ion+battery+and+the+electric+car&qid=1697893528&sprefix=Long+Hard+Road%3A+The+Lithium-Ion+Battery+and+the+Electric+Car%2Caps%2C68&sr=8-1
535:
Darkening of the beta-alumina also occurs on the sulfur side upon passing electric current, albeit at a slower schedule that the darkening on the sodium side. It is believed to be due to the deposition of carbon, which is added to the bulk sulfur to provide electronic conductivity.
137:
catholyte in place of molten sodium polysulfide, has had greater commercial interest in the past, but As of 2023 there are no commercial manufacturers of ZEBRA. Room-temperature sodium–sulfur batteries are also known. They use neither liquid sodium nor liquid sulfur nor sodium
784:
insoluble polysulfides at the anode cannot be converted back into sulfur when the battery is being recharged, which means that less sulfur is available for the battery to function (capacity loss). Research is being conducted into how the shuttle effect can be avoided.
703:
The shuttle effect in sodium–sulfur batteries leads to a loss of capacity, which can be defined as a reduction in the amount of energy that can be extracted from the battery. When the battery is being discharged, sodium ions react with sulfur (which is in the
510:
Molten sodium beta-alumina batteries failed to meet the durability and safety expectations, that were the basis of several commercialization attempts in the 1980s. A characteristic lifetime of NaS batteries was determined as 1,000-2,000 cycles in a
389:-hours per gram. The material fully coated ("wetted") the electrolyte. After 100 charge/discharge cycles, a test battery maintained about 97% of its initial storage capacity. The lower operating temperature allowed the use of a less-expensive 247:, the Na ion migrates to the sulfur container. The electron drives an electric current through the molten sodium to the contact, through the electrical load and back to the sulfur container. Here, another electron reacts with sulfur to form S 68:, and is fabricated from inexpensive and non-toxic materials. However, due to the high operating temperature required (usually between 300 and 350 °C), as well as the highly corrosive and reactive nature of sodium and 95:(300-400 Wh/L), molten sodium–sulfur batteries have not achieved a wide-scale deployment: there have been only ca. 200 installations, with a combined energy of 4 GWh and power of 0.56 GW, worldwide. vs. 948 GWh for 445:
Ltd. declared their interest in researching the NaS battery in 1983, and became the primary drivers behind the development of this type ever since. TEPCO chose the NaS battery because all its component elements
597:
and solar generation plants. In the case of a wind farm, the battery would store energy during times of high wind but low power demand. This stored energy could then be discharged from the batteries during
1444:
Z. Munshi, P. S. Nicholson and D. Weaver, "Effect of localized temperature development at flaw tips on the degradation of na-β/β″-alumina." Solid State Ionics, 37, 271 (1990) 10.1016/0167-2738(90)90187-V
653:
mission concept is also considering the use of this type of battery, as the rover and its payload are being designed to function for about 50 days on the hot surface of Venus without a cooling system.
177:, from corrosion on the inside. This outside container serves as the positive electrode, while the liquid sodium serves as the negative electrode. The container is sealed at the top with an airtight 971: 106:: large cells have less relative heat loss, so maintaining their high operating temperatures is easier. Commercially available cells are typically large with high capacities (up to 500 Ah). 1435:
M. Liu and L. C. De Jonahe, "Chemical stability of sodium beta -alumina electrolyte in sulfur/sodium polysulfide melts." Journal of the Electrochemical Society, 135, 741 (1988) 10.1149/1.2095734
1414:
D. Gourier, A. Wicker and D. Vivien, "E.S.R. Study of chemical coloration of β and β″ aluminates by metallic sodium." Materials Research Bulletin, 17, 363 (1982) 10.1016/0025-5408(82)90086-1
634:
Because of its high energy density, the NaS battery has been proposed for space applications. Sodium–sulfur cells can be made space-qualified: in fact a test sodium-sulfur cell flew on the
961:
Spoerke, Erik D., Martha M. Gross, Stephen J. Percival, and Leo J. Small. "Molten Sodium Batteries." Energy-Sustainable Advanced Materials (2021): 59-84. doi: 10.1007/978-3-030-57492-5_3 .
367:
was not achieved during that time. Also, the battery life was estimated to be only 2 years. However, the program was terminated in 1995, after two of the leased car batteries caught fire.
1395:
A. C. Buechele, L. C. De Jonghe and D. Hitchcock, "Degradation of sodium β”-alumina: Effect of microstructure." Journal of the Electrochemical Society, 130, 1042 (1983) 10.1149/1.2119881
1404:
D. C. Hitchcock and L. C. De Jonghe, "Time-dependent degradation in sodium-beta” alumina solid electrolytes." Journal of the Electrochemical Society, 133, 355 (1986) 10.1149/1.2108578
557:
Passing current (e.g. >1 A/cm2) through beta-alumina can cause temperature gradient (e.g. > 50 °C/ 2 mm) in the electrolyte, which in turn results in a thermal stress.
528:
small but not zero. The formation of such sodium metal globules gradually increases the electronic conductivity of the electrolyte and causes electronic leakage and self-discharge;
585:
NaS batteries can be deployed to support the electric grid, or for stand-alone renewable power applications. Under some market conditions, NaS batteries provide value via energy
1386:
L. C. De Jonghe, L. Feldman and A. Beuchele, "Slow degradation and electron conduction in sodium/beta-aluminas." Journal of Materials Science, 16, 780 (1981) 10.1007/BF02402796
1374:
Y. Dong, I. W. Chen, and J. Li, "Transverse and longitudinal degradations in ceramic solid electrolytes." Chemistry of Materials, 34, 5749 (2022) 10.1021/acs.chemmater.2c00329
669:
prototype in 1991. The high operating temperature of sodium-sulfur batteries presented difficulties for electric vehicle use, however. The Ecostar never went into production.
550:
Disproportionation of sulfur into aluminium sulfate and sodium polysulfide has been suggested as a degradation pathway. This mechanism is not mentioned in later publications.
185:) membrane, which selectively conducts Na. In commercial applications the cells are arranged in blocks for better heat conservation and are encased in a vacuum-insulated box. 405:
as part of the "Moonlight Project" in 1980. This project sought to develop a durable utility power storage device meeting the criteria shown below in a 10-year project.
1349:"Sumitomo Electric Industries, Ltd. - Press Release (2014) Development of "sEMSA," a New Energy Management System for Business Establishment/Plant Applications" 1524: 1890: 691:
Formation of dendrites on the sodium anode which create short-circuits in the battery. This is contributed to by the shuttle effect which is explained below.
402: 287:
presents a hazard, because it spontaneously burns in contact with air and moisture, thus the system must be protected from water and oxidizing atmospheres.
478:
As of 2007, 165 MW of capacity were installed in Japan. NGK announced in 2008 a plan to expand its NaS factory output from 90 MW a year to 150 MW a year.
193:, equipped with such a battery, burst into flame during recharging, leading Ford to abandon the attempted development of molten NaS batteries for cars. 1365:
R. O. Ansell and J. I. Ansell, "Modeling the reliability of sodium-sulfur cells." Reliab. Eng. Syst. Saf., 17, 127 (1987) 10.1016/0143-8174(87)90011-4
1537:
The facility offers energy-storage capabilities similar to those of pumped hydro facilities while helping to improve the balance of supply and demand
475:
Japan Wind Development opened a 51 MW wind farm that incorporates a 34 MW sodium-sulfur battery system at Futamata in Aomori Prefecture in May 2008.
1929: 1454: 142:, but rather operate on entirely different principles and face different challenges than the high-temperature molten NaS batteries discussed here. 1883: 335:. The car had a 100-mile driving range, which was twice as much as any other fully electric car demonstrated earlier. 68 of such vehicles were 1265: 1696:— originally presented as paper AIAA-2008-5796, 6th AIAA International Energy Conversion Engineering Conf., Cleveland OH, July 28–30, 2008. 1225: 2200: 2087: 76:
applications, rather than for use in vehicles. Molten Na-S batteries are scalable in size: there is a 1 MW microgrid support system on
77: 1472:
Walawalkar, R.; Apt, J.; Mancini, R. (2007). "Economics of electric energy storage for energy arbitrage and regulation in New York".
1588: 543:
Oxygen depletion in the alumina near the sodium electrode has been suggested as a possible cause for the following crack formation.
356: 2240: 1155: 303:
Mitsubishi Materials Corporation plant caught fire. Following the incident, NGK temporarily suspended production of NaS batteries.
2250: 1665: 2415: 2410: 822:
Wen, Z.; Hu, Y.; Wu, X.; Han, J.; Gu, Z. (2013). "Main Challenges for High Performance NAS Battery: Materials and Interfaces".
615: 604: 1095: 102:
Like many high-temperature batteries, sodium–sulfur cells become more economical with increasing size. This is because of the
2178: 360: 217: 182: 139: 1180: 169:
is usually made in a cylindrical configuration. The entire cell is enclosed by a steel casing that is protected, usually by
1735:
Wang, Yanjie; Zhang, Yingjie; Cheng, Hongyu; Ni, Zhicong; Wang, Ying; Xia, Guanghui; Li, Xue; Zeng, Xiaoyuan (2021-03-11).
589:(charging battery when electricity is abundant/cheap, and discharging into the grid when electricity is more valuable) and 2260: 1707: 626:, Japan. The facility offers energy storage to help manage energy levels during peak times with renewable energy sources. 619: 608: 576: 890:
Adelhelm, Philipp; Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine; Janek, Juergen (2015-04-23).
1922: 1309: 494: 2225: 2092: 1282: 985: 2265: 2235: 2220: 2188: 798: 1125: 1008:"Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage" 869: 694:
Shorter cycle life which means that the cells must be replaced more often than their high-temperature counterparts.
352: 2027: 2295: 431: 2193: 580: 2300: 2245: 2230: 2163: 2122: 2097: 2077: 2057: 1549: 1330: 593:. NaS batteries are a possible energy storage technology to support renewable energy generation, specifically 642:
of 150 W·h/kg (3 x nickel–hydrogen battery energy density), operating at 350 °C. It was launched on the
2420: 2183: 1915: 650: 385:
In 2014, researchers identified a liquid sodium–caesium alloy that operates at 150 °C and produces 420
1872: 520:
threshold current density needs to be exceeded before such rapid Mode I fracture-degradation is initiated.
275:
As the cell discharges, the sodium level drops. During the charging phase the reverse process takes place.
2389: 2290: 427: 344: 2151: 423: 2255: 2072: 793: 340: 320: 46: 2117: 1803:"Towards high performance room temperature sodium–sulfur batteries: Strategies to avoid shuttle effect" 393:
external casing instead of steel, offsetting some of the increased cost associated with using caesium.
1860:"AEP'S Appalachian Power unit to install first U.S. use of commercial-scale energy storage technology" 2133: 2102: 1938: 1814: 1617: 1425:-alumina solid electrolytes." Journal of the Electrochemical Society, 133, 6 (1986) 10.1149/1.2108548 1019: 438: 166: 103: 2285: 2270: 2205: 2173: 2168: 1984: 1571:
Koenig, A. A.; Rasmussen, J. R. (1990). "Development of a high specific power sodium sulfur cell".
1262: 1054:
Chen. (2015). A Combined Sodium Sulphur Battery/Solar Thermal Collector System for Energy Storage.
892:"From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries" 803: 572: 472:
A demonstration project used NaS battery at Japan Wind Development Co.'s Miura Wind Park in Japan.
96: 73: 65: 43: 1612:
Auxer, William (June 9–12, 1986). "The PB sodium sulfur cell for satellite battery applications".
162:, compared with liquid-metal batteries where the anode, the cathode and the membrane are liquids. 2275: 2146: 1999: 1957: 1802: 1594: 839: 623: 590: 328: 316: 69: 401:
The NaS battery was one of four battery types selected as candidates for intensive research by
295:
Early on the morning of September 21, 2011, a 2000 kilowatt NaS battery system manufactured by
2349: 2067: 2037: 1838: 1830: 1776: 1758: 1648: 1584: 1037: 929: 911: 2215: 2210: 2022: 1962: 1822: 1766: 1748: 1687: 1625: 1576: 1481: 1077: 1027: 919: 903: 831: 666: 498: 364: 300: 221: 205: 891: 2082: 2009: 1269: 639: 299:, owned by Tokyo Electric Power Company used for storing electricity and installed at the 178: 1818: 1621: 1103: 1023: 2318: 1972: 1771: 1736: 1081: 924: 442: 348: 296: 92: 61: 1056:
International Conference on Computer Science and Environmental Engineering (CSEE 2015)
2404: 1952: 1598: 1006:
Lu, X.; Li, G.; Kim, J. Y.; Mei, D.; Lemmon, J. P.; Sprenkle, V. L.; Liu, J. (2014).
635: 468:
Lifetime of 2,500 cycles at 100% depth of discharge (DOD), or 4,500 cycles at 80% DOD
324: 110: 1348: 1331:"The world's largest "virtual battery plant" is now operating in the Arabian desert" 1068:
Oshima, T.; Kajita, M.; Okuno, A. (2005). "Development of Sodium–Sulfur Batteries".
843: 363:. Despite the low materials cost, these batteries were expensive to produce, as the 17: 2156: 2112: 2047: 1989: 1967: 1629: 1500: 662: 332: 190: 88: 502:
production in 2015. Initial applications are envisaged to be buildings and buses.
370:
As of 2009, a lower temperature, solid electrode version was under development in
1201: 1142:
Long Hard Road: The Lithium-Ion Battery and the Electric Car. 2022. C.J. Murray.
220:(BASE) cylinder from the container of molten sulfur, which is fabricated from an 2384: 2369: 2107: 2032: 1485: 685:
Volume expansion of sulfur, which creates mechanical stresses within the battery
482: 252: 151: 1826: 1711: 1614:
Proceedings of the International Power Sources Symposium, 32nd, Cherry Hill, NJ
382:
membrane to allow operation at 90 °C with all components remaining solid.
2328: 2062: 2042: 1753: 646:
mission in November 1997, and demonstrated 10 days of experimental operation.
174: 1834: 1762: 1737:"Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review" 1580: 915: 2374: 2364: 2354: 2323: 1979: 1678:
Landis, G.A.; Harrison, R. (2010). "Batteries for Venus Surface Operation".
599: 594: 586: 189:
inflammable in air, and sulfur is highly flammable. Several examples of the
57: 30: 1842: 1780: 1525:"Mitsubishi Installs 50 MW Energy Storage System to Japanese Power Company" 1288: 1041: 933: 835: 1859: 1202:"PNNL: News - 'Wetting' a battery's appetite for renewable energy storage" 946: 861: 2052: 907: 375: 331:
resumed its work on a Na-S battery powered electric car, which was named
244: 170: 1907: 216:
donates electrons to the external circuit. The sodium is separated by a
2359: 1423:
D. C. Hitchcock, "Oxygen depletion and slow crack growth in sodium beta
1032: 1007: 512: 455: 390: 379: 225: 159: 81: 1652: 643: 451: 447: 386: 336: 284: 229: 213: 202: 54: 50: 1691: 1643:
Garner, J. C.; Baker, W. E.; Braun, W.; Kim, J. (31 December 1995).
1240:"Japanese Companies Test System to Stabilize Output from Wind Power" 1239: 611:(CAES) requires some type of geologic feature such as a salt cave. 2344: 708:
form) at the cathode to form polysulfides in the following steps:
209: 155: 29: 1801:
Tang, Wenwen; Aslam, Muhammad Kashif; Xu, Maowen (January 2022).
515:
distribution with k=0.5. There are several degradation pathways:
1891:"Low-cost battery built with four times the capacity of lithium" 661:
The first large-scale use of sodium–sulfur batteries was in the
607:
facilities require significant space and water resources, while
371: 1911: 2379: 487: 236: 181:
lid. An essential part of the cell is the presence of a BASE (
1573:
Proceedings of the 34th International Power Sources Symposium
1455:"Aquion Energy to build microgrid battery system in Hawaii" 638:. The NaS flight experiment demonstrated a battery with a 1884:
Advanced Energy Storage for Renewable Energy Technologies
972:"Lithium Battery Production by Country: Top 12 Countries" 255:. The discharge process can be represented as follows: 1550:"World's largest sodium–sulphur ESS deployed in Japan" 1156:"New battery could change world, one house at a time" 486:
including a virtual plant distributed on 10 sites in
34:
Cut-away schematic diagram of a sodium–sulfur battery
1287:(in Japanese). Ngk.co.jp. 2008-07-28. Archived from 2337: 2309: 2131: 2007: 1945: 1616:. A88-16601 04–44. Electrochemical Society: 49–54. 1070:
International Journal of Applied Ceramic Technology
682:
Poor conductivity of sulfur and sodium polysulfides
1668:Geoffrey Landis, NASA Glenn Research Center. 2012. 1645:Sodium Sulfur Battery Cell Space Flight Experiment 1310:"Xcel Energy to trial wind power storage system" 688:Low reaction rates between the sodium and sulfur 1873:"Giant battery smooths out variable wind power" 1183:. The American Ceramic Society. September 2009 1923: 1866:. American Electric Power. 19 September 2005. 1796: 1794: 1792: 1790: 8: 1730: 1728: 862:"Pourable batteries could store green power" 412:8 hour charge/8 hour discharge at rated load 72:, these batteries are primarily suited for 1930: 1916: 1908: 1263:"Can Batteries Save Embattled Wind Power?" 986:"Ford Unplugs Electric Vans After 2 Fires" 774:reacts further with sodium ions to form Na 755:reacts further with sodium ions to form Na 736:reacts further with sodium ions to form Na 1770: 1752: 1096:"Q&A Concerning the NAS Battery Fire" 1031: 923: 1807:Journal of Colloid and Interface Science 673:Room-temperature sodium–sulfur batteries 1382: 1380: 957: 955: 855: 853: 814: 80:CA (USA) and a 50 MW/300 MWh system in 1100:NAS Battery Fire Incident and Response 725:, which is soluble in the electrolyte. 1102:. NGK Insulators, Ltd. Archived from 109:A similar type of battery called the 60:. This type of battery has a similar 7: 1001: 999: 896:Beilstein Journal of Nanotechnology 744:, which is also electrolyte-soluble 235:BASE is a good conductor of sodium 1871:LaMonica, Martin (4 August 2010). 1126:"New battery packs powerful punch" 1082:10.1111/j.1744-7402.2004.tb00179.x 462:Capacity: 25–250 kWh per bank 418:Lifetime of 1,500 cycles or better 323:in the 1960s to power early-model 25: 490:totaling 108 MW/648 MWh in 2019. 357:Electric Power Research Institute 208:sodium at the core serves as the 1998: 1181:"Ceramatec's home power storage" 291:2011 Tsukuba Plant fire incident 1680:Journal of Propulsion and Power 872:from the original on 2009-03-28 616:Mitsubishi Electric Corporation 605:pumped-storage hydroelectricity 150:Typical batteries have a solid 1710:. Greencar.com. Archived from 437:A consortium formed by TEPCO ( 422:The other three were improved 361:California Air Resources Board 228:. The sulfur is absorbed in a 218:beta-alumina solid electrolyte 183:beta-alumina solid electrolyte 140:beta-alumina solid electrolyte 1: 1499:Stahlkopf, Karl (June 2006). 1124:Davidson, Paul (2007-07-05). 824:Advanced Functional Materials 657:Transport and heavy machinery 620:largest sodium–sulfur battery 609:compressed-air energy storage 577:Battery storage power station 1708:"Ford Ecostar EV, Ron Cogan" 495:Sumitomo Electric Industries 201:During the discharge phase, 1486:10.1016/j.enpol.2006.09.005 1312:. BusinessGreen. 4 Mar 2008 567:Grid and standalone systems 415:Efficiency of 70% or better 40:sodium–sulfur (NaS) battery 27:Type of molten-salt battery 2437: 1827:10.1016/j.jcis.2021.07.114 860:Bland, Eric (2009-03-26). 665:demonstration vehicle, an 570: 428:redox flow (vanadium type) 353:Southern California Edison 2088:Metal–air electrochemical 1996: 1754:10.3390/molecules26061535 1706:Cogan, Ron (2007-10-01). 618:commissioned the world's 243:When sodium gives off an 74:stationary energy storage 1895:The University of Sydney 1666:Venus Landsailing Rover. 1581:10.1109/IPSS.1990.145783 1501:"Taking Wind Mainstream" 1283: 1244:Japan for Sustainability 713:Sodium ions react with S 581:Stand-alone power system 1630:2027/uc1.31822015751399 1272:by Hiroki Yomogita 2008 990:Bloomberg Business News 651:Venus Landsailing Rover 87:Despite their very low 2416:Metal-sulfur batteries 2411:Rechargeable batteries 2390:Semipermeable membrane 2179:Lithium–iron–phosphate 836:10.1002/adfm.201200473 799:Lithium–sulfur battery 432:zinc–bromine batteries 345:Detroit Edison Company 35: 2261:Rechargeable alkaline 1939:Electrochemical cells 1012:Nature Communications 794:List of battery types 778:S, which is insoluble 763:, which is insoluble. 341:United Parcel Service 224:metal serving as the 154:membrane between the 97:lithium-ion batteries 66:lithium-ion batteries 33: 2241:Nickel–metal hydride 1284:2008年|ニュース|日本ガイシ株式会社 908:10.3762/bjnano.6.105 439:Tokyo Electric Power 18:Liquid-metal battery 2251:Polysulfide–bromide 2093:Nickel oxyhydroxide 1985:Thermogalvanic cell 1819:2022JCIS..606...22T 1622:1986poso.symp...49A 1160:Ammiraglio61's Blog 1024:2014NatCo...5.4578L 974:. 10 February 2023. 804:Molten-salt battery 573:Grid energy storage 409:1,000 kW class 212:, meaning that the 84:, Kyushu, (Japan). 70:sodium polysulfides 2014:(non-rechargeable) 1958:Concentration cell 1268:2011-09-27 at the 1238:jfs (2007-09-23). 1033:10.1038/ncomms5578 868:. Discovery News. 699:The Shuttle Effect 624:Fukuoka Prefecture 591:voltage regulation 317:Ford Motor Company 36: 2398: 2397: 465:Efficiency of 87% 49:that uses liquid 16:(Redirected from 2428: 2194:Lithium–titanate 2139: 2015: 2002: 1963:Electric battery 1932: 1925: 1918: 1909: 1904: 1902: 1901: 1880: 1867: 1847: 1846: 1798: 1785: 1784: 1774: 1756: 1732: 1723: 1722: 1720: 1719: 1703: 1697: 1695: 1675: 1669: 1663: 1657: 1656: 1640: 1634: 1633: 1609: 1603: 1602: 1568: 1562: 1561: 1559: 1557: 1546: 1540: 1539: 1534: 1532: 1521: 1515: 1514: 1512: 1511: 1496: 1490: 1489: 1469: 1463: 1462: 1451: 1445: 1442: 1436: 1433: 1427: 1421: 1415: 1411: 1405: 1402: 1396: 1393: 1387: 1384: 1375: 1372: 1366: 1363: 1357: 1356: 1345: 1339: 1338: 1327: 1321: 1320: 1318: 1317: 1306: 1300: 1299: 1297: 1296: 1279: 1273: 1260: 1254: 1253: 1251: 1250: 1235: 1229: 1228:. ulvac-uc.co.jp 1223: 1217: 1216: 1214: 1213: 1208:. August 1, 2014 1198: 1192: 1191: 1189: 1188: 1177: 1171: 1170: 1168: 1167: 1152: 1146: 1140: 1134: 1133: 1121: 1115: 1114: 1112: 1111: 1092: 1086: 1085: 1065: 1059: 1052: 1046: 1045: 1035: 1003: 994: 993: 982: 976: 975: 968: 962: 959: 950: 949:, NGK Insulators 947:NAS case studies 944: 938: 937: 927: 887: 881: 880: 878: 877: 857: 848: 847: 819: 667:electric vehicle 499:Kyoto University 365:economy of scale 136: 135: 134: 124: 123: 122: 21: 2436: 2435: 2431: 2430: 2429: 2427: 2426: 2425: 2401: 2400: 2399: 2394: 2333: 2312: 2305: 2226:Nickel–hydrogen 2184:Lithium–polymer 2140: 2137: 2136: 2127: 2016: 2013: 2012: 2003: 1994: 1941: 1936: 1899: 1897: 1889: 1870: 1858: 1855: 1850: 1813:(Pt 1): 22–37. 1800: 1799: 1788: 1734: 1733: 1726: 1717: 1715: 1705: 1704: 1700: 1692:10.2514/1.41886 1677: 1676: 1672: 1664: 1660: 1642: 1641: 1637: 1611: 1610: 1606: 1591: 1570: 1569: 1565: 1555: 1553: 1548: 1547: 1543: 1530: 1528: 1527:. 11 March 2016 1523: 1522: 1518: 1509: 1507: 1498: 1497: 1493: 1471: 1470: 1466: 1453: 1452: 1448: 1443: 1439: 1434: 1430: 1422: 1418: 1412: 1408: 1403: 1399: 1394: 1390: 1385: 1378: 1373: 1369: 1364: 1360: 1347: 1346: 1342: 1329: 1328: 1324: 1315: 1313: 1308: 1307: 1303: 1294: 1292: 1285: 1281: 1280: 1276: 1270:Wayback Machine 1261: 1257: 1248: 1246: 1237: 1236: 1232: 1224: 1220: 1211: 1209: 1200: 1199: 1195: 1186: 1184: 1179: 1178: 1174: 1165: 1163: 1154: 1153: 1149: 1141: 1137: 1123: 1122: 1118: 1109: 1107: 1094: 1093: 1089: 1067: 1066: 1062: 1053: 1049: 1005: 1004: 997: 984: 983: 979: 970: 969: 965: 960: 953: 945: 941: 889: 888: 884: 875: 873: 859: 858: 851: 821: 820: 816: 812: 790: 781: 777: 773: 769: 762: 758: 754: 750: 743: 739: 735: 731: 724: 720: 716: 707: 701: 675: 659: 640:specific energy 632: 583: 571:Main articles: 569: 564: 508: 493:In March 2011, 399: 314: 309: 293: 281: 270: 266: 262: 259:2 Na + 4 S → Na 250: 199: 148: 133: 130: 129: 128: 126: 121: 118: 117: 116: 114: 113:, which uses a 104:square–cube law 78:Catalina Island 28: 23: 22: 15: 12: 11: 5: 2434: 2432: 2424: 2423: 2421:Energy storage 2418: 2413: 2403: 2402: 2396: 2395: 2393: 2392: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2347: 2341: 2339: 2335: 2334: 2332: 2331: 2326: 2321: 2319:Atomic battery 2315: 2313: 2310: 2307: 2306: 2304: 2303: 2298: 2293: 2291:Vanadium redox 2288: 2283: 2278: 2273: 2268: 2266:Silver–cadmium 2263: 2258: 2253: 2248: 2243: 2238: 2236:Nickel–lithium 2233: 2228: 2223: 2221:Nickel–cadmium 2218: 2213: 2208: 2203: 2198: 2197: 2196: 2191: 2189:Lithium–sulfur 2186: 2181: 2176: 2166: 2161: 2160: 2159: 2149: 2143: 2141: 2138:(rechargeable) 2134:Secondary cell 2132: 2129: 2128: 2126: 2125: 2120: 2115: 2110: 2105: 2100: 2095: 2090: 2085: 2080: 2075: 2070: 2065: 2060: 2058:Edison–Lalande 2055: 2050: 2045: 2040: 2035: 2030: 2025: 2019: 2017: 2008: 2005: 2004: 1997: 1995: 1993: 1992: 1987: 1982: 1977: 1976: 1975: 1973:Trough battery 1970: 1960: 1955: 1949: 1947: 1943: 1942: 1937: 1935: 1934: 1927: 1920: 1912: 1906: 1905: 1887: 1881: 1868: 1854: 1853:External links 1851: 1849: 1848: 1786: 1724: 1698: 1686:(4): 649–654. 1670: 1658: 1635: 1604: 1589: 1575:. p. 30. 1563: 1552:. 3 March 2016 1541: 1516: 1491: 1464: 1459:spacedaily.com 1446: 1437: 1428: 1416: 1406: 1397: 1388: 1376: 1367: 1358: 1353:global-sei.com 1340: 1337:. 30 Jan 2019. 1322: 1301: 1274: 1255: 1230: 1218: 1193: 1172: 1147: 1135: 1116: 1087: 1060: 1047: 995: 992:. 6 June 1994. 977: 963: 951: 939: 882: 849: 813: 811: 808: 807: 806: 801: 796: 789: 786: 780: 779: 775: 771: 767: 764: 760: 756: 752: 748: 745: 741: 737: 733: 729: 726: 722: 718: 714: 710: 705: 700: 697: 696: 695: 692: 689: 686: 683: 674: 671: 663:Ford "Ecostar" 658: 655: 631: 628: 568: 565: 563: 560: 559: 558: 555: 554: 553: 548: 547: 546: 541: 540: 539: 533: 532: 531: 525: 524: 523: 507: 504: 470: 469: 466: 463: 443:NGK Insulators 420: 419: 416: 413: 410: 398: 395: 349:US Post Office 319:pioneered the 313: 310: 308: 305: 301:Tsukuba, Japan 297:NGK Insulators 292: 289: 280: 277: 273: 272: 268: 264: 260: 248: 198: 195: 147: 144: 131: 119: 93:energy density 62:energy density 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2433: 2422: 2419: 2417: 2414: 2412: 2409: 2408: 2406: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2342: 2340: 2336: 2330: 2327: 2325: 2322: 2320: 2317: 2316: 2314: 2308: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2281:Sodium–sulfur 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2256:Potassium ion 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2217: 2214: 2212: 2209: 2207: 2204: 2202: 2199: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2171: 2170: 2167: 2165: 2162: 2158: 2155: 2154: 2153: 2150: 2148: 2145: 2144: 2142: 2135: 2130: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2073:Lithium metal 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2028:Aluminium–air 2026: 2024: 2021: 2020: 2018: 2011: 2006: 2001: 1991: 1988: 1986: 1983: 1981: 1978: 1974: 1971: 1969: 1966: 1965: 1964: 1961: 1959: 1956: 1954: 1953:Galvanic cell 1951: 1950: 1948: 1944: 1940: 1933: 1928: 1926: 1921: 1919: 1914: 1913: 1910: 1896: 1892: 1888: 1885: 1882: 1878: 1874: 1869: 1865: 1864:News Releases 1861: 1857: 1856: 1852: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1804: 1797: 1795: 1793: 1791: 1787: 1782: 1778: 1773: 1768: 1764: 1760: 1755: 1750: 1746: 1742: 1738: 1731: 1729: 1725: 1714:on 2008-12-03 1713: 1709: 1702: 1699: 1693: 1689: 1685: 1681: 1674: 1671: 1667: 1662: 1659: 1654: 1650: 1646: 1639: 1636: 1631: 1627: 1623: 1619: 1615: 1608: 1605: 1600: 1596: 1592: 1590:0-87942-604-7 1586: 1582: 1578: 1574: 1567: 1564: 1551: 1545: 1542: 1538: 1526: 1520: 1517: 1506: 1505:IEEE Spectrum 1502: 1495: 1492: 1487: 1483: 1479: 1475: 1474:Energy Policy 1468: 1465: 1460: 1456: 1450: 1447: 1441: 1438: 1432: 1429: 1426: 1420: 1417: 1410: 1407: 1401: 1398: 1392: 1389: 1383: 1381: 1377: 1371: 1368: 1362: 1359: 1354: 1350: 1344: 1341: 1336: 1332: 1326: 1323: 1311: 1305: 1302: 1291:on 2010-03-23 1290: 1286: 1278: 1275: 1271: 1267: 1264: 1259: 1256: 1245: 1241: 1234: 1231: 1227: 1222: 1219: 1207: 1203: 1197: 1194: 1182: 1176: 1173: 1161: 1157: 1151: 1148: 1145: 1139: 1136: 1131: 1127: 1120: 1117: 1106:on 2012-10-28 1105: 1101: 1097: 1091: 1088: 1083: 1079: 1075: 1071: 1064: 1061: 1057: 1051: 1048: 1043: 1039: 1034: 1029: 1025: 1021: 1017: 1013: 1009: 1002: 1000: 996: 991: 987: 981: 978: 973: 967: 964: 958: 956: 952: 948: 943: 940: 935: 931: 926: 921: 917: 913: 909: 905: 902:: 1016–1055. 901: 897: 893: 886: 883: 871: 867: 863: 856: 854: 850: 845: 841: 837: 833: 829: 825: 818: 815: 809: 805: 802: 800: 797: 795: 792: 791: 787: 785: 765: 746: 727: 712: 711: 709: 698: 693: 690: 687: 684: 681: 680: 679: 672: 670: 668: 664: 656: 654: 652: 647: 645: 641: 637: 636:Space Shuttle 629: 627: 625: 621: 617: 614:In 2016, the 612: 610: 606: 601: 596: 592: 588: 582: 578: 574: 566: 561: 556: 552: 551: 549: 545: 544: 542: 538: 537: 534: 530: 529: 526: 522: 521: 518: 517: 516: 514: 505: 503: 500: 496: 491: 489: 484: 479: 476: 473: 467: 464: 461: 460: 459: 457: 453: 449: 444: 440: 435: 433: 429: 425: 417: 414: 411: 408: 407: 406: 404: 396: 394: 392: 388: 383: 381: 378:. They use a 377: 373: 368: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 325:electric cars 322: 318: 312:United States 311: 306: 304: 302: 298: 290: 288: 286: 278: 276: 258: 257: 256: 254: 246: 241: 238: 233: 231: 227: 223: 219: 215: 211: 207: 204: 196: 194: 192: 186: 184: 180: 176: 172: 168: 163: 161: 157: 153: 145: 143: 141: 112: 111:ZEBRA battery 107: 105: 100: 98: 94: 90: 85: 83: 79: 75: 71: 67: 63: 59: 56: 52: 48: 45: 42:is a type of 41: 32: 19: 2296:Zinc–bromine 2280: 2103:Silver oxide 2038:Chromic acid 2010:Primary cell 1990:Voltaic pile 1968:Flow battery 1898:. Retrieved 1894: 1876: 1863: 1810: 1806: 1744: 1740: 1716:. Retrieved 1712:the original 1701: 1683: 1679: 1673: 1661: 1644: 1638: 1613: 1607: 1572: 1566: 1554:. Retrieved 1544: 1536: 1529:. Retrieved 1519: 1508:. Retrieved 1504: 1494: 1477: 1473: 1467: 1458: 1449: 1440: 1431: 1424: 1419: 1409: 1400: 1391: 1370: 1361: 1352: 1343: 1334: 1325: 1314:. Retrieved 1304: 1293:. Retrieved 1289:the original 1277: 1258: 1247:. Retrieved 1243: 1233: 1221: 1210:. Retrieved 1205: 1196: 1185:. Retrieved 1175: 1164:. Retrieved 1162:. 2010-01-15 1159: 1150: 1138: 1129: 1119: 1108:. Retrieved 1104:the original 1099: 1090: 1073: 1069: 1063: 1055: 1050: 1015: 1011: 989: 980: 966: 942: 899: 895: 885: 874:. Retrieved 865: 827: 823: 817: 782: 702: 676: 660: 648: 633: 613: 584: 562:Applications 509: 492: 480: 477: 474: 471: 436: 421: 400: 384: 369: 333:Ford Ecostar 315: 294: 282: 274: 242: 234: 200: 191:Ford Ecostar 187: 164: 149: 146:Construction 108: 101: 89:capital cost 86: 39: 37: 2385:Salt bridge 2370:Electrolyte 2301:Zinc–cerium 2286:Solid state 2271:Silver–zinc 2246:Nickel–zinc 2231:Nickel–iron 2206:Molten salt 2174:Dual carbon 2169:Lithium ion 2164:Lithium–air 2123:Zinc–carbon 2098:Silicon–air 2078:Lithium–air 1747:(6): 1535. 1480:(4): 2558. 830:(8): 1005. 483:Xcel Energy 387:milliampere 307:Development 253:polysulfide 152:electrolyte 53:and liquid 44:molten-salt 2405:Categories 2338:Cell parts 2329:Solar cell 2311:Other cell 2276:Sodium ion 2147:Automotive 1900:2022-12-13 1718:2010-04-12 1556:22 January 1531:22 January 1510:2010-04-12 1316:2010-04-12 1295:2010-04-12 1249:2010-04-12 1226:(Japanese) 1212:2016-06-25 1187:2014-06-26 1166:2014-06-26 1110:2014-06-26 1076:(3): 269. 1058:, 428–439. 876:2010-04-12 810:References 717:to form Na 595:wind farms 506:Challenges 327:. In 1989 175:molybdenum 58:electrodes 2375:Half-cell 2365:Electrode 2324:Fuel cell 2201:Metal–air 2152:Lead–acid 2068:Leclanché 1980:Fuel cell 1835:0021-9797 1763:1420-3049 1741:Molecules 1599:111022668 1130:USA Today 916:2190-4286 600:peak load 587:arbitrage 481:In 2010, 441:Co.) and 424:lead–acid 376:Ceramatec 251:, sodium 206:elemental 197:Operation 91:and high 2355:Catalyst 2216:Nanowire 2211:Nanopore 2157:gel–VRLA 2118:Zinc–air 2023:Alkaline 1843:34384963 1781:33799697 1266:Archived 1206:pnnl.gov 1042:25081362 1018:: 4578. 934:25977873 870:Archived 844:94930296 788:See also 245:electron 232:sponge. 171:chromium 2360:Cathode 2113:Zamboni 2083:Mercury 2048:Daniell 1815:Bibcode 1772:7999928 1618:Bibcode 1020:Bibcode 925:4419580 513:Weibull 456:alumina 391:polymer 380:NASICON 321:battery 226:cathode 179:alumina 160:cathode 82:Fukuoka 47:battery 2350:Binder 2108:Weston 2033:Bunsen 1886:(gone) 1841:  1833:  1779:  1769:  1761:  1653:187010 1651:  1597:  1587:  1335:Quartz 1040:  932:  922:  914:  842:  644:STS-87 579:, and 454:, and 452:sulfur 448:sodium 430:, and 359:, and 337:leased 285:sodium 279:Safety 271:~ 2 V) 230:carbon 203:molten 55:sulfur 51:sodium 2345:Anode 2063:Grove 2043:Clark 1946:Types 1595:S2CID 866:MSNBC 840:S2CID 630:Space 397:Japan 283:Pure 222:inert 210:anode 156:anode 2380:Ions 1877:CNET 1839:PMID 1831:ISSN 1777:PMID 1759:ISSN 1649:OSTI 1585:ISBN 1558:2020 1533:2020 1038:PMID 930:PMID 912:ISSN 649:The 497:and 403:MITI 372:Utah 329:Ford 269:cell 237:ions 173:and 167:cell 165:The 158:and 127:AlCl 115:NiCl 2053:Dry 1823:doi 1811:606 1767:PMC 1749:doi 1688:doi 1626:hdl 1577:doi 1482:doi 1078:doi 1028:doi 920:PMC 904:doi 832:doi 622:in 488:UAE 374:by 339:to 64:to 2407:: 1893:. 1875:. 1862:. 1837:. 1829:. 1821:. 1809:. 1805:. 1789:^ 1775:. 1765:. 1757:. 1745:26 1743:. 1739:. 1727:^ 1684:26 1682:. 1647:. 1624:. 1593:. 1583:. 1535:. 1503:. 1478:35 1476:. 1457:. 1379:^ 1351:. 1333:. 1242:. 1204:. 1158:. 1128:. 1098:. 1072:. 1036:. 1026:. 1014:. 1010:. 998:^ 988:. 954:^ 928:. 918:. 910:. 898:. 894:. 864:. 852:^ 838:. 828:23 826:. 766:Na 747:Na 728:Na 575:, 450:, 434:. 426:, 355:, 351:, 347:, 343:, 267:(E 214:Na 38:A 1931:e 1924:t 1917:v 1903:. 1879:. 1845:. 1825:: 1817:: 1783:. 1751:: 1721:. 1694:. 1690:: 1655:. 1632:. 1628:: 1620:: 1601:. 1579:: 1560:. 1513:. 1488:. 1484:: 1461:. 1355:. 1319:. 1298:. 1252:. 1215:. 1190:. 1169:. 1132:. 1113:. 1084:. 1080:: 1074:1 1044:. 1030:: 1022:: 1016:5 936:. 906:: 900:6 879:. 846:. 834:: 776:2 772:4 770:S 768:2 761:2 759:S 757:2 753:4 751:S 749:2 742:4 740:S 738:2 734:8 732:S 730:2 723:8 721:S 719:2 715:8 706:8 704:S 446:( 265:4 263:S 261:2 249:n 132:3 125:/ 120:2 20:)

Index

Liquid-metal battery

molten-salt
battery
sodium
sulfur
electrodes
energy density
lithium-ion batteries
sodium polysulfides
stationary energy storage
Catalina Island
Fukuoka
capital cost
energy density
lithium-ion batteries
square–cube law
ZEBRA battery
beta-alumina solid electrolyte
electrolyte
anode
cathode
cell
chromium
molybdenum
alumina
beta-alumina solid electrolyte
Ford Ecostar
molten
elemental

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.