Knowledge (XXG)

Liquid apogee engine

Source πŸ“

28: 531:
Present telecommunication spacecraft platforms tend to benefit more from high specific impulse than high thrust. The less fuel is consumed to get into orbit, the more is available for station keeping when on station. This increase in the remaining propellant can be directly translated to an increase
465:
to be used for space applications, however to mitigate this risk, companies are investigating alternative propellants and engine designs. A change over to these alternative propellants is not straightforward, and issues such as performance, reliability and compatibility (e.g. satellite propulsion
539:
manoeuvre can be executed, the higher the efficiency of this manoeuvre, and the less propellant is required. This reduction in the propellant required can be directly translated to an increase in the bus and payload mass (at design stage), enabling better science return on these
492:
Though marketed to deliver a particular nominal thrust and nominal specific impulse at nominal propellant feed conditions, these engines actually undergo rigorous testing where performance is mapped over a range of operating conditions before being deemed
392: 1143:
Naicker, Lolan; Baker, Adam; Coxhill, Ian; Hammond, Jeff; Martin, Houston; Perigo, David; Solway, Nick; Wall, Ronan (2012). "Progress towards a 1.1 kN apogee engine for interplanetary propulsion".
851: 93:. Despite the name, an apogee engine can be used for a range of other manoeuvres, such as end-of-life deorbit, Earth orbit escape, planetary orbit insertion and planetary descent/ascent. 31:
A 400 N hypergolic liquid apogee engine, including heat shield and mounting structure, on display at DLR visitors center, Lampoldshausen, Germany. The engine was designed for use on
1125:
Houston, Martin; Smith, Pete; Naicker, Lolan; Perigo, David; Wall, Ronan (2014). "A high flow rate apogee engine solenoid valve for the next generation of ESA planetary missions".
519:. The useful life of an engine at a particular performance level is dictated by the useful life of the materials of construction, primarily those used for the combustion chamber. 544:
The actual engine chosen for a mission is dependent on the technical details of the mission. More practical considerations such as cost, lead time and export restrictions (e.g.
312:
Hypergolic propellant combinations ignite upon contact within the engine combustion chamber and offer very high ignition reliability, as well as the ability for reignition.
482:
The characteristic velocity is influenced by design details such as propellant combination, propellant feed pressure, propellant temperature, and propellant mixture ratio.
583: 497:. This means that a flight-qualified production engine can be tuned (within reason) by the manufacturer to meet particular mission requirements, such as higher thrust. 1019: 489:
A typical 500 N-class hypergolic liquid apogee engine has a vacuum specific impulse in the region of 320 s, with the practical limit estimated to be near 335 s.
35:
satellites. These were the first three-axis stabilised communication satellites in geostationary orbit to use a liquid bipropellant apogee engine for orbit insertion.
1104: 669: 859: 535:
Planetary exploration spacecraft, especially the larger ones, tend to benefit more from high thrust than high specific impulse. The quicker a high delta-
505:
Most apogee engines are operated in an on–off manner at a fixed thrust level. This is because the valves used only have two positions: open or closed.
545: 989: 916: 790: 775:
Stechman, Carl; Harper, Steve (2010). "Performance improvements in small earth storable rocket engines - an era of approaching the theoretical".
512:, depends both on the manoeuvre and the capability of the engine. Engines are qualified for a certain minimal and maximal single-burn duration. 754: 721: 653: 886:
Naicker, Lolan; Wall, Ronan; David, Perigo (2014). "An overview of development model testing for the LEROS 4 High Thrust Apogee Engine".
706:
Space Technology Library Volume 1. An introduction to mission design for geostationary satellites. Chapter 4: The Apogee Manoeuvre
1074: 189:
To protect the spacecraft from the radiant heat of the combustion chamber, these engines are generally installed together with a
284: 155:
Derivatives of these original engines are still used today and are continually being evolved and adapted for new applications.
1184: 591: 1027: 959: 86: 835:
Hyde, Simon (2012). "A design optimisation study of a generic bi-propellant injector for additive manufacturing".
670:"Industrial Policy Committee, Robotic Exploration Plan, Programme of Work 2009-2014 and relevant Procurement Plan" 676: 527:
A simplified division can be made between apogee engines used for telecommunications and exploration missions:
316: 173:
injector assembly containing (though dependent on the injector) central oxidant gallery and outer fuel gallery,
78: 201:
Apogee engines typically use one fuel and one oxidizer. This propellant is usually, but not restricted to, a
152:
and The Marquardt Company were all participants in developing engines for various satellites and spacecraft.
124:, however, uses solid propellant. These solid-propellant versions are not used on new-generation satellites. 1179: 179: 944:
Valencia-Bel, Ferran (2012). "Replacement of Conventional Spacecraft Propellants with Green Propellants".
121: 202: 56: 997: 798: 1158:
Perigo, David (2012). "Large platform satellite propulsion with a focus on exploration applications".
232: 852:"Space propulsion - Moog sees higher-thrust liquid propellant engine as right fit for Mars missions" 515:
Engines are also qualified to deliver a maximal cumulative burn duration, sometimes referred to as
257: 90: 1049: 746: 645: 27: 750: 717: 649: 117: 738: 709: 637: 532:
in the service lifetime of the satellite, increasing the financial return on these missions.
475: 145: 82: 66:
derives from the type of manoeuvre for which the engine is typically used, i.e. an in-space
614: 141: 52: 1082: 478:
and vacuum thrust. However, there are many other details which influence performance:
1173: 739: 638: 557: 17: 485:
The thrust coefficient is influenced primarily by the nozzle supersonic area ratio.
341: 713: 190: 132:
The apogee engine traces its origin to the early 1960s, when companies such as
137: 967: 1105:"LEROS engine propels the Juno spacecraft on its historic voyage to Jupiter" 820:
Hyde, Simon (2012). "Combustion chamber design for additive manufacturing".
209: 185:
Thrust coefficient limited by supersonic area ratio of the expansion nozzle.
32: 163:
A typical liquid apogee engine scheme could be defined as an engine with:
474:
The performance of an apogee engine is usually quoted in terms of vacuum
149: 133: 67: 905:(AFRPL-TR-76-76 ed.). Martin Marietta Corporation. p. 2.3–3. 508:
The duration for which the engine is on, sometimes referred to as the
903:
USAF Propellant Handbooks: Nitric Acid / Nitrogen Tetroxide Oxidizers
74: 96:
In some parts of the space industry an LAE is also referred to as a
26: 466:
system and launch-site infrastructure) require investigation.
737:
Ley, Wilfred; Wittmann, Klaus; Hallmann, Willi, eds. (2009).
182:
limited by thermal capability of combustion chamber material,
441:
will be prohibited or restricted in the near- to mid-term.
395:
regulations. In 2011 the REACH framework legislation added
108:(DMLAT). Despite the ambiguity with respect to the use of 167:
pressure-regulated hypergolic liquid bipropellant feed,
77:
of an elliptical orbit in order to circularise it. For
1160:
Space Propulsion 2012 Conference, San Sebastian, Spain
791:"ESA investigates ALM for in-space satellite engines" 636:
Domingue, D. L.; Russell, C. T. (19 December 2007).
777:
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
170:
thermally isolated solenoid or torque motor valves,
1127:Space Propulsion 2014 Conference, Cologne, Germany 946:Space Propulsion 2012 Conference, Bordeaux, France 888:Space Propulsion 2014 Conference, Cologne, Germany 837:Space Propulsion 2012 Conference, Bordeaux, France 822:Space Propulsion 2012 Conference, Bordeaux, France 917:"Considering hydrazine-free satellite propulsion" 644:. Springer Science & Business Media. p.  89:and place the satellite on station in a circular 939: 937: 420:. This step increases the risk that the use of 120:(AKM) or apogee boost motor (ABM) such as the 116:in these names, all use liquid propellant. An 704:Pocha, J. J. (1987). "The Apogee Manoeuvre". 176:radiative and film-cooled combustion chamber, 8: 578: 576: 1138: 1136: 881: 879: 877: 770: 768: 766: 104:(LAT) and, depending on the propellant, a 699: 697: 584:"Unified Propulsion System - Background" 1145:Space Propulsion 2012, Bordeaux, France 745:. John Wiley & Sons, Ltd. pp.  675:. European Space Agency. Archived from 615:"Juno Jupiter probe gets British boost" 572: 444:Exemptions are being sought to allow 7: 548:) also play a part in the decision. 346:), is used as a substitute for pure 1020:"400 N Bipropellant Apogee Motors" 85:is performed to transition from a 25: 391:is under threat in Europe due to 640:The MESSENGER Mission to Mercury 517:cumulative propellant throughput 106:dual-mode liquid apogee thruster 901:Wright, A. C. (February 1977). 418:substances of very high concern 51:, refers to a type of chemical 990:"Apogee/Upper Stage Thrusters" 1: 1075:"Satellite Propulsion System" 1050:"Bipropellant Rocket Engines" 613:Amos, Jonathan (2012-09-04). 850:Werner, Debra (2013-07-15). 741:Handbook of space technology 708:. Springer. pp. 51–66. 87:geostationary transfer orbit 714:10.1007/978-94-009-3857-1_4 57:main engine in a spacecraft 1201: 416:to its candidate list of 1024:Astrium Space Propulsion 588:Airbus Defence and Space 317:mixed oxides of nitrogen 79:geostationary satellites 180:characteristic velocity 319:(MON), such as MON-3 ( 205:combination such as: 102:liquid apogee thruster 55:typically used as the 36: 1185:Spacecraft propulsion 30: 862:on November 15, 2014 41:liquid apogee engine 18:Liquid Apogee Engine 1085:on 24 November 2014 970:on 29 November 2014 98:liquid apogee motor 91:geostationary orbit 73:change made at the 960:"Green propulsion" 315:In many instances 37: 856:www.spacenews.com 756:978-0-470-69739-9 723:978-94-010-8215-0 655:978-0-387-77214-1 118:apogee kick motor 83:orbital manoeuvre 16:(Redirected from 1192: 1164: 1163: 1155: 1149: 1148: 1140: 1131: 1130: 1122: 1116: 1115: 1113: 1111: 1101: 1095: 1094: 1092: 1090: 1081:. Archived from 1071: 1065: 1064: 1062: 1060: 1046: 1040: 1039: 1037: 1035: 1026:. Archived from 1016: 1010: 1009: 1007: 1005: 996:. Archived from 986: 980: 979: 977: 975: 966:. Archived from 964:www.sscspace.com 956: 950: 949: 941: 932: 931: 929: 927: 913: 907: 906: 898: 892: 891: 883: 872: 871: 869: 867: 858:. Archived from 847: 841: 840: 832: 826: 825: 817: 811: 810: 808: 806: 797:. Archived from 787: 781: 780: 772: 761: 760: 744: 734: 728: 727: 701: 692: 691: 689: 687: 681: 674: 666: 660: 659: 643: 633: 627: 626: 624: 622: 610: 604: 603: 601: 599: 590:. Archived from 580: 495:flight-qualified 476:specific impulse 464: 463: 462: 454: 453: 440: 439: 438: 430: 429: 415: 414: 413: 405: 404: 390: 389: 388: 380: 379: 366: 365: 364: 356: 355: 344: 339: 338: 337: 329: 328: 307: 306: 305: 297: 296: 280: 279: 278: 270: 269: 252: 251: 250: 242: 241: 229: 228: 227: 219: 218: 146:Bell Aerosystems 21: 1200: 1199: 1195: 1194: 1193: 1191: 1190: 1189: 1170: 1169: 1168: 1167: 1157: 1156: 1152: 1142: 1141: 1134: 1124: 1123: 1119: 1109: 1107: 1103: 1102: 1098: 1088: 1086: 1073: 1072: 1068: 1058: 1056: 1048: 1047: 1043: 1033: 1031: 1018: 1017: 1013: 1003: 1001: 988: 987: 983: 973: 971: 958: 957: 953: 943: 942: 935: 925: 923: 915: 914: 910: 900: 899: 895: 885: 884: 875: 865: 863: 849: 848: 844: 834: 833: 829: 819: 818: 814: 804: 802: 789: 788: 784: 774: 773: 764: 757: 736: 735: 731: 724: 703: 702: 695: 685: 683: 679: 672: 668: 667: 663: 656: 635: 634: 630: 620: 618: 612: 611: 607: 597: 595: 582: 581: 574: 569: 563: 554: 525: 503: 472: 461: 458: 457: 456: 452: 449: 448: 447: 445: 437: 434: 433: 432: 428: 425: 424: 423: 421: 412: 409: 408: 407: 403: 400: 399: 398: 396: 387: 384: 383: 382: 378: 375: 374: 373: 371: 363: 360: 359: 358: 354: 351: 350: 349: 347: 342: 336: 333: 332: 331: 327: 324: 323: 322: 320: 304: 301: 300: 299: 295: 292: 291: 290: 288: 277: 274: 273: 272: 268: 265: 264: 263: 261: 249: 246: 245: 244: 240: 237: 236: 235: 233: 226: 223: 222: 221: 217: 214: 213: 212: 210: 199: 161: 142:Reaction Motors 130: 81:, this type of 23: 22: 15: 12: 11: 5: 1198: 1196: 1188: 1187: 1182: 1180:Rocket engines 1172: 1171: 1166: 1165: 1150: 1132: 1117: 1096: 1066: 1054:www.rocket.com 1041: 1011: 981: 951: 933: 908: 893: 873: 842: 827: 812: 782: 762: 755: 729: 722: 693: 661: 654: 628: 605: 571: 570: 568: 565: 561: 560: 553: 550: 542: 541: 533: 524: 521: 502: 499: 487: 486: 483: 471: 468: 459: 450: 435: 426: 410: 401: 385: 376: 361: 352: 334: 325: 310: 309: 302: 293: 282: 275: 266: 255: 247: 238: 224: 215: 198: 195: 187: 186: 183: 177: 174: 171: 168: 160: 157: 129: 126: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1197: 1186: 1183: 1181: 1178: 1177: 1175: 1161: 1154: 1151: 1146: 1139: 1137: 1133: 1128: 1121: 1118: 1106: 1100: 1097: 1084: 1080: 1079:www.ihi.co.jp 1076: 1070: 1067: 1055: 1051: 1045: 1042: 1030:on 2014-04-26 1029: 1025: 1021: 1015: 1012: 1000:on 2015-03-02 999: 995: 991: 985: 982: 969: 965: 961: 955: 952: 947: 940: 938: 934: 922: 918: 912: 909: 904: 897: 894: 889: 882: 880: 878: 874: 861: 857: 853: 846: 843: 838: 831: 828: 823: 816: 813: 801:on 2014-11-29 800: 796: 792: 786: 783: 778: 771: 769: 767: 763: 758: 752: 748: 743: 742: 733: 730: 725: 719: 715: 711: 707: 700: 698: 694: 682:on 2016-03-03 678: 671: 665: 662: 657: 651: 647: 642: 641: 632: 629: 616: 609: 606: 594:on 2014-09-25 593: 589: 585: 579: 577: 573: 566: 564: 559: 558:Rocket engine 556: 555: 551: 549: 547: 538: 534: 530: 529: 528: 522: 520: 518: 513: 511: 510:burn duration 506: 500: 498: 496: 490: 484: 481: 480: 479: 477: 469: 467: 442: 419: 394: 368: 345: 318: 313: 286: 283: 259: 256: 253: 230: 208: 207: 206: 204: 196: 194: 192: 184: 181: 178: 175: 172: 169: 166: 165: 164: 158: 156: 153: 151: 147: 143: 139: 135: 127: 125: 123: 119: 115: 111: 107: 103: 99: 94: 92: 88: 84: 80: 76: 72: 71: 65: 64:apogee engine 60: 58: 54: 53:rocket engine 50: 49:apogee engine 46: 42: 34: 29: 19: 1159: 1153: 1144: 1126: 1120: 1108:. Retrieved 1099: 1087:. Retrieved 1083:the original 1078: 1069: 1057:. Retrieved 1053: 1044: 1032:. Retrieved 1028:the original 1023: 1014: 1002:. Retrieved 998:the original 994:www.moog.com 993: 984: 972:. Retrieved 968:the original 963: 954: 945: 924:. Retrieved 920: 911: 902: 896: 887: 864:. Retrieved 860:the original 855: 845: 836: 830: 821: 815: 803:. Retrieved 799:the original 794: 785: 779:(2010–6884). 776: 740: 732: 705: 684:. Retrieved 677:the original 664: 639: 631: 619:. Retrieved 608: 596:. Retrieved 592:the original 587: 562: 543: 536: 526: 523:Applications 516: 514: 509: 507: 504: 494: 491: 488: 473: 443: 417: 369: 314: 311: 200: 188: 162: 154: 131: 113: 109: 105: 101: 97: 95: 69: 63: 61: 48: 44: 40: 38: 1110:15 November 1089:15 November 1059:15 November 1034:15 November 1004:15 November 974:15 November 926:15 November 866:15 November 805:15 November 470:Performance 370:The use of 340:with 3 wt% 191:heat shield 1174:Categories 1147:(2394092). 1129:(2962486). 890:(2969298). 686:25 January 621:29 January 617:. BBC News 598:29 January 567:References 203:hypergolic 197:Propellant 138:Rocketdyne 795:LayerWise 540:missions. 501:Operation 100:(LAM), a 62:The name 33:Symphonie 552:See also 150:TRW Inc. 134:Aerojet 128:History 122:Waxwing 753:  749:–324. 720:  652:  159:Layout 110:engine 75:apogee 68:delta- 47:), or 680:(PDF) 673:(PDF) 393:REACH 114:motor 1112:2014 1091:2014 1061:2014 1036:2014 1006:2014 976:2014 928:2014 868:2014 807:2014 751:ISBN 718:ISBN 688:2015 650:ISBN 623:2015 600:2015 546:ITAR 285:UDMH 112:and 921:ESA 747:323 710:doi 646:197 258:MMH 45:LAE 1176:: 1135:^ 1077:. 1052:. 1022:. 992:. 962:. 936:^ 919:. 876:^ 854:. 793:. 765:^ 716:. 696:^ 648:. 586:. 575:^ 367:. 343:NO 193:. 148:, 144:, 140:, 136:, 59:. 39:A 1162:. 1114:. 1093:. 1063:. 1038:. 1008:. 978:. 948:. 930:. 870:. 839:. 824:. 809:. 759:. 726:. 712:: 690:. 658:. 625:. 602:. 537:v 460:4 455:H 451:2 446:N 436:4 431:H 427:2 422:N 411:4 406:H 402:2 397:N 386:4 381:H 377:2 372:N 362:4 357:O 353:2 348:N 335:4 330:O 326:2 321:N 308:. 303:4 298:O 294:2 289:N 287:/ 281:, 276:4 271:O 267:2 262:N 260:/ 254:, 248:4 243:O 239:2 234:N 231:/ 225:4 220:H 216:2 211:N 70:v 43:( 20:)

Index

Liquid Apogee Engine

Symphonie
rocket engine
main engine in a spacecraft
delta-v
apogee
geostationary satellites
orbital manoeuvre
geostationary transfer orbit
geostationary orbit
apogee kick motor
Waxwing
Aerojet
Rocketdyne
Reaction Motors
Bell Aerosystems
TRW Inc.
characteristic velocity
heat shield
hypergolic
N
2
H
4

N
2
O
4

MMH
UDMH
mixed oxides of nitrogen
NO
REACH
specific impulse
ITAR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑